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Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions,
and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and
it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM).
Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we
propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS), segmented PsePSSM, and segmented
autocovariance transformation (ACT) based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640) are
adopted in this paper. Then a 700-dimensional (700D) feature vector is constructed and the dimension is decreased to 224D by
using principal component analysis (PCA). To verify the performance of our method, rigorous jackknife cross-validation tests are
performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that
ourmethod achieves the favorable and competitive performance.This will offer an important complementary to other PSSM-based
methods for prediction of protein structural classes for low-similarity sequences.

1. Introduction

Protein structural classes play a key role in protein science,
simply because the biological function of a protein essentially
related to its tertiary structure, which is determined by its
amino acid sequence in accordance with the process of
protein folding [1]. The knowledge of structural classes has
been applied to reduce the search space of possible confor-
mations of the tertiary structure [2, 3]; hence prediction of
protein structural classes becomes a hot and challenging task
in computational biology. The concept of protein structural
classes was proposed by Levitt and Chothia [4], and a given
protein can be categorized into mainly four structural classes
according to the contents and spatial arrangements of the
secondary structural elements of the protein domains; they
are all-𝛼, all-𝛽, 𝛼/𝛽, and 𝛼+𝛽.The all-𝛼 and all-𝛽 proteins are
mainly formed by helices and strands, respectively. The 𝛼/𝛽
protein mixes both helices and mostly parallel strands, and
the 𝛼 + 𝛽 protein mixes both helices and mostly antiparallel
strands.

During the last two decades, a great number of statis-
tical learning algorithms had been developed to tackle this
problem. Protein structural classes prediction is a typical
pattern recognition problem, which is mainly performed in
three steps. The first step is feature extraction, by which the
different length sequences are converted into an equal length
feature vectors.Themethods include amino acid composition
(AAC) [5–8], pseudoamino acid composition (PseAAC)
[9–11], polypeptide composition [12, 13], functional domain
composition [14], position-specific iterated-basic local align-
ment search tool (PSI-BLAST) profile [15–17], pseudo-
position-specific scoring matrix (PsePSSM) [18, 19], and pre-
dicted protein secondary structure [20–22]. The second step
is feature selection, which includes principal component
analysis (PCA) [23], support vector machine-recursive fea-
ture elimination (SVM-RFE) [24], and wrapper and filter
[25]. The final step is a choice of favorable classification
algorithm. At present, the algorithms contain neural network
[26], support vectormachine (SVM) [27, 28], fuzzy clustering
[29], Bayesian classification [30], rough sets [31], 𝑘-nearest
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neighbor [11], and so on. Among the three steps, feature
extraction is the most critical step in this study for the suc-
cessful improvement of protein structural classes prediction.

Currently, feature extraction methods mainly use protein
primary sequence, predicted secondary structure sequence,
and position-specific scoring matrix (PSSM). Position-
specific scoring matrix can be obtained by giving a query
sequence, which can be searched against a database of
proteins using PSI-BLAST [32] and represents the evolu-
tionary information. Recently, PSSM has attracted more
attention and its prediction accuracy has been increasingly
improved. AADP-PSSM [15] method extends the traditional
dipeptide composition to PSSM. AAC-PSSM-AC [17] com-
bines autocovariance and PSSM to extract the evolutionary
information. AATP model [33] fuses AAC and transition
probability composition from PSSM. In PSSS-PSSM [34],
the predicted secondary structure information is employed
to perform the prediction with evolutionary information.
In MEDP [35], evolutionary difference formula is proposed
based on PSSM. LCC-PSSM [25] extracts the long-range
and linear correlation information from PSSM. PSSM-S
[36] extracts the features relying on PSSM and proposes
segmentation-based feature extraction technique based on
the concepts of amino acids’ distribution and autocovariance.
The feature extraction methods relying on the position-
specific scoring matrix (PSSM) have played a significant
role to solve this classification issue. Though some of the
existing methods have shown the excellent performance, the
information embedded in the PSSM has not been adequately
explored; there remains space for further improvement.

In this paper, we extract a consensus sequence based on
PSSM, from which 40 global features are calculated.Then we
propose two segmented feature extraction techniques based
on the concepts of pseudo-position-specific scoring matrix
(PsePSSM) and autocovariance transformation (ACT), which
are defined on the PSSM, respectively. PsePSSM is originally
proposed to avoid complete loss of the sequence-order infor-
mation by Shen andChou [18]. In other words, it reflects local
information of PSSM. Autocovariance transformation as a
statistical tool for analyzing sequences of vectors developed
byWold et al. [37]. ACThas been successfully used for protein
pattern recognition [17, 38, 39], especially for protein classi-
fication, which is a correlation factor between two residues
with a certain distance apart along a protein sequence. Hence,
we obtain 380 segmented PsePSSM local features and 280
segmented ACT-PSSM local features. Finally, with the help
of the three techniques, a 700D feature vector is constructed.
In order to reduce the influence of redundancy, we use the
principle component analysis (PCA) for feature selection.The
224 dominant features are selected for SVMclassifier. To eval-
uate our method, jackknife cross-validation test is employed
on three widely benchmark datasets; the experimental results
show that our method is a state-of-the-art classifier and
achieves the competitive performance compared with the
other PSSM-based methods for low-similarity amino acid
sequences.

Table 1: The compositions of three datasets adopted in this paper.

Dataset All-𝛼 All-𝛽 𝛼/𝛽 𝛼 + 𝛽 Total
1189 223 294 334 241 1092
25PDB 443 443 346 441 1673
640 138 154 177 171 640

2. Materials and Methods

2.1. Datasets. In order to facilitate the comparison with the
previous works, three popular benchmark datasets are used
to evaluate the performance of our method: the 1189 dataset
[30], the 25𝑃𝐷𝐵 dataset [43], and the 640 dataset [44], which
include 1092, 1673, and 640 protein domains with sequence
similarity lower than 40%, 25%, and 25%, respectively. More
details about the three datasets are listed in Table 1.

2.2. Feature Extraction. To develop a powerful predictor for
the protein structural class based on position-specific scoring
matrix (PSSM), the key is how to effectively define feature
vectors to formulate the statistical samples concerned. Here,
we use a combination of the consensus sequences, segmented
PsePSSM, and segmented autocovariance transformation.

2.2.1. Position-Specific Scoring Matrix. To extract the evolu-
tionary information, we use each protein sequence (query
sequence) as a seed to search and align homogenous
sequences from NCBI’s NR database (ftp://ftp.ncbi.nih.gov/
blast/db) using the PSI-BLAST program [32] with parameters
ℎ = 0.001 and 𝑗 = 3. PSI-BLAST will return a matrix; the
(𝑖, 𝑗)th entry of the obtainedmatrix represents the score of the
amino acid residue in the 𝑖th position of the protein sequence
being mutated to amino acid type 𝑗 during the evolution
process. The matrix is called the position-specific scoring
matrix (PSSM) and it is denoted as

PSSM = (𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑗
, . . . , 𝑃

20
) , (1)

where 𝑃
𝑗
= (𝑃
1,𝑗
, 𝑃
2,𝑗
, . . . , 𝑃

𝐿,𝑗
)
𝑇, (𝑗 = 1, 2, . . . , 20). PSSM is

a log-odds matrix of size 𝐿 × 20, 𝐿 represents the length of
the query amino acid sequence and 20 is due to 20 amino
acids, and𝑇 is the transpose operator. In this work, the PSSM
elements are mapped to the range of [0, 1] with the help of a
standard sigmoid function:

𝑓 (𝑥) =

1

(1 + 𝑒
−𝑥
)

, (2)

where 𝑥 is the original PSSM value.

2.2.2. Consensus Sequence Based on PSSM. To extract global
features, we adopt the method in [45, 46], which generates
a consensus sequence (CS). It is constructed from PSSM as
follows:

𝛼 (𝑖) = argmax {𝑃
𝑖𝑗
: 1 ≤ 𝑗 ≤ 20} , 1 ≤ 𝑖 ≤ 𝐿, (3)
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where “arg” represents the argument of the maximum. The
𝑖th base of the consensus sequence (CS) is then set to be the
𝛼(𝑖)th amino acid in the amino acid alphabet and a consensus
sequence is constructed. Next, we compute

CSAAC =

𝑛 (𝑗)

𝐿

, 1 ≤ 𝑗 ≤ 20, (4)

where 𝑛(𝑗) represents the number of the amino acid 𝑗 occur-
ring in the consensus sequence. 𝐿 represents the length of
CS.Obviously, CSAACrepresents 20 amino acid composition
features of the CS.

Furthermore, we propose 20 composition moment fea-
tures for CS, which have been applied for prediction of
protein structural class mainly based on amino acid sequence
[47] and predicted protein secondary structure sequence [34,
41]. They are formulated as

CSCM =

∑
𝑛𝑖

𝑗=1
𝑛
𝑖𝑗

𝐿 (𝐿 − 1)

, 1 ≤ 𝑖 ≤ 20, 1 ≤ 𝑗 ≤ 𝐿, (5)

where 𝑛
𝑖
is the total number of the 𝑖th amino acid of 20 amino

acids in the consensus sequence (CS) and 𝑛
𝑖𝑗
represents the

𝑗th position in the CS (the length of 𝐿) of amino acid 𝑖.

In summary, we obtain 40 global features by combining
20 amino acid composition features with 20 composition
moment features of CS-PSSM.

2.2.3. PsePSSM Based on Segmented PSSM. To extract local
features, we divide PSSM into 𝑛 segments of equal length by
applying a similar procedure in [46]. Let 𝐿

𝑖
= round(𝐿/𝑛);

𝐿
𝑖
represents the equal length except the last segment of the

amino acid sequence; 𝑖 represents the 𝑖th segment. However,
the last segment may be longer or shorter owing to 𝐿 not
being always divisible by 𝑛 and the last segment length can
be 𝐿 − ((𝑛 − 1) ∗ 𝐿

𝑖
). Then, for each segment, we adopt

the pseudo-PSSM (PsePSSM), which has been successfully
applied to prediction of protein structural class [41]. Because
the length of the shortest sequence of the three datasets is 10
(for 1189 dataset), hence 𝑛 can be taken to only 2, 3, 4, and 5.
However, if 𝑛 = 4 or 5, the 𝜆 can be only equal to 1; this makes
no meaning for the extracted features. So, 𝜆 is just taken to 2
and 3.

When 𝑛 = 2, 𝐿
1
= round(𝐿/2); here we denote the length

of the first segment sequence as 𝐿
1
and the second segment

sequence as 𝐿
2

= 𝐿 − 𝐿
1
, respectively. Hence, we obtain

the segmented PsePSSM features according to the following
equations:
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where 𝛼
𝜆

𝑗
and 𝛽

𝜆

𝑗
are the correlation factors of amino acid

type 𝑗, respectively, whose contiguous distance is 𝜆 along
each segmented protein sequence. Because the length of the
shortest sequence of the three datasets is 10, when 𝑛 = 2, the
maximal value of parameter 𝜆 can be 4, so 𝜆 can be taken to 0,
1, 2, 3, and 4; here the 200 local features are obtained. Specially

for 𝜆 = 0, 𝛼0
𝑗
and 𝛽

0

𝑗
represent the average score of the amino

acid residues in the two segmented protein 𝑃 being mutated
to amino acid type 𝑗 during the evolution process.

When 𝑛 = 3, 𝐿
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.

Hence, we obtain the segmented PsePSSM features, which
can be defined by
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where 𝜃
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𝑗
, 𝜇𝜆
𝑗
, ]𝜆
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represent the same meaning as 𝑛 = 2,

respectively. When 𝑛 = 3, the maximal 𝜆 can be equal to 2
and here we obtain 180 local features.

In the above-mentioned way, a total of 380 local features
are extracted using segmented PsePSSM.

2.2.4. Autocovariance Transformation Based on Segmented
PSSM. In order to further obtain local features, here the
autocovariance transformation (ACT) is introduced to get the
neighboring effects of the sequences. The same as the previ-
ous section, we divide PSSM into 𝑛 = 2 and 𝑛 = 3 segments.
Hence, we obtain the segmented ACT-PSSM features, which
can be calculated by the following.
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where 𝑙𝑔 is the distance between two considered amino acid
residues. Hence, a total of 280 local features are extracted
using segmented ACT-PSSM.

To extract more global and local information fromPSSM,
we propose a comprehensive method called CSP-SegPseP-
SegACP by fusing the 40 CS-PSSM features, the 380 seg-
mented PsePSSM features, and the 280 segmented ACT-
PSSM features. Finally, each protein sequence is characterized
by a 700-dimensional (700D) feature vector.

2.3. Feature Selection. The dimension of our constructed
feature vector is 700, which is a large input for SVM. The
large dimension will lead to two problems: information
redundancy or noise and dimension disaster. Hence, feature
selection plays a key role in classification task. Principal
component analysis (PCA) [23, 33] is one of themost classical
dimensionality reduction method. The goal of PCA is to
select some dominant features which can retain most of the
information in terms of an orthogonal transformation; more
details of PCA can be learned in the literature [48]. Finally,
the 224 features are selected based on the 1189 dataset in the
orthogonal space to perform the protein structural classes
prediction.

2.4. Support VectorMachine. Support vectormachine (SVM)
is a well knownmachine learning algorithm based on statisti-
cal learning theory for binary classification problems, which
is considered as the state-of-the-art classification technique
and introduced by Vapnik in 1995 [49]. Protein structural
class prediction is a four-classification problem, which can
be converted into binary classification problem by using one
against all strategy in this paper.

The basic idea of SVM is to find the separating hyperplane
based on the support vector theory to minimize classification
errors. It transforms the input data of samples to a higher
dimensional space using the kernel function to find support
vectors. Generally, four basic kernel functions are used by
SVM, that is, linear function, polynomial function, sigmoid
function, and radial basis function (RBF). Here, we choose
the RBF as SVM’s kernel due to its superiority for solving
nonlinear problem [34, 46, 50], which is defined as𝐾(𝑥, 𝑥

󸀠
) =

exp(−𝛾‖𝑥 − 𝑥
󸀠
‖
2
). The kernel parameter 𝛾 and the cost

parameter 𝐶 are optimized based on the 1189 dataset by
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fifteenfold cross-validation using a grid search strategy in the
LIBSVM package [51, 52], where 𝐶 is allowed to take a value
only between 2

−5 and 2
15 and 𝛾 only between 2

−15 and 2
5.

2.5. Performance Evaluation. Independent dataset test, sub-
sampling test, and jackknife test are three widely used cross-
validation methods in statistical prediction. Among these
threemethods, the jackknife test is deemed themost rigorous
and objective due to its ability of yielding a unique result
for a given dataset [53]. Hence, we adopt jackknife test in
this study. During the process of the jackknife test, one
protein sequence is singled out from the training set and the
SVM classification model is trained by the remaining protein
sequences. Then, the classification model is used to predict
the singled out sequence. This process is repeated until every
sequence in the training set has been singled out once. In this
sense, the jackknife test is also known as the leave-one-out
test.

To evaluate the performance of our method comprehen-
sively, we report the seven standard performance measures,
including sensitivity (Sens), specificity (Spec), 𝐹-measure,
Matthew’s correlation coefficient (MCC), Area Under ROC
Curve (AUC), overall accuracy (OA), and average accuracy
(AA). 𝐹-measure is a more robust metric by avoiding over-
estimating the performance of some metrics, which is the
harmonic mean of recall and precision. MCC represents
the correlation coefficients between the observed and the
predicted class. Its value ranges from +1 (indicating best
prediction model) to −1 (indicating worst prediction model).
AUC is the area calculated under receiver operating char-
acteristic (ROC) curve plotted by FP rate versus TP rate.
Its value ranges from 0 to 1. These measures are defined as
follows:

Recall or Sens = TP
TP + FN

,

Spec = TN
FP + TN

,

Precision =

TP
TP + FP

,

𝐹 = 2 ×

Precision × Recall
Precision + Recall

,

MCC

=

TP × TN − FP × FN
√(TP + FP) (TP + FN) (TN + FP) (TN + FN)

,

AUC =

1

2

(

TP
TP + FN

+

TN
TN + FP

) ,

OA =

TP + TN
TP + FN + FP + TN

,

AA = ∑

Sens
𝑛

,

(10)

where TP represents the number of true positives, FP repre-
sents the number of false positives, TN represents the number

Table 2: The prediction accuracies of our method on the 1189,
25PDB and 640 datasets.

Dataset Structural
class Sens (%) Spec (%) 𝐹-measure MCC AUC

1189

All-𝛼 84.8 95.6 0.84 0.80 0.90
All-𝛽 85.4 94.1 0.85 0.79 0.90
𝛼/𝛽 85.0 90.0 0.82 0.74 0.88
𝛼 + 𝛽 55.2 91.3 0.59 0.49 0.73
OA 78.5
AA 77.6

25PDB

All-𝛼 94.4 96.4 0.92 0.90 0.95
All-𝛽 91.9 97.2 0.92 0.89 0.95
𝛼/𝛽 71.1 95.7 0.76 0.70 0.83
𝛼 + 𝛽 92.5 95.2 0.90 0.86 0.94
OA 88.4
AA 87.5

640

All-𝛼 83.3 96.8 0.86 0.82 0.90
All-𝛽 83.1 95.3 0.84 0.79 0.89
𝛼/𝛽 83.0 89.4 0.79 0.70 0.86
𝛼 + 𝛽 60.2 87.4 0.62 0.49 0.74
OA 77.0
AA 77.4

of true negatives, FN represents the number of false negatives,
and 𝑛 represents the number of classes, respectively.

3. Results and Discussion

In this study, a 700D feature vector is obtained and reduced to
224D by PCA to avoid dimension disaster. Then the 224 fea-
tures are input into SVM. The RBF kernel function, the grid
search approach, and the fifteenfold cross-validation for 1189
dataset are used to find the best parameters of 𝐶 and 𝛾 for
SVM. Finally, the optimal values of 𝐶 and 𝛾 are computed
to be 2 and 0.0019531, which are used in the experiments
of Table 2 to avoid overfitting problem. To verify the per-
formance of our method, rigorous jackknife cross-validation
tests are performed on three widely used low-similarity
datasets. The flowchart describes the whole process of the
proposed method as shown in Figure 1.

3.1. Prediction Performance of Our Method. The overall pro-
tein structural class prediction accuracy (OA) as well as
the prediction accuracy for each structural class has been
achieved by using the combination of the features from
the three sequence representation models, which include
consensus sequence-PSSM (CSP), segmented PsePSSM,
and segmented autocovariance transformation-PSSM (ACP).
The proposed prediction method (CSP-SegPseP-SegACP) is
examined with 1189, 25PDB, and 640 datasets by jackknife
tests and we report the Sens, Spec, 𝐹-measure, MCC, and
AUC for each structural class, the OA, as well as the AA. As
listed inTable 2, relying solely on PSSM for feature extraction,
we achieve up to 78.5%, 88.4%, and 77.0% overall accuracies
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Protein primary sequences

PSI-BLAST

CS-PSSM Segmented PsePSSM Segmented AC-PSSM

Global features (40) Local features (380) Local features (280)

Features sets (700)

Feature selection

PCA (224)

SVM

Prediction result

Figure 1: The flowchart of our proposed method.

for 1189, 25PDB, and 640 benchmark datasets, respectively,
and average accuracies (AA) are also above 77.0% for three
datasets. For 1189 and 640 datasets, through comparing the
four structural classes with each other, the values of Sens,
Spec,𝐹-measure,MCC, andAUC in the all-𝛼 class, all-𝛽 class,
and 𝛼/𝛽 class are obviously separately superior to those of
𝛼 + 𝛽 class. However, referring to the 25PDB dataset, 𝛼 + 𝛽

class obtains excellent performance for each performance
measures; the prediction accuracy is up to 92.5%. For 𝛼/𝛽
class, the prediction accuracy is relatively low compared with
the other classes. The fact indicates that there are still many
difficulties to overcome in the future study to improve the
prediction accuracies of 𝛼/𝛽 class and 𝛼 + 𝛽 class.

3.2. Performance Comparison between 224 Features and 700
Features. To overcome the impact of information redun-
dancy and dimension disaster for SVM, the dimension of
our obtained feature vector is reduced from 700 to 224 by
using PCA. In this Section, we report the accuracies of our
method using all 700 features on the three datasets, and
we still optimize the SVM parameters 𝐶 and 𝛾 on the 1189
dataset, which are computed to be 4 and 0.70711, respectively.
The results are shown in Figure 2. The overall accuracies of
1189 and 640 datasets obtained by using 224 features both
outperform those obtained by using 700 features, although
the accuracy is 0.2% lower than that for 700D. The fact also
fully shows that there indeed exists redundancy for SVM and
PCA can retain the most dominant information in terms of
an orthogonal transformation and save the calculation time
at the same time.

1189 25PDB 640
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Figure 2: Comparison of accuracies between our method that
includes 224 features and method that includes 700 features.

3.3. Performance Analysis of Feature Groups. To investigate
the contributions of feature groups on the protein structural
class prediction accuracy, firstly, we calculate each feature
group one by one on the 1189 dataset; the results are shown in
Table 3. From Table 3, we can easily find that the best feature
group is SegPseP, the second is segACP, and the last one is
CSP. Moreover, by combination of each feature one by one,
we calculate each combination group of features on the three
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Table 3: Performance comparison of our six feature groups on the
1189 dataset.

Dataset Features Prediction accuracy (%)
All-𝛼 All-𝛽 𝛼/𝛽 𝛼 + 𝛽 OA (%)

1189

CSAAC-PSSM (20D) 72.7 76.2 78.7 26.1 65.2
CSCM-PSSM (20D) 69.1 76.9 82.0 29.9 66.5
Seg2-PsePSSM (200D) 80.7 82.7 80.8 51.0 74.7
Seg3-PsePSSM (180D) 79.8 80.6 81.4 48.1 73.5
Seg2-ACPSSM (160D) 76.7 82.3 76.0 44.4 70.9
Seg3-ACPSSM (120D) 69.1 77.6 78.4 38.6 67.5

Table 4: The contribution of each feature group for the overall
accuracy (%).

Combination of
feature groups Dimension 1189 25PDB 640

CSAACP 20 65.2 62.0 66.0
CSAACP + CSCMP
(CSP) 40 66.5 63.1 64.7

CSP + Seg2-PseP 240 75.2 74.4 75.8
CSP + Seg2-PseP +
Seg3-PseP 420 76.2 87.7 74.5

CSP + SegPseP +
seg2-ACP 680 76.1 87.9 75.0

CSP + SegPseP +
seg2-ACP + seg3-ACP 700 77.1 88.6 75.5

CSP + SegPseP +
SegACP-PCA 224 78.5 88.4 77.0

datasets. As we can see from Table 4, each feature group
makes a special contribution for the final prediction accuracy.
Hence, we can summarize that features group SegPseP is
optimal and plays an dominant role in improving the protein
structural class prediction accuracies, especially for 25PDB
dataset. Once again, it illustrates that the feature selection is
the necessary step in this study.

3.4. Performance Comparison with Other Methods. In this
section, to demonstrate the superiority of our method; the
CSP-SegPseP-SegACP is further compared with the other
recently reported prediction methods on the same datasets.
We select the accuracy of each class and overall accuracy
as evaluation indexes that are summarized in Table 5. The
compared methods include other competitive PSSM-based
methods such as PSSM-S [36], LCC-PSSM [25], MBMGAC-
PSSM [40], RPSSM [34], AADP-PSSM [15], AAC-PSSM-AC
[17], AATP [33], PsePSSM [41], Xia et al. [42], and MEDP
[35], which are recently reported protein structural classes
prediction methods based on the evolutionary information
represented in the form of PSSM. MBMGAC-PSSM is our
othermethod by fusing three autocorrelation descriptors and
PSSM. RPSSM and PsePSSM are the submodels from PSSS-
PSSM [34] and PSSS-PsePSSM [41], respectively.

As listed in Table 5, among these PSSM-based methods,
our method achieves the competitive overall prediction
accuracies for 1189, 25PDB, and 640 datasets. For 1189 dataset,
the overall accuracies are separately 2.7% and 1.7% lower than

Table 5: Performance comparison of different methods on three
datasets.

Dataset Method Prediction accuracy (%)
All-𝛼 All-𝛽 𝛼/𝛽 𝛼 + 𝛽 OA (%)

1189

PSSM-S [36] 93.3 85.1 77.6 65.6 80.2
LCC-PSSM [25] 89.2 88.8 85.6 58.5 81.2

MBMGAC-PSSM [40] 79.8 85.0 84.7 50.6 76.3
RPSSM [34] 67.7 75.2 74.6 17.4 60.2

AADP-PSSM [15] 69.1 83.7 85.6 35.7 70.7
AATP [33] 72.7 85.4 82.9 42.7 72.6
MEDP [35] 85.2 84.0 84.3 45.2 75.8
PsePSSM [41] 82.0 82.3 84.1 44.0 74.4

AAC-PSSM-AC [17] 80.7 86.4 81.4 45.2 74.6
This paper 84.8 85.4 85.0 55.2 78.5

25PDB

PSSM-S [36] 93.8 92.8 92.6 81.7 90.1
LCC-PSSM [25] 91.7 80.8 79.8 64.0 79.0

MBMGAC-PSSM [40] 86.7 81.5 79.5 61.7 77.2
RPSSM [34] 75.6 70.2 52.0 43.3 60.8

AADP-PSSM [15] 83.3 78.1 76.3 54.4 72.9
AATP [33] 81.9 74.7 75.1 55.8 71.7
MEDP [35] 87.8 78.3 76.0 57.4 74.8

AAC-PSSM-AC [17] 85.3 81.7 73.7 55.3 74.1
PsePSSM [41] 86.2 78.8 75.7 57.6 75.5
Xia et al. [42] 92.6 72.5 71.7 71.0 77.2
This paper 94.4 91.9 71.1 92.5 88.4

640

LCC-PSSM [25] 92.8 88.3 85.9 66.1 82.7
MBMGAC-PSSM [40] 86.2 83.1 85.3 63.2 79.1

MEDP [35] 84.8 75.3 86.4 53.8 74.7
PsePSSM [41] 73.9 76.6 85.3 51.5 71.7
This paper 83.3 83.1 83.0 60.2 77.0

the previous two better-performing results that are obtained
by LCC-PSSM and PSSM-S methods. However, the overall
accuracy for 1189 dataset outperforms the accuracies of the
other seven PSSM-based methods. For 25PDB dataset, the
OA is only 1.7% lower than the previous best-performing
result that is calculated by PSSM-S method. For other nine
PSSM-based methods, our method achieves the highest
overall prediction accuracy with improvement of 9.4–27.6%.
Referring to𝛼+𝛽 class, ourmethod achieves the highest result
and the accuracy reaches 92.5%. For 640 dataset, although
the OA is lower than that for LCC-PSSM and MBMGAC-
PSSM, our method still obtains the satisfactory result. The
facts sufficiently show that our proposedmethod successfully
extracts the information hidden in the PSSM.

4. Conclusions

In this paper, the main contribution is to construct a 700D
feature vector by three descriptors: consensus sequence-
(CS-) PSSM, PsePSSM, and autocovariance transformation
(ACT) based on segmented PSSM. While CS-PSSM reflects
the global information, segmented PsePSSM and segmented
ACT represent the local sequence-order information. Then
224 features are selected by using PCA. The SVM classifier
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and the jackknife test are employed to predict and evaluate
the method on three benchmark datasets: 1189, 25PDB, and
640 datasets, with sequence similarity lower than 40%, 25%,
and 25%, respectively. The experiment indicates that our
approach can be used as a reliable tool and an excellent
alternative for the accurate prediction of protein structural
classes for low-similarity datasets. We shall make efforts in
our future task to provide a public accessible web-server
for the method presented in this paper. The codes are
written in MATLAB language and can be downloaded from
http://web.xidian.edu.cn/slzhang/paper.html.
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