
Directions in Science 
TheScientificWorldJOURNAL (2010) 10, 1084–1087 
ISSN 1537-744X; DOI 10.1100/tsw.2010.108 

 

 

*Corresponding author.  
©2010 with author. 
Published by TheScientificWorld; www.thescientificworld.com 

 

 

1084 

Human Mesenchymal Stem Cells as 
Mediators of Breast Carcinoma 
Tumorigenesis and Progression 

Lyndsay V. Rhodes and Matthew E. Burow* 

Department of Medicine, Section of Hematology and Medical Oncology, Tulane 
University Health Science Center, New Orleans, LA 

E-mail: lvanhoy@tulane.edu; mburow@tulane.edu  

Received March 23, 2010; Revised May 6, 2010; Accepted May 11, 2010; Published June 15, 2010 

KEYWORDS: mesenchymal stem cells, breast cancer, estrogen receptor, hormone 
independence, endocrine resistance, tumor microenvironment 

 

Breast cancer continues to be the most frequently diagnosed carcinoma in women in the U.S.[1,2] with 

one in eight (12%) women having the chance of developing some form of breast carcinoma over the 

course of their lifetime[3,4]. A tumor mass is composed of malignant cancer cells and nonmalignant 

benign cells. The benign cells include tumor endothelial cells, inflammatory cells, and stromal cells, as 

well as the extracellular matrix (ECM) that provides structural support to the malignant cells[5]. The 

tumor microenvironment has been shown to play an active part in tumorigenesis and cancer progression 

through structural support as well as secreted factors[6]. It is now understood that stromal fibroblasts 

within the tumor microenvironment can influence tumor cell activities, such as proliferation, survival, 

metastasis, and even tumor initiation[7,8,9,10,11].  

The interaction between tumor cells and tumor stroma or microenvironment has been described as a 

two-way street, as the tumor cells influence the stroma via tissue remodeling and gene expression, and 

vice versa[5,12,13]. Tumor cells provide signals that stimulate de novo formation of bone marrow and 

ECM in order to provide stromal support to the growing tumor[14,15]. The host response to the 

establishment of tumor stroma closely mimics that of wound healing and scar development[16], leading 

to not only modified secreted proteins from tumor cells and stroma (direct action), but also the 

recruitment of other supporting cell types (indirect action), such as endothelial progenitor cells[7,17,18] 

and mesenchymal stem cells (MSCs)[19,20,21]. MSCs are multipotent progenitor cells that possess the 

ability to self-renew, while retaining the ability to differentiate into cell types of mesenchymal origin, 

including osteoblasts, chondrocytes, and adipocytes[22,23,24,25]. These cells are known contributors to 

tissue repair and wound healing[26]. Although MSCs are present in the bone marrow, small stores of 

MSCs can also be isolated throughout various tissues[27,28,29] that are proposed to act as reserves for 

wound repair and scar formation[30,31]. When tissue damage occurs, specific endocrine signals are 

released from the injury site, initiating MSC mobilization to the location of the damage[32,33,34].  

It is thought that the tumor microenvironment mimics injury sites as “wound[s] that never 

heals”[16,35,36]. It has been proposed that the signals regulating increased turnover and proliferation of 

stromal cells in the tumor microenvironment may mediate engraftment of MSCs at the tumor site[36]. 

The effects mediated by MSCs were originally thought to involve stem cell differentiation or fusion 
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events[37,38], however, subsequent observations proved that these cells can have sufficient effects 

without evidence of long-term engraftment at the site[39,40,41]. It has been suggested that MSCs home to 

tumor cells and surround the tumors without infiltrating them, indicating that any effects of the MSCs 

results from stromal factors and paracrine signaling[42]. MSCs secrete high levels of cytokine, 

chemokines, and growth factors basally, yet these secretion profiles can be changed depending on the 

culture conditions or microenvironment[43].  

Because of the inherent ability of MSCs to home to tumor sites, the therapeutic potential for targeted 

therapy is an area of great possibility. However, many effects of MSCs on cancer cells seem to be cell-

type specific, reinforcing the importance of tumor microenvironment and cell-to-cell communication[44]. 

Conflicting findings on the effects of MSCs on cancer led us to investigate the effects of MSCs on 

estrogen receptor–positive (ER+) breast tumorigenesis. In our recently published study, we demonstrated 

the effect of MSCs on primary breast tumor growth and the progression of these tumors to hormone 

independence[45]. Coinjection of bone marrow–derived MSCs enhanced primary tumor growth of the 

ER+, hormone-dependent breast carcinoma cell line MCF-7 approximately fourfold in the presence and 

twofold in the absence of estrogen in female ovariectomized immunocompromised mice. The most 

striking effect of MSCs on MCF-7 tumorigenesis was observed when cells were injected in the absence of 

estrogen and matrigel. Here we found an 80% tumor formation compared to 0% when MCF-7 cells were 

injected alone. These results demonstrated the ability of MSCs to stimulate hormone-independent growth 

of basally hormone-dependent cells, a progression that is associated with a more aggressive phenotype. 

These effects were found in conjunction with over a 10% increase in immunohistochemical staining of 

the progesterone receptor (PgR) in the MCF-7/MSC tumors as compared to MCF-7 control tumors. This 

increase in PgR expression indicates a link between MCF-7 cells and MSCs through ER-mediated 

signaling. Taken together, our data reveal the relationship between tumor microenvironment and tumor 

growth, and the progression to hormone independence. This tumor stroma-cell interaction may provide a 

novel target for the treatment of ER+, hormone-independent, and endocrine-resistant breast carcinoma. 

In addition to work done in our lab, others have shown MSCs to be involved in other aspects of tumor 

formation and progression. In their 2007 paper, Karnoub and colleagues proposed that the metastatic traits 

of breast cancer cells are acquired through exposure of the epithelial cells to mesenchymal cells in the 

tumor-associated stroma[46]. It was suggested that MSCs provide paracrine signals to the tumor cells 

promoting metastasis via chemokine signaling (CCL5)[46], similar to tumor-associated stromal cells that 

have been shown to contribute to primary tumor growth in vivo via chemokine paracrine signaling[47]. 

Others have reported changes in proliferation as well as morphology, and cell-to-cell contact changes in 

breast carcinoma cells cultured in the presence of MSCs[48]. Furthermore, breast carcinoma cells 

cultured in the presence of MSCs have increased expression of epithelial-to-mesenchymal transition 

(EMT)–associated genes as demonstrated in a recent article by Martin et al.[49]. These findings suggest 

that not only do MSCs affect the growth response of tumor cells, but they also affect other biological 

processes as well, including the progression to hormone independence, EMT, and ultimately, metastatic 

potential.  

Although approximately 70% of diagnosed breast carcinomas are ER+ and responsive to antiestrogen 

treatments (initially), the majority of these cases will progress to endocrine resistance and hormone 

independence. Understanding the mechanism(s) associated with this progression to a more aggressive and 

nonresponsive phenotype is paramount to the development and implication of novel treatments. The 

involvement of MSCs in the progression of breast cancer, including hormone independence, provides 

further insight and possibly new therapeutic targets in the treatment of advancing breast disease.  
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