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Abstract

Background: Mitochondrial alterations have been observed in subjects with metabolic disorders such as obesity
and diabetes. Studies on animal models and cell cultures suggest aberrant glucose and lipid levels, and impaired
insulin signaling might lead to mitochondrial changes. However, the molecular mechanism underlying mitochondrial
aberrance remains largely unexplored in human subjects.

Results: Here we show that the mitochondrial DNA copy number (mtDNAn) was significantly reduced (6.9-fold lower,
p < 0.001) in the leukocytes from obese humans (BMI >30). The reduction of mtDNAn was strongly associated with
insulin resistance (HOMA-IR: −0.703, p < 0.05; fasting insulin level: −0.015, p < 0.05); by contrast, the correlation between
fasting glucose or lipid levels and mtDNAn was not significant. Epigenetic study of the displacement loop (D-loop)
region of mitochondrial genome, which controls the replication and transcription of the mitochondrial DNA as well as
organization of the mitochondrial nucleoid, revealed a dramatic increase of DNA methylation in obese (5.2-fold higher
vs. lean subjects, p < 0.05) and insulin-resistant (4.6-fold higher vs. insulin-sensitive subjects, p < 0.05) individuals.

Conclusions: The reduction of mtDNAn in obese human subjects is associated with insulin resistance and may arise
from increased D-loop methylation, suggesting an insulin signaling-epigenetic-genetic axis in mitochondrial regulation.

Keywords: DNA methylation, D-loop, Mitochondrial regulation, Metabolism, Obesity, Insulin resistance, Genetic,
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Background
The epidemic of obesity is growing globally. In addition
to the changes in glucose and lipid metabolism, obesity
is associated with insulin resistance and increased risk of
type 2 diabetes (T2D) and cardiovascular diseases (CVD)
[1–3]. As the primary metabolic platform in mammalian
cells, mitochondria undergo genetic and epigenetic
regulation, which leads to alterations in mitochondrial
function, dynamics, and biogenesis during metabolic
disorders [2, 4, 5]. Decrease in mitochondrial DNA
copy number (mtDNAn) has been observed in skeletal
muscle, adipose tissue, and peripheral blood from obese
and T2D individuals [6–15]. The reduced mtDNAn in
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peripheral blood was found to precede the development
of T2D [10, 16]. In addition, DNA methyltransferase 1
(DNMT1) can translocate to the mitochondria and
catalyze mitochondrial DNA (mtDNA) methylation,
thereby manipulating the expression of transcripts from
the heavy and light strands of mtDNA [17]. It was
shown that, in the elderly or individuals with insulin re-
sistance and T2D, mitochondrial COX7A1 (the subunit
of cytochrome c oxidase or complex IV in the respira-
tory chain) and NDUFB6 (subunit in complex I in the
respiratory chain) were dysregulated, concomitant with
higher DNA methylation in the promoters of COX7A1
and NDUFB6 [18, 19]. Recently, Pirola et al. found that
the methylation of MT-ND6 (mitochondrial NADH de-
hydrogenase) was higher in the liver of nonalcoholic
steatohepatitis (NASH) than simple steatosis patients,
and MT-ND6 methylation inversely correlated with
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Table 1 Demographic and metabolic characteristics of participants

Characteristics Lean (n = 8) Obese (n = 32)

Sex (male/female) 2/6 8/24

Age (years) 28.1 ± 4.5 49.5 ± 2.4**

BMI (kg/m2) 23.1 ± 0.6 36.6 ± 1.2***

Fasting glucose (mg/dL) 83.9 ± 1.9 95.9 ± 2.4*

Fasting insulin (μU/mL) 9.4 ± 1.6 21.8 ± 2.5*

HOMA-IR 1.94 ± 0.32 5.31 ± 0.68*

Triglyceride (mg/dL) 94.9 ± 16.6 145.8 ± 20.5

HDL (mg/dL) 59.8 ± 4.1 53.8 ± 2.1

LDL (mg/dL) 94.4 ± 8.3 115.6 ± 4.8*

VLDL (mg/dL) 19.0 ± 3.3 29.2 ± 4.1

LDL/HDL ratio 1.7 ± 0.2 2.2 ± 0.1*

Total cholesterol (mg/dL) 173.2 ± 7.5 195.2 ± 6.2

Total cholesterol/HDL 3.0 ± 0.3 3.8 ± 0.2*

HbA1c (%) 5.4 ± 0.1 5.7 ± 0.1

Mean ± SE; *p < 0.05; **p < 0.001; ***p < 0.0001
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MT-ND6 transcription and protein expression in the
liver of NASH patients [20]. The change in MT-ND6
methylation was significantly associated with nonalco-
holic fatty liver-disease activity score [20]. These find-
ings suggest that changes in mtDNAn and mtDNA
methylation may play an important role in metabolic
disorders.
Mitochondrial alteration reflects metabolic status. The

genes and proteins controlling mitochondrial dynamics
can be dysregulated by high glucose, leading to overpro-
duction of reactive oxygen species and insulin resistance
[21–26]. The evidence from genetically modified mice
suggested that overloading mitochondria by lipids led to
incomplete fatty acid oxidation, mitochondrial stress,
and impaired insulin signaling [27, 28]. A feedback loop
was recently discovered, showing that insulin resistance
results in mitochondrial changes in cell and animal
models, as well as in human subjects [29–32]. However,
it is not well defined how the metabolic changes might
be related to genetic and epigenetic regulation of mito-
chondria. In this study, we recruited obese and lean sub-
jects to investigate the mtDNAn and DNA methylation
in the displacement loop (D-loop) region of the mito-
chondrial genome, which controls the replication of
mtDNA and organization of the mitochondrial nucleoid
[33–35]. We detected a significantly increased DNA
methylation in the D-loop region, which was concomi-
tant with decreased mtDNAn in the obese individuals
when they were compared with the lean subjects. More-
over, the change in mtDNAn was strongly associated
with insulin resistance, but not with impaired fasting
glucose or dyslipidemia (e.g., triglyceride, cholesterol,
and VLDL). Our study provides new evidence critical for
the ongoing journey in discovering mtDNA methylation
and exploring its role in metabolic regulation [18–20, 36]
and suggests an insulin signaling-epigenetic-genetic axis
that may control mitochondrial regulation.

Results
Metabolic changes in obese subjects
Among the 40 participants, 32 people had a BMI greater
than 30 (mean value = 36.6; referred to later as obese
group) and 8 showed BMI below 25 (mean value = 23.1;
referred to later as lean group), with the difference be-
tween the two groups being significant (p < 0.0001). As
shown in Table 1 and Additional file 1: Figure S1, the
obese group showed a significant impairment in fasting
glucose (95.9 ± 2.4 vs. 83.9 ± 1.9 in the lean group, p <
0.05), and fasting insulin levels dramatically increased
(21.8 ± 2.5 vs. 9.4 ± 1.6 in the lean group, p < 0.05), sug-
gestive of impaired insulin sensitivity or development of
insulin resistance [37, 38]. Insulin resistance was further
confirmed by the HOMA-IR value, which was 2.7-fold
(p < 0.05) higher in the obese group than in the lean one.
Moreover, the plasma LDL level (115.6 ± 4.8 vs. 94.4 ±
8.3, p < 0.05), low-density lipoprotein (LDL)/high-density
lipoprotein (HDL) ratio (2.2 ± 0.1 vs. 1.7 ± 0.2, p < 0.05),
and total cholesterol/HDL ratio (3.8 ± 0.2 vs. 3.0 ± 0.3,
p < 0.05) all showed significant elevation. These findings
suggest that the obese group had impairment in insulin
signaling, concurrent with aberrant glucose and lipid
metabolism.

mtDNAn was reduced in obese subjects
The mitochondrial genome or mtDNA encodes 13 pro-
tein components of the respiration chain that underpin
mitochondrial function [39, 40]. We found that the
mtDNAn in the obese group was 6.9-fold lower (delta
log-mtDNAn = 0.84, p < 0.001) when compared with
their lean counterparts (Fig. 1). Given the significant
age difference shown in Table 1 and Additional file 1:
Figure S1, we conducted an age-matched analysis of
mtDNAn, which indicated an mtDNAn tenfold lower
(delta log-mtDNAn = 0.99, p < 0.05) in obese the group
than in the lean group (Additional file 2: Figure S2).
This is consistent with a previous report showing lower
mitochondrial content in the skeletal muscle and adi-
pose tissues from obese individuals [7–9, 11]. Because
changes in mtDNAn can affect the integrity, assembly,
and operation of the mitochondrial respiratory chain
[41, 42], it is conceivable that the mitochondrial func-
tion or capacity is impaired in obese subjects.

Alteration of mtDNAn was associated with insulin
resistance
To examine how mtDNAn alteration was associated
with the metabolic changes in obese subjects, we com-
pared the mtDNAn in the insulin-sensitive (InS) group



Fig. 1 Measurement of mitochondrial DNA copy number (mtDNAn)
in lean (BMI <25 kg/m2) and obese (BMI >30 kg/m2) subjects.
n = 8–32; **p < 0.001
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with that of the insulin-resistant (InR) group by setting
the cutoff point at 2.5 for HOMA-IR [43, 44]. The InR
group had a mean value of HOMA-IR that was 3.8-fold
higher than the InS group (p < 0.0001), indicative of im-
paired insulin action [43, 44]. However, the mtDNAn in
the InR group was 3.2-fold lower (delta log-mtDNAn =
0.5, p < 0.05) in comparison with the InS group (Fig. 2).
These findings support the notion that insulin resistance
links mitochondrial alteration to metabolic disorder
[29–32, 45].

Alteration of mtDNAn was independent from aberrant
glucose and lipid levels
According to the American Diabetes Association (ADA),
a value of less than 100 mg/dL is defined as normal fast-
ing glucose (NFG), while a value greater than 100 but
Fig. 2 Measurement of mtDNAn in insulin-sensitive (InS) and insulin-resista
cutoff point set at 2.5. b The mtDNAn was significantly lower in InR individ
less than 125 mg/DL indicates impaired fasting glucose
(IFG) [46]. In the IFG group, the fasting glucose level
was 111 mg/dL on average, significantly higher than that
of the NFG group (86 mg/dL on average, p < 0.0001).
However, the mtDNAn values of these two groups
showed no significant difference (Fig. 3). In addition,
mtDNAn did not change with plasma lipid levels, irre-
spective of the aberrantly higher concentrations of
plasma triglyceride, cholesterol, LDL, and VLDL (Fig. 4
and data not shown) [47]. Together, these results suggest
that mtDNA alteration may arise from insulin resistance
rather than aberrant glucose and lipid levels (Figs. 2, 3,
and 4).

Regression analysis suggested an insulin signaling-
mtDNAn axis
To further validate the relationship between mtDNAn
and the metabolic parameters, we conducted regression
analysis, and the results were shown in Table 2 and
Additional file 3: Figure S3. Consistent with the above
observation (Figs. 1, 2, 3, and 4), mtDNAn showed a
negative correlation with BMI (−0.026; p < 0.05) and
with HOMA-IR (−0.703, p < 0.05). Because fasting insu-
lin levels can also indicate insulin resistance to some
extent as HOMA-IR does, it was negatively correlated
with mtDNAn (−0.015, p < 0.05) [37, 38]. By contrast,
mtDNAn did not have a significant correlation with
fasting glucose or lipid levels (Table 2 and Additional
file 3: Figure S3). Additionally, age-dependent decrease
of mtDNAn was not significant (Table 2 and Additional
file 2: Figure S2), in line with the previously observed
lack of mtDNAn change with age in human skeletal
muscle and myocardium [41]. A recent study suggested
that mtDNAn alteration in peripheral blood cells did
not initialize until the age of 50 years [48], which may
account for the lack of significant correlation between
mtDNAn and age in this study as the majority of our
participants were younger than 50 years. Together, our
results suggest an insulin signaling-mtDNAn axis in
nt (InR) individuals. a HOMA-IR indicates InS and InR groups, with the
uals than InS subjects. n = 13–27; *p < 0.05; ***p < 0.0001



Fig. 3 Measurement of mtDNAn in normal fasting glucose (NFG) and impaired fasting glucose (IFG) individuals. a Fasting glucose levels in NFG
and IFG groups, with the cutoff point set at 100 mg/dL. b The mtDNAn in IFG individuals was comparable to that of NFG subjects. n = 11–29;
***p < 0.0001; NS, not significant

Fig. 4 Measurement of mtDNAn in individuals with normal lipid levels and dyslipidemia. a, b the fasting plasma triglyceride (a) and mtDNAn
(b) in individuals with normal triglyceride (NT) and high triglyceride (HT), with the cutoff point set at 150 mg/dL; n = 10–30. c, d the fasting
plasma cholesterol (c) and mtDNAn (d) in individuals with normal cholesterol (NC) and high cholesterol (HC), with the cutoff point set at
200 mg/dL; n = 12–28. e, f the fasting plasma VLDL (e) and mtDNAn (f) in individuals with normal VLDL (n-VLDL) and high VLDL (h-VLDL), with
the cutoff point set at 32 mg/dL; n = 9–31. ***p < 0.0001; NS, not significant
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Table 2 Univariate regression analysis of mtDNAn among all
subjects

Parameters β coefficient R value p value

Age −0.008 0.212 0.189

BMI −0.026 0.333 0.041

Fasting glucose −0.004 0.084 0.604

Fasting insulin −0.015 0.320 0.044

HOMA-IR −0.703 0.379 0.016

Triglyceride −0.001 0.163 0.314

HDL 0.010 0.187 0.248

LDL −0.002 0.095 0.569

VLDL −0.005 0.165 0.310

LDL/HDL ratio −0.130 0.133 0.425

Total cholesterol −0.001 0.050 0.760

Cholesterol/HDL −0.116 0.178 0.272

HbA1c 0.182 0.115 0.480
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human leukocytes (Fig. 2, Table 2, and Additional file 3:
Figure S3).

D-loop had higher methylation in obese subjects
The D-loop region controls the replication of the mito-
chondrial DNA and organization of the mitochondrial
nucleoid [33–35]. The observation of reduced mtDNAn
Fig. 5 Measurement of DNA methylation in the D-loop region of mitochon
b D-loop methylation in InS and InR subjects; n= 13–27. c D-loop methylation
individuals; n = 10–30. The DNA methylation levels were also compared b
significant difference (not shown). *p < 0.05; NS, not significant
in the obese individuals (Figs. 1 and 2) prompted us to
ask whether the D-loop region underwent aberrant
methylation, the modification that may regulate mtDNA
replication and transcription [49]. Regression analysis
suggested that mtDNAn was negatively correlated with
D-loop methylation (−0.078; p < 0.05). Moreover, DNA
methylation in the D-loop region was 5.2-fold higher in
the obese group than in the lean group (p < 0.05, Fig. 5a).
Interestingly, the increased methylation of D-loop was
phenocopied by insulin-resistant (InR) subjects, and
DNA methylation was 4.6-fold higher than that of
insulin-sensitive (InS) subjects (p < 0.05, Fig. 5b). How-
ever, the difference of D-loop methylation was indiscern-
ible between the NFG and IFG groups (Fig. 5c) or
between normal triglyceride (NT) and hypertriglyceri-
demic (HT) groups (Fig. 5d). Therefore, the increased
DNA methylation in the D-loop region was associated
with insulin resistance but independent from aberrant
glucose and lipid levels. Our data adds new and timely
evidence to the potential role of mtDNA methylation in
metabolic regulation [18–20, 36].

Discussion
The growing epidemic of obesity is largely attributed to
the current life style of energy overconsumption with in-
adequate physical activity [2, 50, 51]. As such, the sur-
plus of nutrients is accumulated and contributes to the
drial genome. a D-loop methylation in lean and obese subjects; n= 8–32.
in NFG and IFG individuals; n= 11–29. d D-loop methylation in NT and HT
etween NC and HC, n-VLDL, and h-VLDL groups, and there was no
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interactions between genes and environment [2, 51].
Mitochondrial alterations have been observed in obese
individuals, including impaired mitochondrial fatty acid/
lipid oxidation capacity in the skeletal muscle and re-
duced mtDNAn in adipose tissues and peripheral blood
samples [6–9, 11]. However, whether an epigenetic
mechanism underlies the reduced mtDNAn has not
been defined, and how genetic and epigenetic traits in
mitochondria are related to altered metabolic parameters
remains elusive. In this study, we found that the reduc-
tion of mtDNAn was associated with increased DNA
methylation in the D-loop, the critical region that con-
trols the replication of mtDNA, transcription and
organization of the mitochondrial nucleoid (Figs. 1, 2,
and 5) [33–35, 49, 52, 53]. Moreover, mitochondrial gen-
etic and epigenetic changes seem to be independent
from impaired fasting glucose and dyslipidemia but have
strong correlation with insulin resistance (Figs. 1, 2, 3, 4,
5, and Table 2). Our results suggest an insulin signaling-
epigenetics-genetics axis in mitochondrial regulation.
Given the ongoing debate on mtDNA methylation in the
literature [36], our study provides new and timely evi-
dence that paves the avenue to understanding metabolic
changes in the view of mitochondrial epigenetics [18–20].
Mitochondria have an independent circular genome of

16.5 kb in humans, encoding 13 proteins that assemble
the electron transport chain and ATP synthase [39, 40].
Normal mtDNAn and the integrity of the mtDNA mol-
ecule account for a functional mitochondrial geno-
me,and are critical for assembly and operation of the
respiratory chain [41, 42]. In the obese and insulin-
resistant individuals, mtDNAn was significantly reduced
and concomitant with the elevation of DNA methylation
in the D-loop region, the event that may suppress mito-
chondrial transcripts and assembly of the respiration
chain (Figs. 1, 2, and 5) [2, 53, 54]. While further study
is warranted to define how insulin resistance may dir-
ectly induce the epigenetic and genetic changes, we envi-
sion that the recently identified mitochondrial DNMT1
may be an important player with the nicotinamide aden-
ine dinucleotide (oxidized form) (NAD+)-dependent dea-
cetylase SIRT1 [17, 29, 55]. It was shown that DNMT1
could be de-acetylated by SIRT1 in a NAD+-dependent
way, thereby manipulating DNMT1 activity in regulating
gene expression [56–58]. In insulin-resistant patients,
the gene and protein levels of SIRT1 in peripheral blood
cells were significantly reduced, while the expression of
other sirtuin family members (SIRT2-SIRT7) was normal
in comparison to insulin-sensitive individuals [55].
Moreover, our previous study demonstrated that insulin
resistance could reduce cellular NAD+ levels and SIRT1
activity in vivo [29]. Thus, we propose that insulin resist-
ance may regulate DNMT1 activity and DNA methyla-
tion in the D-loop region through NAD+-SIRT1, and
this mechanism should be further explored in future
studies.
Although aberrant lipid and glucose loads were previ-

ously shown to induce mitochondrial changes in cell cul-
tures and animal models [23, 28], we did not observe a
significant correlation between altered mtDNAn (or D-
loop methylation) and fasting glucose or lipid levels
(Figs. 3, 4, and Table 2), presumably because the changes
in glucose and lipids were moderate (e.g., the impaired
fasting glucose was 95.9 ± 2.4 mg/dL) or because the
changes were still in a neonatal stage given that the tim-
ing and duration affect metabolic and mitochondrial
phenotype [10, 59]. Regardless, insulin resistance shows
strong association with altered D-loop methylation and
mtDNAn (Fig. 2, Fig. 5, and Table 2). In fact, insulin can
directly stimulate mitochondrial protein synthesis and
promote mitochondrial function in healthy people, but
these effects were absent in insulin-resistant subjects
[60, 61]. These findings, along with our discovery of the
insulin signaling-epigenetic-genetic axis in this study,
strongly suggest that the primary link between insulin sig-
naling and mitochondria is critical for normal metabolism.
To this end, use of insulin sensitizers (e.g., pioglitazone
and rosiglitazone) has been shown to increase mtDNAn
and improve metabolic homeostasis [12, 62].

Conclusions
In summary, our present study reveals for the first time
an insulin signaling-epigenetic-genetic axis that may
regulate mitochondria. Particularly, our data adds new
and timely evidence to the emerging role of mtDNA
methylation in metabolic regulation, paving the avenue
to understanding metabolic disorders from a mitochon-
drial epigenetics perspective [18–20, 36]. Because this
was a sub-study of a larger diabetes-prevention trial (dia-
BEAT-it trial), we were able to access only a limited
amount of samples from the participants, not enabling
us to conduct an in-depth study of the regulatory mech-
anism. However, SIRT1-DNMT1 cascade could play an
important role because previous studies showed that
only SIRT1 of the sirtuin family (SIRT1-SIRT7) underwent
dysregulation in peripheral blood cells from insulin-
resistant patients [55] and that SIRT1 directly interacted
with DNMT1 and regulated its activity in different cell
types [56–58]. Our future study will further establish this
epigenetic-genetic regulatory axis, so that novel mechanis-
tic support and guidelines may be provided for lifestyle in-
terventions (e.g., physical activity) through enhancing
insulin sensitivity and SIRT1 activity [63, 64].

Methods
Subjects
We recruited 40 participants previously enrolled in a lar-
ger diabetes-prevention trial (diaBEAT-it trial), with
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diagnosis of no diabetes or cardiovascular disease [65].
All participants were consented by trained research staff
and provided with a copy of their signed informed con-
sent. Participants completed an intake questionnaire
which included questions about medical history, current
medications, and current health behaviors (e.g., physical
activity and dietary behaviors). Additionally, resting
blood-pressure measurements were recorded for all par-
ticipants following standard protocols. All procedures
were conducted in accordance with NIH Guidelines and
approved by Institutional Review Boards at Carillion
Clinic and at Virginia Tech.

Human experimental protocol
Body composition was determined by trained research
staff via a dual-energy X-ray absorptiometry scan at the
time of consent. An appointment for the blood draw
was scheduled for each participant, and participants
were instructed to fast overnight (10–12 h) before their
scheduled blood draw at Solstas Labs facility (Roanoke,
Virginia). Fasting venous blood samples were collected
to determine biochemical indexes, including blood-lipid
profile (triglyceride, total cholesterol, HDL-cholesterol,
and LDL-cholesterol), fasting plasma glucose, HbA1-
c,and fasting plasma insulin. The homeostasis model as-
sessment for insulin resistance (HOMA-IR) index was
calculated as [fasting insulin (μU/ml) × fasting glucose
(mg/dL)/405], as previously reported with minor modifi-
cation due to different units used [10, 43]. Additional
fasting blood was collected in EDTA tubes and was
processed immediately to prepare white-blood cells
(buffy coat), which were stored at −80 °C until further
processing [66, 67].

DNA extraction and bisulfite treatment
DNA was isolated from the buffy coat using the
QIAamp DNA Blood Mini Kit (Qiagen, Hilden,
Germany) by following the manufacturer’s instructions.
EpiTect Bisulfite Kit (Qiagen) was used for bisulfite con-
version and cleanup of DNA, during which unmethy-
lated cytosines were converted to uracils and the
methylated cytosines were conserved [20, 68]. DNA
quality and quantity were examined with a Synergy H4
Hybrid Multi-Mode Microplate Reader (BioTek Instru-
ments, Winooski, VT, USA) and then stored in aliquots
at −20 °C until further assay.

Measurement of mtDNAn
Mitochondrial DNA copy number (mtDNAn) was mea-
sured as previously described [10, 41]. Briefly, 40 ng total
DNA was used for real-time PCR with the iQ™ SYBR®
Green Supermix (Bio-Rad Laboratories, Hercules, CA,
USA) on a ViiA™ 7 Real-Time PCR System (Life Tech-
nology, Grand Island, NY, USA). The primers used in
this study were 5′-CCAACATCTCCGCATGA TGAAAC-
3′ (forward) and 5′-TGAGTAGCCTCCTCAGATTC-3′
(reverse) for CYT-B (mtDNA); 5′-GTTACTGCCCTGTG
GGGCAA-3′ (forward) and 5′-CAAAGGTGCCCTT GA
GGTT-3′ (reverse) for β-globin (nuclear DNA). The ampli-
con lengths were 434 bp and 356 bp for CYT-B and β-
globin, respectively.

Measurement of D-loop methylation
The methylation of D-loop region was determined by
methylation-specific PCR as descried previously [20, 68].
Briefly, the D-loop sequence 16024–576 (1,122 bp) of the
Homo sapiens mitochondrion genome (gi|251831106:
c576-1, c16569-16024) was used to identify the CpG
island (426–576) and design primers for PCR analysis.
The following two pairs of primers were designed: one
pair was specific for bisulfite-modified methylated DNA,
and the other pair was specific for bisulfite-modified
unmethylated DNA amplifying heavy strand. The primers
used in this study were TAGGAATTAAAGATAGAT
ATTGCGA (forward, starting position at 434 nt) and 5′-
ACTCTCCA TACATTTAATATTTTCGTC-3′ (reverse,
starting position at 539 nt) for methylated D-loop; 5′-
GGTAGGAATTAAA GATAGATATTGTGA-3′ (forward,
starting position at 432 nt) and 5′-ACTCTCCATACATT
TAATATTTTCATC-3′ (reverse, starting position at
539 nt) for unmethylated D-loop. The bisulfite-modified
DNA was used as a template for methylation-specific PCR
(MSP) on a ViiA™ 7 Real-Time PCR System, using SYBR®
Green PCR Master Mix (Life Technology, Grand Island,
NY, USA). Two MSPs were performed simultaneously to
detect the methylated (amplicon size; 106 bp) and
unmethylated (amplicon size; 108 bp) D-loop for each
sample. The percentage of methylated DNA is calculated
as described previously [20, 68].

Statistics
The data are expressed as the mean ± SE unless other-
wise specified. Logarithm-transformed data were used
for the analysis of skewed variables, such as HOMA-IR
and mtDNAn. Pearson’s correlation and regression ana-
lysis was applied to evaluate the relationships among
mtDNAn and the metabolic indexes. Statistical signifi-
cance was set at a probability level of p < 0.05.

Additional files

Additional file 1: Figure S1. Scatter plot of the measurements and
demographic characteristics of lean (n = 8) and obese (n = 32) participants
in this study. The middle lines indicate the mean values, and the other two
shorter lines indicate SE *p < 0.05; **p < 0.001; ***p < 0.0001.

Additional file 2: Figure S2. Age-matched analysis of mtDNAn in lean
(n = 7) and obese (n = 8) participants. (A) No significant difference existed
between the ages of lean (n = 7) and obese (n = 8) participants. (B)

http://www.clinicalepigeneticsjournal.com/content/supplementary/s13148-015-0093-1-s1.zip
http://www.clinicalepigeneticsjournal.com/content/supplementary/s13148-015-0093-1-s2.jpeg
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Comparison of mtDNAn between lean (n = 7) and obese (n = 8) participants.
The data were presented as mean ± SE. *p < 0.05; NS, not significant.

Additional file 3: Figure S3. Regression analyses of mtDNAn with
metabolic parameters and demographic characteristics (n = 40). These
graphs correspond to the analysis and data shown in Table 2.
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