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ABSTRACT
Background While genome-wide association studies
(GWAS) of complex traits have revealed thousands of
reproducible genetic associations to date, these loci
collectively confer very little of the heritability of their
respective diseases and, in general, have contributed
little to our understanding the underlying disease
biology. Physical protein interactions have been utilized
to increase our understanding of human Mendelian
disease loci but have yet to be fully exploited for
complex traits.
Methods We hypothesized that protein interaction
modeling of GWAS findings could highlight important
disease-associated loci and unveil the role of their
network topology in the genetic architecture of diseases
with complex inheritance.
Results Network modeling of proteins associated with
the intragenic single nucleotide polymorphisms of the
National Human Genome Research Institute catalog of
complex trait GWAS revealed that complex trait
associated loci are more likely to be hub and bottleneck
genes in available, albeit incomplete, networks
(OR=1.59, Fisher’s exact test p<2.24×10−12). Network
modeling also prioritized novel type 2 diabetes (T2D)
genetic variations from the Finland–USA Investigation of
Non-Insulin-Dependent Diabetes Mellitus Genetics and
the Wellcome Trust GWAS data, and demonstrated the
enrichment of hubs and bottlenecks in prioritized T2D
GWAS genes. The potential biological relevance of the
T2D hub and bottleneck genes was revealed by their
increased number of first degree protein interactions with
known T2D genes according to several independent
sources (p<0.01, probability of being first interactors of
known T2D genes).
Conclusion Virtually all common diseases are complex
human traits, and thus the topological centrality in
protein networks of complex trait genes has implications
in genetics, personal genomics, and therapy.

INTRODUCTION
In spite of the vast number of reproducibly asso-
ciated polymorphisms that genome-wide associ-
ation studies (GWAS) have found for complex
traits, their underlying biological mechanisms
remain elusive, and they have in many cases not
been able to achieve their intended goal: to dis-
cover and understand the functional underpinnings
of complex traits. Moreover, while those studies
have contributed to a comprehensive catalog of
disease-associated loci (http://www.genome.gov/

gwastudies), the polymorphisms each contribute
only marginally to the heritability of the disease1

and have afforded us little new knowledge of the
trait’s key functional mechanisms.
To address this issue, two approaches have been

used to increase statistical power and unveil add-
itional single nucleotide polymorphisms (SNP)
buried in the large lists of polymorphisms pub-
lished in GWAS. The predominantly data-driven
approach consists of the integration or
meta-analysis of multiple GWAS datasets compris-
ing tens of thousands of samples.2 The second
approach, knowledge-driven, consists of incorpor-
ating external mechanistic facts into enhanced
statistical genetic models before the GWAS case–
control analysis. SNP have thus been prioritized
using biological functions,3 canonical pathways4–8

or expression quantitative trait loci (eQTL) associa-
tions.9 10 Surprisingly, protein interactions have not
yet been fully exploited for characterizing SNP
mechanistically for complex diseases. So far, they
have been implicated in the inter-trait modularity
of Mendelian disorders,11 cancer,12 and have suc-
cessfully predicted novel disease genes from the
interaction partners of known causal disease genes
cataloged in the online Mendelian inheritance in
man (OMIM).13 Conclusively, protein interactions
and network modeling are thought to be key tech-
niques for shedding new light on the poorly under-
stood complex genetic basis of many common
disorders.14

The protein interaction networks help reveal the
importance of disease-associated variations, their
host genes, protein products and interacting part-
ners. Topologically central genes or proteins char-
acterized as ‘hubs’, or ‘bottlenecks’ are those within
a network defined as the top most connected pro-
teins or those with the topmost ‘betweenness
scores’,15 respectively (cut-off of 20%).
Furthermore, proteins that lie close to each other
in a network are more likely to have similar func-
tions16 and further support the protein interaction
networks (PIN) analysis of variations associated
with complex traits with poorly understood genetic
etiology. First interactors of known disease or
phenotype genes have been shown to be more
likely to be involved in the same disease or bio-
logical process,13 17 and thus mutations in genes
interacting with disease genes tend to lead to
similar disease phenotypes.18 Therefore, direct
protein interactions or first interactors can be used
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to estimate functional linkage between novel candidate disease
genes and those with established pathophysiological biology.

Studies have shown that shared genes associated with multiple
diseases (pleiotropic effects) are more topologically central than
specific genes associated with only one disease.19 Cancer disease
genes tend to encode in central hubs of highly interconnected
modules within protein–protein interaction networks.20 Those
findings suggest that at least some types of disease genes may
possess some topology characteristics in protein–protein interac-
tions. Here, we hypothesized that protein interaction modeling
of GWAS findings, especially the topological features of proteins
in the network, could help unveil the genetic architecture of
complex diseases. We first confirm the topological centrality of
trait-associated SNP found in the National Human Genome
Research Institute (NHGRI) online catalog, which contains sig-
nificant variations published in GWAS.21 Second, we propose a
novel predictive network modeling of protein interactions that
reprioritizes intragenic SNP associated with a complex disorder
according to GWAS, and using conservative empirical controls,
we computationally identify unexpected pairs of interactors in
type 2 diabetes (T2D). We evaluate the predicted SNP against
an independent gold standard, and confirm a significantly
increased OR of correct findings among network-reprioritized
SNP compared to the original GWAS prioritization.
Furthermore, we evaluate the topology of the predicted
network constructed from available, albeit incomplete sources,
and show increased presence of hub and bottleneck proteins of
the host genes consistent with properties described in the
NHGRI catalog of SNP–trait associations. Therefore, the
molecular mechanisms supporting the contribution of protein
interactions to complex traits are systematically identified. The
results, reported here, strongly imply that the statistical signals
inferred from GWAS have not yet been exhausted and can be
revealed without requiring massive increased sample sizes.

METHODS
Supplementary table S10 (available online only) recapitulates
the abbreviations and key concepts (eg, host genes, etc) also
defined in this paper at their first occurence.

Datasets used in this study
GWAS and protein interaction datasets and their preparations
are summarized in tables 1 and 2, respectively. The preparation
of gold standard GWAS SNP utilized to select the optimal
network model of protein interactions is described below in the
‘Gold standard’ section of the Methods. Finally, the independ-
ent non-GWAS sources of biologically validated T2D genes are
described in table 3.

Experimental design
First, we demonstrate that topological protein network proper-
ties from available, albeit incomplete, networks are significantly
enriched in complex disease traits. This finding serves to estab-
lish the merit of developing and evaluating a predictive model
of complex trait polymorphisms anchored on protein interac-
tions. Next, we describe in detail how we extend the SPAN
model12 to reprioritize statistically unexpected host gene interac-
tions among modestly ranked intragenic SNP of GWAS. This
method is evaluated with three independent GWAS involving
two different complex traits in order to show its robustness and
reproducibility. Third, we report the GWAS SNP reprioritized
by a genetically constrained protein interaction model of T2D
derived from independent SPAN analyses of two GWAS (out-
lined in figure 1). We further evaluate these results according to

different network centrality metrics of these reprioritized SNP
host genes: hubness, bottleneckness, their overlap with validated
T2D genes discovered by biologists, and their number of direct
interactors to the host genes of validated T2D SNP that were
not used to select the optimal model.

Empirical control for protein network model
To conduct an empirical control for T2D network analysis,
intragenic SNP were resampled (1000 bootstraps) to create
empirical SNP lists and derived their corresponding list of host
genes (figure 1 and see supplementary methods, available online
only).

Protein interaction network modeling: using SPAN to
reprioritize GWAS-ranked host genes
Protein network models are constructed by analyzing the
protein interactions among GWAS-ranked host genes at different
cut-offs (figure 1 and see supplementary table S1, available
online only). We used SPAN,12 25 to prioritize host genes by
estimating the expected frequency (p value) of single (individ-
ual) protein interactions occurring between these top
GWAS-ranked host genes using empirical controls. In particular,

Table 1 GWAS datasets, intragenic SNP and their corresponding
host genes

Sources

Samples Genetic

Cases Controls
Intragenic SNP (out
of total SNP)

Host
genes

T2D
GWAS

FUSION 1161 1174 137 248 (315 635) 16 711
WTCCC 2000 3000 187 842 (447 306) 15 367

IBDGC
GWAS

IBDGCi 561 563 134 257 (306 835) 16 539
IBDGCii 407 432

Two type 2 diabetes (T2D) genome-wide association study (GWAS) datasets are used,
Finland–USA Investigation of NIDDM Genetics (FUSION),22 and Wellcome Trust Case
Control Consortium (WTCCC).23 A third GWAS dataset is used, the Inflammatory
Bowel Disease Genetics Consortium (IBDGC) with non-Jewish, European ancestry and
with Jewish ancestry. Results for IBDGC GWAS were obtained using database of
genotypes and phenotypes (dbGAP; executable file dbGaP.archive.4825.part1.exe).24

All single nucleotide polymorphism (SNP) flat files were downloaded on October 19,
2009 from the single nucleotide polymorphism database (dbSNP), (ftp://ftp.ncbi.nih.
gov/snp/organisms/human_9606/ASN1_flat/) and the SNP were extracted along with
their corresponding HUGO gene symbols and functions in order to map each SNP to a
host gene. The host genes of intragenic SNP were defined by genomic boundaries
extending from 200 kb upstream (50 side) to 0.5 kb downstream (30 side) of the gene.
All files contained 306 835 SNP in total and their corresponding p values, ranging
from 2.6×10−16 to 1. All SNP were ranked according to each GWAS prioritization—
no individual data were required for this study. Each host gene can be paired with
one or more intragenic SNP, which were assigned to a host gene by selecting the
best GWAS-ranked SNP p value among all SNP annotated to the gene. GWAS-ranked
host genes harboring the GWAS-ranked SNP were systematically organized into
overlapping sets by selecting the top 25, 50, 100, 150, 250, 500, 600, 700, 800,
1000, and 1100 ranked genes (host gene cut-off ) to compose each set, respectively.

Table 2 Protein interaction datasets

Protein interaction datasets details

Retrieved from http://string.embl.de
STRING versions used V.6.3 ( Jan 2007)

V.8.2 (May 2010)
Resulting dataset 14 025 Distinct human proteins

492 087 Protein–protein interactions

The protein interaction networks is downloaded using the search tool for the retrieval
of interacting genes, STRING.26 To ensure the independence of the network from the
published genome-wide association study results, protein interactions derived only
from text mining were removed (see supplementary methods, available online only).
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GWAS-ranked host genes from each GWAS were individually
analyzed using SPAN and controlled by bootstrapping SNP.
Briefly, SPAN is a network model in which the observed number
of interactions between the host genes of GWAS-prioritized
intragenic SNP is compared with an expected distribution
through permutation resampling (see supplementary methods,
available online only). First, we calculated the likelihood of
obtaining the same number of interactions in the empirical dis-
tribution that were found for each host gene in the observed
network (empirical SPAN frequency). Then, GWAS-ranked host
genes contained in each set created at each cut-off were repriori-
tized using this calculated empirical SPAN frequency. By design,
this model is controlled for topological properties such as bot-
tleneckness and hubness. The resulting statistically significant
genes at the best cut-off were then aggregated to form an
‘optimal network model of the GWAS’.

Reference trait-associated SNP and gold standards
SNP–trait associations data, identified for T2D and Crohn’s
disease (independently) from GWAS, were collected from the
NHGRI online catalog (http://www.genome.gov/gwastudies/;
excel format on 5 November 2010),21 and then intragenic SNP
are determined (figure 2). The set of selected intragenic T2D
SNP were used to assess the accuracy of network models con-
structed for the Wellcome Trust Case Control Consortium
(WTCCC) and the Finland–USA Investigation of
Non-Insulin-Dependent Diabetes Mellitus Genetics (FUSION),
respectively (figure 2, see supplementary tables S2 and S3, avail-
able online only). The set of selected intragenic Crohn’s disease
in the Inflammatory Bowel Disease Genetics Corsortium
(IBDGC) GWAS platform as well as in the PIN database was
used to assess the accuracy of our Crohn’s network models (see
supplementary table S4, available online only).

Optimal SPAN model of T2D and its evaluation
For each GWAS, the best OR was used to determine the optimal
network model and its associated parameters (host gene cut-off,
empirical SPAN frequency; figure 5B,C). In order to improve
statistical power the optimal network models of FUSION and
WTCCC were combined and we quantitatively evaluated the
relevant reprioritized host genes within the optimal SPAN
model of T2D in three ways: their probability of being first
interactors of known T2D genes (empirical edgetic p value; see
supplementary methods and table S10, available online only),
the enrichment of T2D reported genes from authoritative data-
bases, and their enrichment in hubs and bottleneck genes.

Hub and bottleneck enrichment analysis of SNP sets
The hubness or bottleneckness of an intragenic SNP was
defined based on the connectivity of its host gene where hubs
are defined as those genes within the top 20% of degree distri-
bution (node degree) and bottlenecks as genes in the top 20%
of betweenness scored proteins using an established algorithm
(http://www.gersteinlab.org/proj/bottleneck/).15 To investigate
whether hub and bottleneckness properties are more likely to be
enriched in complex disease traits, we utilized the entire set of
SNP in the NHGRI catalog of SNP–trait associations. The
enrichment is tested using Fisher’s exact test and for each intra-
genic SNP in dbSNP two criteria were used: whether the SNP is
cataloged in NHGRI (or GWAS for T2D and Crohn’s); and
whether the host gene of the SNP is a hub and/or bottleneck
gene. The background SNP utilized in this study are from
dbSNP.

RESULTS
Host genes of complex trait-associated SNP are enriched in
hub and bottleneck centrality properties in currently
available networks
We conducted a thorough analysis of hubness and bottleneck-
ness for complex trait-associated intragenic SNP and report
these two topological properties for the 1390 trait SNP
from the NHGRI GWAS catalog21 (see Methods section and
figure 3). Conclusively, complex trait SNP are significantly more
likely to lie in hub genes (OR 1.59, p=2.24×10−12; Fisher’s
exact test) and bottleneck genes (OR 1.56, p=1.90×10−12;
Fisher’s exact test) when using the human intragenic SNP of
dbSNP whose host genes occur in the PIN as a background,
albeit these networks comprise some ascertainment-biased inter-
actions that may favor this hypothesis (although we systematic-
ally removed publication-based interactions). Considering that
hub and bottleneck proteins have been associated with several
key biological functions and gene expression dynamics,15 it is
not surprising that complex trait-associated SNP are enriched in
these network topology properties.

GWAS SNP reprioritized by protein interaction models are
more likely to be validated in ulterior studies
Trait-associated intragenic SNP prioritized by GWAS are strati-
fied according to their original GWAS rank and are translated
into their host genes that serve to constrain the protein inter-
action modeling genetically (figures 4 and 5 and see supplemen-
tary methods, available online only). The statistical likelihood,
or empirical SPAN frequency, of obtaining the number of
observed interactors for each host gene in the genetically con-
strained network was introduced as a second parameter. The
empirical SPAN frequency is equal to the number of times the
exact (or greater) node degree (count of direct protein

Table 3 Independent sources (non-GWAS) used for validation of
SPAN-reprioritized SNP (enrichment statistics of figure 5C)

Independent (non–
GWAS) sources of
T2D genes Retrieved from Dataset details

OMIM 97 T2D-annotated genes, by
querying NIDDM (MIM ID
125853; December 14, 2010)

See supplementary
tables S5 and S6
(available online only)

IPA http://www.ingenuity.com;
V.9.0

See supplementary table
S6 (available online
only)

Literature evidence Pubmed See supplementary table
S6 (available online
only)

Literature evidence for
biological processes

KEGG; GO; Reactome
http://www.genome.jp/kegg/
http://www.geneontology.org/
http://www.reactome.org/

See supplementary table
S6 (available online
only)

The host genes within the optimal SPAN model of type 2 diabetes (T2D) were
analyzed for enrichment in 97 T2D reported genes within online Mendelian
inheritance in man (OMIM).27 Eighty-three of these genes were also found within the
protein interaction database (see supplementary table S5, available online only), and
used as a basis for enrichment evaluation using Fisher’s exact test (figure 5C). Such a
Fisher’s exact test enrichment evaluation was also conducted against the T2D genes
curated in the ingenuity pathway analysis application (IPA, figure 5C), and the hubs
and bottleneck genes of the overall protein interaction network (figure 6). We
qualitatively annotated the potential T2D-related functions of host genes within the
optimal SPAN model of T2D from a review of the literature and canonical pathways in
the Kyoto encyclopedia of genes and genomes (KEGG),28 gene ontology (GO)29 and
Reactome30 (figure 5C and see supplementary table S6, available online only).
GWAS, genome-wide association studies; NIDDM, non-insulin-dependent diabetes
mellitus; SNP, single nucleotide polymorphism.
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interactors among the prioritized host genes of SNP) for any
given protein is found in an empirical distribution made of a
1000 random samplings of GWAS intragenic SNP (converted to
host genes) that is the same node degree found in the actual
given gene set.

We analyzed two independent T2D GWAS, FUSION22 and
WTCCC.23 In FUSION, the OR of the control was highest at
150 GWAS-ranked host genes, and from 250 on showed a
linear decrease with respect to the size of the GWAS-ranked
host gene set (figure 4A). From 500 on, every subsequent SPAN
model improved the GWAS-ranked SNP OR. The SPAN model
at 600 GWAS-ranked host genes with a frequency of 0.1%
or less yielded the best OR of 2512 (10-fold increase;
p=0.00059; Fisher’s exact test). In WTCCC, the OR of the

baseline control showed linear decreases with respect to the size
of the GWAS-ranked host gene set in between each peak at 50,
500 and 800 (figure 4B). From 600 host genes on, the SPAN
model with a frequency of 0.1% or less yielded the best OR of
1585 (p=0.00073; Fisher’s exact test), with 46% improvement
compared to the baseline. We also examined the Crohn’s disease
GWAS data to determine if the T2D GWAS result is trait specific
or could also be extend to this disorder. A SPAN model of
Crohn’s disease at 700 showed the best accuracy for
re-capturing gold standards with the OR of 3981 for IBDGC
(figure 4C). We selected the model at 600 GWAS-ranked host
genes with a frequency of 0.1% or less as the optimal network
as it consistently yielded the best OR. This model contains 12,
10, and one host gene(s) from FUSION (figure 5A), WTCCC

Figure 1 Outline for prioritizing single nucleotide polymorphisms (SNP) using protein network modeling. This figure provides details on the
empirical control of the SPAN network modeling, and the reprioritized SNP in the network models. Step 1: The entire set of SNP measured on a
genome-wide association studies (GWAS) array is annotated with respect to host genes as intragenic or intergenic using dbSNP129. Step 2: The p
values of the observed ranked host genes are determined based on the lowest p value of the GWAS of origin being assigned to each host gene that
may have more than one SNP (Wellcome Trust Case Control Consortium (WTCCC), Finland–USA Investigation of Non-Insulin-Dependent Diabetes
Mellitus Genetics (FUSION) or Inflammatory Bowel Disease Genetics Consortium). Step 3: For host genes of the observed ranked list that can be
mapped to protein interactions, the observed interactions are carried at different cut-offs (n=i) each yielding a different network model (see Methods
section). Step 4: In parallel, 1000 control bootstraps are constructed at each cut-off of the ranked gene list in the following way: SNP are sampled
from the total number of SNP in the array and assigned the corresponding p value of the observed distribution for that rank. The intragenic SNP
among them are assembled at different cut-offs to generate an equal number of distinct host genes as the observed set at that cut-off. The lowest
GWAS p value is assigned to each host gene. Step 5: In each bootstrap, the number of first interactors of host genes from the control set is
calculated in the same way as previously described in step 3 for the observed set (at each cut-off ). Finally, the ‘SPAN analysis’ produces a
reprioritized p value for each SNP associated with a host gene of the observed set using the observed node degree of a host gene at a certain
cut-off and its corresponding empirical control. PIN, protein interaction networks.

622 Lee Y, et al. J Am Med Inform Assoc 2013;20:619–629. doi:10.1136/amiajnl-2012-001519

Research and applications



(figure 5B), and KCNJ11 (rs5215), which is common between
both studies (see supplementary tables S1 and S7, available
online only). Taken together, these results demonstrate the scal-
ability of the network modeling and we also conducted add-
itional studies to demonstrate its robustness (see supplementary
figures S1 and S2B, available online only).

SPAN reprioritized genes interact directly with known T2D
genes
Interestingly, first interactors of known disease genes have been
shown to be more likely to be true disease genes,13 17 18 and
can serve as candidate genes for further analysis (figure 5C,D).
Furthermore, closer distances between two proteins in a
network have been shown to signify increased functional simi-
larity.16 Therefore, we can infer that first interactors of known
T2D genes are more likely to be related to the pathophysiology
of the disease. We analyzed then our combined optimal network
model for biological and functional relatedness. We also evalu-
ated how many of our prioritized host genes were first interac-
tors of NHGRI known T2D genes. Importantly, these genes
were not used to prioritize our network; rather, they were con-
sidered as established T2D genes by the NHGRI, and served as
markers for GWAS result reprioritization. In our combined
optimal networks of WTCCC and FUSION (figure 5C and see
supplementary table S8, available online only), five genes
(KCNJ11, KCNJ10, LFNG, MAP3K1, and ZBTB17) were shown
to interact directly with three gold standard genes (NOTCH2,
KCNQ1, and PPARG, figure 5D). Using an empirical distribu-
tion of random interactions (edge) between 21 reprioritized
host genes and 12 gold standards (13 known T2D genes

reported in the NHGRI catalog excluding the overlapping gene
KCNJ11), we calculated their probability of being first interac-
tors of known T2D genes. In the optimal network model, five
direct interactions with T2D gold standard genes were identified
to be significant (0.0036<edgetic p<0.0538; see supplementary
methods and table S9, available online only). This proxy estima-
tion further supports our network model, since the candidate
T2D associated genes connect directly with gold standards more
than expected by chance. In addition, biologically or clinically
validated T2D genes are enriched in the optimal SPAN model
of T2D (figure 5E and see supplementary table S6, available
online only).

Hub and bottleneck genes are enriched in the optimal T2D
GWAS network
By definition, the overall protein interaction network includes
20% hubs and 20% bottleneck genes. In the optimal SPAN
protein interaction network model of T2D, we observe 29%
hubs and 33% bottleneck genes (figure 6). Therefore, the topo-
logical centrality of reprioritized host genes of the optimal T2D
GWAS network concurs with the broader observation that hubs
and bottlenecks are enriched in GWAS-associated complex dis-
eases (figure 3).

DISCUSSION
As GWAS reveal minimal biological mechanisms underlying dis-
covered SNP, known molecular functions or pathways have been
implemented as straightforward, high-throughput post-GWAS
analyzes.31 Wang et al7 demonstrated that pathway approaches,
which take into account multiple SNP, can provide additional

Figure 2 Construction of the gold
standard of single nucleotide
polymorphisms (SNP) from type 2
diabetes (T2D)-associated SNP
obtained from independent
genome-wide association studies
(GWAS) for validation of our prioritized
SNP. Step 1: All SNP present in the
National Human Genome Research
Institute (NHGRI) GWAS catalog were
taken as an initial step. Step 2: SNP
were filtered based on their associated
trait to select only T2D-associated SNP.
Among 76 SNP, 42 are intragenic SNP
and correspond to 22 host genes
according to dbSNP annotations. Step
3: dbSNP annotations were used to
determine genomic locations of the
SNP and select only the intragenic
ones. Step 4: From the list of
intragenic T2D SNP, only the SNP that
met the following criteria were
selected: they existed in both the
protein interaction networks (PIN) and
the respective GWAS of interests’
platform (Wellcome Trust Case Control
Consortium (WTCCC) Affymetrix
GeneChip 500 k and Finland–USA
Investigation of Non-Insulin-Dependent
Diabetes Mellitus Genetics (FUSION)
Illumina Infinium II Human Hap 300
Beadchip V.1.0) and were selected as
T2D-associated SNP by another GWAS.
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value to GWAS data. Furthermore, Baranzini et al5 demon-
strated that modestly prioritized SNP from two multiple scler-
osis GWAS could reveal statistical associations at the canonical
pathway level. In addition, pathway approaches have elucidated
the potential utility of protein interaction analyses of GWAS
data,7 which have been confirmed in yeast using eQTL
data,10 32 and used to identify subnetworks that may contribute
to complex human traits using text mining knowledge.33

Convincingly, the discovery of new biological modules is pos-
sible by utilizing protein interaction network approaches along
with GWAS knowledge; however, no previous studies have pro-
vided insight into the network topology associated with
complex traits.

Edgetic perturbation: a model for complex trait analysis
Zhong and colleagues11 established that an ample proportion of
disease gene alterations, reported in OMIM, in fact cause
changes in protein interactions, deemed edgetic perturbations,
rather than complete protein (or node) removal. In our analysis,
we extend this principle to examine the host genes of intragenic
SNP that confer various effects on their final protein products.
For example, synonymous or intronic SNP may cause aberrant
alternative splicing,34 35 which has been shown to be an import-
ant mechanism in disease,36 37 and that may affect both expres-
sion levels and protein sequence. Furthermore, SNP may alter
expression by being located in the promoter region or the 30

untranslated region targeted by microRNA, which can decrease
the stability or reduce the level of interaction enough to
produce an edgetic change.11 Goldstein’s group also demon-
strated that prioritized SNP in GWAS may be markers of a
common variant in linkage disequilibrium (LD) with the SNP, as
well as a marker of rare variants creating synthetic associations
that are attributed to common variants.38 We thus propose that
SPAN prioritized intragenic SNP are possible markers of either
mechanism: a common variant or rare genetic variants.
Therefore, genetic alterations that underlie edgetic perturbations
are not limited to non-synonymous mutations, but may also
include those that cause alternative types of changes in protein
functionality and interrelationships. In this vein, our method
not only focuses on edgetic changes by examining protein inter-
actions, but also incorporates this idea by analyzing intragenic
SNP that cause various or unknown alterations including syn-
onymous and non-synonymous mutations.

SPAN analysis repeatedly identifies secondary ranked GWAS
host genes at a reproducible cut-off
Apart from the topmost prioritized SNP (generally top 10), it is
now known that GWAS lack reproducibility of prioritized SNP
that are ranked lower than 10 according to their GWAS p value.
This indicates that the SNP ranking, taken in isolation, is not
sufficiently precise (positive prediction value) to identify novel
or important disease genes. Interestingly, the SPAN modeling
method reproducibly identified two biomolecular modules com-
prising sets of interacting genes in two independent T2D GWAS
(figure 5A,B). Based on edgetic and topological evaluations, the
application of protein interaction information appears to benefit
our understanding of T2D GWAS host genes that impact or are
potentially true disease-related genes. We have shown that
meaningful polymorphisms are likely to be present in secondary
ranked signals (200–800 according to their GWAS p values
among half a million SNP) identified by GWAS, and were con-
sistently found in the same range for both complex traits. Using

Figure 3 National Human Genome Research Institute (NHGRI)
intragenic single nucleotide polymorphisms (SNP) are enriched in hub
and bottleneck host genes. This figure compares the proportion of
intragenic complex trait SNP for which the corresponding imputed host
gene protein determined to be a hub or bottleneck using the NHGRI
catalog as a control. In addition, intragenic SNP from the Illumina
HumanMap 300 Beadchips and from HapMap population of Utah
residents with northern and eastern European ancestry from the CEPH
collection (CEU) were also used as controls and were binned according
to their minor allelic frequency. (A) The proportion of complex trait SNP
that reside in hub genes is significantly higher than that of the two
controls. At least 23.02% of NHGRI SNP are in hub genes compared
with 16% of SNP, at most, in the Illumina HumanMap 300 Beadchips
and in HapMap (p=8.8×10−8 Mann–Whitney U test), shown by a
dashed line. (B) The proportion of complex trait associated SNP in
bottleneck genes is also significantly higher than that of the two
controls. 26% of NHGRI SNP reside in bottleneck genes while 19%, at
most, do so in the background platforms (dashed line, p=5.2×10−8,
Mann–Whitney U test). Similar enrichment results seen for that of the
20% cut-off have been obtained for three other cut-offs, specifically at
5%, 10% and 30% (data not shown), demonstrating the robustness of
these findings. Importantly, the proportion of hub and bottleneck host
genes is consistent regardless of minor allele frequency (data not
shown). To examine the difference in the enrichment of centrality
genes found for single gene disorders and complex traits, we compared
the genes found in representative datasets for each type of disorder:
Online Mendelian inheritance in man and the NHGRI catalog,
respectively. Complex disease genes were less likely to be central genes
in a network than single gene inheritance disease genes when using
the standard 20% cut-off for hub and bottleneck genes, as well as at
smaller and larger cut-offs as mentioned above (data not shown).

624 Lee Y, et al. J Am Med Inform Assoc 2013;20:619–629. doi:10.1136/amiajnl-2012-001519

Research and applications



Figure 4 Genome-wide association
studies (GWAS) single nucleotide
polymorphisms (SNP) reprioritized by
protein network models are more
predictive of trait-sssociated SNP. SPAN
analysis repeatedly identifies secondary
ranked GWAS host genes at a
reproducible cut-off. In particular, at a
cut-off of GWAS-ranked host genes
equal to 600 and with an empirical
SPAN frequency of 0.1% or less, SPAN
obtained the maximum OR in both
type 2 diabetes (T2D) studies. The OR
(y-axis) correspond to the probability
of identifying a gold standard SNP
among SNP prioritized either in the
original unmodified GWAS-ranked SNP
(dotted black line) or those
reprioritized by SPAN network models
(colored lines) under different cut-offs
of GWAS-ranked host genes that serve
as inputs to the models (x-axis, see
Methods section) in datasets Finland–
USA Investigation of
Non-Insulin-Dependent Diabetes
Mellitus Genetics (FUSION) (A),
Wellcome Trust Case Control
Consortium (WTCCC), and
Inflammatory Bowel Disease Genetics
Consortium (IBDGC) (C). The gold
standard is derived from
trait-associated SNP of the National
Human Genome Research Institute
collection that were discovered and
validated in an ulterior and
independent GWAS. The number of
SNP in the GWAS corresponding to
each host gene cut-off is shown in
parenthesis of the x-axis (eg, a host
gene may have more than one
associated SNP within the cut-off
range, see supplementary methods,
available online only). We ranked the
host genes according to the lowest
trait-associated probability among their
corresponding ranked SNP at a certain
cut-off. Furthermore, the likelihood of
finding the number of observed
interactions for each host gene in the
list is calculated in each network as a
‘frequency’ by empirical models and
the threshold is used to produce
various models is illustrated by
different colored lines. SPAN analysis
robustly and reproducibly reprioritized
gold standard genes when varying the
protein interaction confidence criteria
(see supplementary figure S1, available
online only), and when defining more
or less SNP as intragenic upstream and
downstream of the host gene (see
supplementary figure S2, available
online only). Furthermore, SPAN
outperformed straightforward pathway
enrichment at different cut-offs (see
supplementary figure S3, available
online only).
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Figure 5 Validated type 2 diabetes (T2D) genes and their first interactors are enriched in the optimal SPAN model of T2D. Optimal SPAN modeling
independently prioritized 12 genes in Finland–USA Investigation of Non-Insulin-Dependent Diabetes Mellitus Genetics (FUSION) (A) and 10 in
Wellcome Trust Case Control Consortium (WTCCC) (B). (C) The combined optimal SPAN Model of T2D contains 21 genes, 12 from FUSION (green),
10 from WTCCC (blue), where one gene (KCNJ11) is shared and is a known T2D gene from the National Human Genome Research Institute (NHGRI)
catalog (see supplementary table S1, available online only). Aside from the obvious relatedness between these studies via KCNJ11, we identify three
additional interactions between the independently prioritized networks: PIN4 and MAP3K1 from FUSION interact with CDC42 of WTCCC, while DLL1
from FUSION interacts with LFNG of WTCCC with statistical significance (p=0.0041, FDR=0.0001). Interestingly, these biomolecular networks were
already the most connected within their respective studies (eg, within FUSION: DLL1–KCNJ10–KCNJ11 and MAP3K1–AXIN1; within WTCCC:
ZNF284–CDC42–ARHGEF12). (D) The prioritized model comprises more first interactors of known T2D genes reported in the NHGRI than predicted
using conservative control (empirical distribution p =0.015, see Methods section). These interactions to known NHGRI T2D genes as a proxy
evaluation are reported to illustrate the biological functional relatedness to T2D, as NOTCH2, KCNQ1 and PPARG were not among host genes of
NHGRI known T2D single nucleotide polymorphisms that prioritized this network (see Methods section, figure 2). Panel (E) illustrates that known
T2D genes are enriched in the optimal SPAN model of T2D. The functions of the 21 genes were also evaluated against different types of T2D
datasets independent from the NHGRI: including online Mendelian inheritance in man (OMIM), ingenuity pathway analysis, and in manually curated
literature sources (see supplementary table S6, available online only). Among 83 T2D genes reported in OMIM, two were significantly enriched in
the prioritized network (OR 29.5, p=0.003). Among the five genes that directly interact with NHGRI T2D gold standard genes, three have been
reported in the literature as associated to T2D. Two genes, KCNJ11 and MAP3K1, were confirmed to be T2D genes by OMIM (OR 29.5, p=0.003,
Fisher’s exact test) and canonical pathway analysis (IPA ‘type ii diabetes mellitus signaling’, p=0.0004). In addition, an intensive review of the
literature provided evidence for T2D associations for eight genes (ARHGEF12, AXIN1, KCNJ10, MAP3K1, CREM, TACR3, SNAP29 and ZBTB17) and
T2D biological process associations for two genes (PROK2, obesity; TRIM7, glycogen metabolism). One gene, ART1, was reported in a type 1
diabetes (T1D)-related study, highlighting the possibility of T1D contamination by incorrect diagnosis in the original GWAS or the potential for
overlapping etiology in some subset of patients.
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this approach and protein knowledge can bring us closer to
developing a more comprehensive understanding of GWAS
results by highlighting potentially essential disease-related
signals.

SPAN results provide the rationale for investigating edgetic
models of complex diseases
Our network model of WTCCC and FUSION T2D GWAS
results has revealed 21 potential biological candidate T2D
genes. As an example, three SPAN-prioritized genes were both
supported by ulterior sources and were found to be first interac-
tors of T2D gold standard genes (figure 5D), and thus may
serve as quintessential T2D candidate genes: KCNJ10, MAP3K1
and ZBTB17. A comprehensive literature review for the 21 gene
set revealed possible biological explanations for 13 genes (see
supplementary table S6, available online only). In combination,
our results suggest that examination of GWAS results using
protein interactions may provide a theoretical stepping stone for
gaining biological insight into complex diseases and may be
useful for GWAS follow-up studies in general.

Enrichment of hubs and bottlenecks in complex traits and
multiple controls
Focusing on edgetic functionality is supported by the theory
that the importance of a hub is in fact related to the loss of a
hub’s essential protein interactions (edges), rather than the loss
of a hub gene itself.39 Genes that have increased connectivity
within the network confer greater biological effects, and are in
fact three times more likely to be essential than those with a
limited number of connections.40 However, depending on the
biological scale of the measurement, the positive or negative
association between diseases and hubness remains complex and
controversial due to the heterogeneity of the studies. For
example, the enrichment of hub genes is shown Barabasi et al18

and others for diseases of Mendelian inheritance in
OMIM,41 42 which is attributable to the subset of disease genes
that are also essential.43 Similar results are reproduced in the

current study for traits and diseases of complex inheritance
(figure 3).

To ensure that the enrichment of disease-associated SNP in
hub or bottleneck genes was not due to any of the following
straightforward genetic properties, we confirm that hub or
bottleneck genes were not more likely to be prioritized in SPAN
because of gene length, higher numbers of SNP per gene, and
automatically containing SNP with lower GWAS-ranked p
values (data not shown). Furthermore, we conducted several
studies to address other biological explanations or biases of the
association of PIN topological centrality to complex disease that
may transpire at a higher level, including: LD/haplotype ana-
lysis: hub and bottleneck genes are not found to enrich in long
LD/haplotype blocks; the correlation between node degree and
the recombination rate of a host gene was inconsequential
(spearman correlation r=0.0257, p=0.00345; see supplemen-
tary methods, available online only); gene expression: difference
in gene expression hub/non-hub genes are minimal and not sig-
nificant in two T2D gene expression datasets; and selection bias
(experimental or sociological).

Further analysis of GWAS findings with their function and
protein interactions has shown an excess modularity on a
genome scale. Indeed, by applying this SPAN network analysis to
the entire NHGRI catalog of SNP–trait associations,
and showing a significant enrichment in network centrality
(figure 4), this model is designed to highlight the possible import-
ance of network centrality genes and their interactions in
complex diseases in general. Subsequently, we showed that our
T2D model shows the same enrichment of topological properties
seen for the NHGRI data, further suggesting that this approach
may identify regulatory networks perturbed in complex disease.
Taken together, these results show that protein interaction mod-
eling may prioritize genes that are more biologically essential,
and imply that our method can be extended to examine other
complex diseases that have been investigated by GWAS.

Study limitations
The protein interaction-centric approach of our study targets
intragenic and near-intragenic SNP and, by design, does not
take into account signals that exist in intergenic regions.
Furthermore, the interactions contained within STRING inher-
ently contain their own biases that vary for each type of inter-
action evidence. For example, interactions based on
experimental-derived data may have a sociological selection bias
because the proteins studied are generally those for which there
is great interest (ie, disease associated). In addition, many differ-
ent types of experimental methods utilized for text mining are
based on interaction results, and although they were only
included in STRING V.6.3 in our study, these studies are not
restricted specifically to large-scale studies that were unbiased in
their selection of baits and preys. We also recognize that the
association of centrality genes to disease could possibly be due
to their higher than physiologically normal level of gene expres-
sion; however, we verified that there is no statistical association
between gene expression and T2D hub genes (data not shown).
In addition, a lower range of assayed proteins through high-
throughput methods could confound our analysis through selec-
tion bias.

CONCLUSIONS
Network modeling has the potential to tease out the elusive
aspects of complex disease biology and highlight critical signals
that would otherwise have remained buried in the deluge of
GWAS results. As new methods are required to identify true

Figure 6 Hub and bottleneck genes are enriched in the optimal type
2 diabetes (T2D) genome-wide association studies (GWAS) network.
The optimal SPAN model comprising reprioritized single nucleotide
polymorphisms (SNP) and their corresponding host genes was
determined using the Finland–USA Investigation of
Non-Insulin-Dependent Diabetes Mellitus Genetics and Wellcome Trust
Case Control Consortium GWAS (figure 4A,B, best OR). Reprioritized
T2D-associated SNP are presented in supplementary table S1 (available
online only) and their corresponding 21 host genes are illustrated in
panels A and B as black when annotated as a hub or bottleneck,
respectively. By definition, the entire set of 14 025 proteins (492 087
distinct interactions) in the protein interaction network contains 20%
hubs and 20% bottleneck genes. The optimal T2D network model is
significantly enriched in both hubs and bottlenecks and an empirical
statistic was used to conservatively control for network topology (see
Methods section). Therefore, the observed enrichment is supportive of
an increased topological centrality among host genes of highly ranked
GWAS SNP. OR and p values were calculated using Fisher’s exact test.
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disease-critical genes accurately, additional investment in SPAN
analysis is warranted to generalize further the usage of network
modeling and protein interactions. By exploring the importance
of topological centrality and edgetic perturbation in complex
traits, we have shown the value of network modeling for
increasing our understanding of how proteins and genes interact
and differ under conditions of health and disease. Network
modeling can provide a platform for evaluating the molecular
interactions and the multitude of variations that in combination
lead to complex traits and disease development, and for facili-
tating the integration of multiple scales of biological complexity.
With a predictive model, we demonstrate the utility of protein
interactions to enhance genetic inquiry of complex diseases. For
example, these approaches could contribute to GWAS in priori-
tizing SNP ab initio in a way analogous to that of eQTL.9 In
personal genomics, predictive models of the implications of rare
variants in health are required and cannot by design be validated
in cohorts at the single rare-variant level. Topological properties
of protein networks may, however, provide useful insights for
inferring their functions at the individual patient level. For
instance, first interactors with known T2D genes were demon-
strated to be enriched in conservatively controlled models and
could be utilized to implicate ‘families of nucleotide polymorph-
isms’ across multiple patients to obtain statistical power. This
approach establishes their contribution to disease and thus also
infers the function of rare variants. Finally, conventional therapy
for complex diseases focuses on single targets or well-established
molecular pathways. The knowledge that interactions are not
only important in cancer and single-gene inheritance disease,
but also in other complex diseases, provides an opportunity for
future paradigm-shifting, unbiased network-targeted therapy, in
which proteins and their interactions are modeled more exten-
sively for improved drug development and the earlier identifica-
tion of toxicities that can be overlooked under the current
single-gene paradigm.

In conclusion, the topological centrality of protein interactions
has been well established in two types of genetic inheritance: in
Mendelian inheritance by edgetic perturbation models11 as well
as in somatic mutations of cancer.44 Here, we observe similar
results for 310 complex traits documented in the NHGRI catalog
of SNP–trait associations and show that SNP are significantly
enriched in two key protein interaction properties: hubs and bot-
tlenecks within currently available networks. We also observe
these enrichments in topological findings specifically in the prior-
itized T2D protein interaction networks constrained by
GWAS-identified genetic signals. Taken together, these results
support the hypothesis that hub and bottleneck proteins are also
central in complex trait inheritance that merits further investiga-
tion as larger, more statistically powered and less sociologically
biased sets of genome-wide interactions become available.
Because common diseases comprise a large subclass of complex
traits, the topological architecture of the protein networks asso-
ciated with their inheritable polymorphisms has implications in
genetics, personal genomics, and in therapy.
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