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Abstract: A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs
to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there
is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal
mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and
fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial–mesenchymal
transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate
into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to
understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the
treatment and prevention of PAs.

Keywords: peritoneal adhesions; peritoneal mesothelial cells; mesothelial–mesenchymal transition;
inflammation; fibrosis

1. Introduction

A peritoneal adhesion (PA) is a pathological fibrous band between visceral organs
or between organs and the abdominal wall [1,2]. Surgery, trauma, chronic peritoneal
inflammation, peritoneal dialysis, endometriosis, etc., can induce PA formation [3–7].
However, most PAs are caused by surgery [8–10]. PAs can cause pain, female infertility,
intestinal obstruction, and other problems, and bring difficulties to reoperation [6,11,12].
Presently, there is no effective strategy to prevent and treat PAs. A thin layer of cells called
peritoneal mesothelial cells (PMCs) covers the outside of the peritoneum; these serve as
the primary barrier of the abdominal cavity [13]. PMCs may have a significant role in the
occurrence and progression of PAs [2,14–17]. The aim of this review is to provide a new
perspective on PA prevention and treatment by summarizing the mechanism of PMCs in
PA formation.

2. Characteristics and Functions of PMCs
2.1. Anatomical Features of PMCs

Among the three serous cavities in the human body, the peritoneal cavity is the
largest and most complex [7,18,19]. Usually, the visceral peritoneum covers the vis-
ceral and mesenteric surfaces of the abdomen, and the parietal peritoneum covers the
abdominal wall and the inner surface of the pelvis. The visceral and parietal peri-
toneum surround the peritoneal cavity [19]. The peritoneum is covered by a thin layer
of mesothelial cells [7,20]. Below the mesothelial cells, the basement membrane and
interstitial subcutaneous tissue, including collagen fibers, blood vessels, and fibroblasts,
are found [21,22]. PMCs have apical–basal polarity, intercellular junction complexes, and
apical microvilli [23]; these structures may be the most basic form of PMCs that maintain
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peritoneal integrity. The junction of two or more PMCs forms stomata [6], which lead to
the submesothelial lymphatic system and play a role in fluid transport [24–28].

2.2. Pathophysiological Function of PMCs

The glycocalyx, composed of surfactants, phospholipids, and glycosaminoglycans
distributed on top of the microvilli of PMCs, creates a lubricating environment for visceral
organ activities [20,29,30]. PMCs have epithelial and mesenchymal features and can trans-
form under physiological and pathological conditions [6]. The peritoneum is a naturally
semipermeable membrane under physiological conditions [31–33], but after repeated peri-
toneal dialysis, PMCs undergo mesothelial–mesenchymal transformation (MMT), which
can lead to peritoneal fibrosis [34–37]. In addition, PMCs can capture bacteria, chemical
molecules, and other substances to play a protective barrier role [21]. They can initiate
inflammatory responses by presenting antigens to immune cells. Moreover, they can secrete
cytokines when pathogens invade and when tissues are damaged [18]. PMCs also exhibit
fibrinolytic activity, which can dissolve fibrin and prevent the formation of PAs [38].

3. Key Steps of PA Formation

When the peritoneum is damaged by surgical trauma or infection, or is exposed
to peritoneal dialysis fluid, PMCs may undergo shedding, necrosis, or apoptosis. They
can release damage-associated molecular patterns (DAMPs) or pathogen-associated
molecular patterns that attract other immune cells to aggregate and trigger inflammation
resulting in coagulation reactions, which increase the local vascular permeability of
the peritoneum. Fibrin is also released from blood vessels with immune cells at the
injured site to cover the wound [39]. However, if the fibrin fails to dissolve in time
during wound healing, fibroblasts will attach to the fibrin and produce collagen to form
adhesive fibrotic tissue. Finally, PMCs cover the surface of the formed adhesive fibrotic
tissue to complete pathological repair [40], leading to permanent PA formation [11]. The
formation process of PAs is similar to the healing process of normal tissues; however,
the production and dissolution of fibrin in the normal healing process are balanced. It
is the excessive deposition of fibrin that leads to the final PA formation [11]. Finding
the initiating factors of the inflammatory response and fibrin deposition is crucial, as
this may be beneficial in controlling the formation of PAs at the source. To sum up,
the formation of PAs may be a result of the overall effects of the inflammatory response,
coagulation, fibrin deposition and extracellular matrix (ECM) generation [41]. Although
immune cells such as neutrophils [42,43], macrophages [40,44,45], mast cells [46], and T
lymphocytes [47,48] are also involved, damage to PMCs and the exposure of the basement
membrane are necessary for these cells to promote PA formation [49]. As such, the role of
PMCs in PAs appears to be essential.

4. The Mechanism of PMCs in Promoting PAs
4.1. Damage to PMCs Initiates PA Formation

Smooth and intact PMCs can prevent the formation of PAs; in contrast, damaged PMCs
or the shedding of PMCs may be the basis for the initiation of PAs (Figure 1A) [2,17,20].
A mouse model of PAs, induced by ligation or rubbing, suggested that PMCs with high
mesothelin expression after injury may induce genes that regulate cell differentiation and
proliferation, allowing PMCs to break away from the basement membrane and enter the
peritoneal cavity to initiate PAs. This could be reduced by the use of anti-mesothelin
antibodies [2]. After injury or activation, PMCs can remodel the ECM or directly invade
the basement membrane by producing matrix metallopeptidase 2/9 (MMP-2/9) and by
degrading type IV collagen [50], which may be one of the mechanisms by which PMCs
enter the peritoneal cavity to induce early PA formation. Further studies have found that
after PMCs are damaged, membrane protrusions and membrane fusion occur at the surface
of damaged cells with the mediation of calcium ions. Concurrently, damaged PMCs release
signals to adjacent normal cells, resulting in the transmission of damaged cell phenotypes
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and behaviors to normal cells and triggering initial PA formation [17,51]. Proliferation and
scarring of PMCs subsequently occur [17]. In addition, another study has shown that fibrin
is deposited at the shedding site of PMCs shortly after injury, followed by the aggregation
of macrophages [39], possibly promoting inflammation (Figure 1A), which suggests that
the loss of PMCs also provides an attachment point for early PAs. The above evidence
indicates that the destruction of the integrity of PMCs is the initial inducement of PAs. The
morphological changes and cell surface markers of PMCs in the pathological environment
not only show the beginning of PA formation, but also provide attachment points for fibrin
to promote PAs. Preventing the early destruction of PMCs and promoting the regeneration
of PMCs in a timely manner may be an effective method to prevent the occurrence and
progression of PAs.
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Figure 1. (A) Early stage of peritoneal adhesion (PA) formation: peritoneal mesothelial cells (PMCs)
undergo shedding, necrosis, and phenotypic changes, form membrane protrusions, and fuse with each
other to form early adhesions in the stimulated environment. (B) Intermediate stage of PA formation:
PMCs initiate inflammatory responses by secreting inflammatory factors, adhesion molecules, and
pro-fibrotic factors. Moreover, they are affected by the inflammatory environment, which stimulates
them to further exacerbate the inflammatory process. At the same time, the fibrinolytic system is
dysfunctional, causing excessive deposition of fibrin. (C) Late stage of PA formation: PMCs undergo
mesothelial–mesenchymal transition (MMT) to form myofibroblasts. (D) Late stage of PA formation:
myofibroblasts secrete a large amount of extracellular matrix to finally form a PA.

Most PAs are caused by surgical trauma; however, other factors cannot be ignored,
such as inflammation, bleeding, and peritoneal dialysis. The effect of peritoneal dialysis
on PMCs may not only be mechanical damage to peritoneal catheters but also chronic
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stimulation of PMCs by high-sugar, acidic substances in peritoneal dialysis [52], and
finally may even lead to the overall exfoliation of PMCs, aggravating the subsequent
fibrotic process.

4.2. Dysfunction of PMCs Leads to Excessive Fibrin Deposition

To maintain the balance of the fibrinolytic system and prevent PAs under physiological
conditions, PMCs can produce activating and inhibiting molecules of the fibrinolytic system,
such as tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator,
plasminogen activator inhibitor-1 (PAI-1), type 2 plasminogen activator inhibitor, and
plasmin [1,38]. After the peritoneal membrane is damaged, a coagulation reaction begins.
The aggregation of platelets at the site of vascular injury causes the cross-linking of fibrin,
and with the enhancement of fibrinolytic activity, PMCs release fibrinolytic media and
activate plasmin to promote fibrin dissolution, thereby promoting wound healing. After
PMCs are damaged, the function of the fibrinolytic system is disrupted, and the decrease
in plasminogen activation leads to insufficient production of plasmin, thereby reducing
fibrinolysis and leading to PAs (Figure 1B). After surgical injury, an increase in PAI-1 levels
is accompanied by a decrease in t-PA levels, and the imbalance between the two leads to
fibrin deposition [53]. In addition, PAI-1 can bind to t-PA and become a chemokine by
attracting macrophages to the PA site. Macrophages further enhance the secretion of PAI-1
by upregulating the receptor HER1 on PMCs, thus intensifying the deposition of fibrin
at the adhesion site. The inhibition of PAI-1 promotes fibrinolysis and also prevents the
recruitment of macrophages [54]. Further studies have found that adipose mesenchymal
stem cell-derived extracellular vesicles, composed of a variety of proteins, DNA, mRNAs,
and miRNAs [55–57], can alleviate PAs by promoting the healing of PMCs, making them
secrete more t-PA and reducing the production of PAI-1 [58]. The above evidence suggests
that the dysfunction of PMCs leads to excessive deposition of fibrin, while the recovery
of the functions of PMCs helps to maintain the balance of the fibrinolytic system, thus
promoting wound healing and reducing PAs.

4.3. PMCs Regulate the Inflammatory Process of PA Formation

PA formation is accompanied by the occurrence and development of an inflammatory
reaction. PMCs induce inflammation by producing inflammatory molecules, adhesion
molecules, and pro-fibrotic factors to accelerate the formation of PAs (Figure 1B) [38,42,59].
The synthesis and release of hyaluronic acid (HA) may be a mechanism by which PMCs
regulate inflammation. Evidence indicates that HA released by PMCs in the peritonitis
inflammatory environment can sequester free radicals and initiate repair programs [38].
HA is modified at the injury site to form DAMPs, which can bind to pattern recognition
receptors on inflammatory cells to induce inflammatory responses [3,38]. Furthermore,
small HA oligomers can promote the expression levels of transforming growth factor-β
(TGF-β) and tumor necrosis factor α (TNF-α) leading to the impairment of cellular repair
and an increase in inflammation [50]. PMCs can also recruit inflammatory cells. Damaged
PMCs can directly attract neutrophils and monocytes to the injury site by upregulating
C-X-C motif ligand 1 (CXCL1), monocyte chemoattractant protein 1 (MCP-1), and other
chemokines in the early stage of PAs, causing inflammation [42]. The pro-inflammatory
effect of PMCs was also confirmed in a study where PMCs were damaged owing to high
glucose. Chu et al. reported that PMCs under high glucose conditions activate the MAPK
pathway by the autocrine high mobility group box 1 (HMGB1) to stimulate the excretion
of MCP-1 and interleukin-8 (IL-8), thereby amplifying the inflammatory response [60].
In conclusion, PMCs may initiate the inflammatory response by releasing chemokines
and recruiting other inflammatory cells to amplify the inflammatory response, thereby
accelerating the formation of PAs.

PMCs may also be affected by the inflammatory environment and further promote
the inflammatory response (Figure 1B) [59]. Terri et al. found that under the action of
cytokines, PMCs recruited leukocytes by upregulating surface adhesion molecules such as
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ICAM-1 and VCAM1 [61]. There is evidence that fibrin can induce PMCs to express IL-1β,
IL-6, TNF-α, and vascular endothelial growth factor-A (VEGF-A) to promote peritoneal
inflammation and PAs [59]. After surgical trauma, the expression level of IL-22 receptors
on the surface of PMCs increases. Upon binding with IL-22 secreted by immune cells, PA
formation is promoted. Moreover, the expression of the IL-22 receptor is upregulated after
stimulation of PMCs with interferon-γ (IFN-γ) [62]. Under inflammatory conditions, the
expression of protein kinase Cα in PMCs increases and mediates the release of inflam-
matory mediators from PMCs, promoting peritoneal angiogenesis and fibrosis [63]. The
effect of inflammation on PMCs has also been explored in long-term peritoneal dialysis
and peritoneal dialysis-associated peritonitis. Some studies have found that inflammatory
factors and fibrotic mediators such as TGF-β1 and interleukin-1β can reduce the secre-
tion of decorin by PMCs by increasing the activation of the p38 MAPK and AKT/PI3K
pathways, resulting in an excessive deposition of fibronectin secreted by PMCs, causing
fibrosis [64]. In addition, mesenteric MSCs can transdifferentiate into macrophages under
an inflammatory environment, producing pro-inflammatory factors such as TNF-α [65] and
IL-6 [66]. The above evidence suggests that under an inflammatory environment, PMCs
can promote the inflammatory response and accelerate the formation of PAs by releasing
inflammatory mediators, producing chemokines, and upregulating surface receptors and
transdifferentiation pathways.

During PA formation, the production of inflammatory mediators regulates the ECM [43].
CXCL1 may be an important pro-angiogenic agent [67]. Catar et al. showed that CXCL1
secreted by PMCs directly promotes human microvascular endothelial tube formation [67],
and VEGF accelerates the PA process by participating in angiogenesis [68,69]. CXCL1 can
also upregulate the expression of PAI-1 and promote fibrin deposition [3]. CXCL2 and IL-6
produced by PMCs can recruit and activate neutrophils. IL-6 can promote neutrophils to
secrete TNF-α, which in turn stimulates neutrophils and macrophages to produce more
TNF-α [43]. In addition, IL-6 induces peritoneal inflammation and fibrosis through a
STAT3-dependent pathway; the inhibition of IL-6 can alleviate fibrosis [70]. IL-22 promotes
PA formation by stimulating PMCs to release more PAI-1 and by inhibiting the production
of t-PA to allow the excessive deposition of fibrin [62].

Although both surgery and peritoneal dialysis can damage PMCs and cause inflam-
mation, there are distinct differences between the two. Intestinal bacteria can move into
the peritoneal cavity after surgery, exacerbating the inflammatory response at the surgical
site and stimulating the formation of PAs [71]. Inflammation is persistent and acute and
may be amplified continuously throughout the progression of surgically-induced PAs. The
persistence of the inflammation may be related to the surgical injury itself, as studies have
shown that surgical injury causes excessive aggregation and dysfunction of macrophages
in the peritoneal cavity [40]. On the other hand, the deposition of fibrinolysis is impeded,
attracting inflammatory cells to aggregate, amplifying the inflammatory response, and
accelerating the formation of PAs.

In conclusion, PMCs can secrete stimulatory and inhibitory molecules of the plasmino-
gen activation system, inflammatory cytokines, and ECM proteins to participate in the
inflammatory response after injury [72]. Moreover, they are involved in a positive feedback
loop, whereby they are regulated by the inflammatory environment and themselves further
amplify the inflammatory response.

4.4. PMCs Develop MMT and Promote Peritoneal Fibrosis

PMCs can participate in fibrosis by secreting ECM components and promoting PA
formation through the MMT process (Figure 1C). Activated PMCs are able to produce large
amounts of fibronectin and collagen and promote tissue remodeling by re-expressing con-
tractile proteins. They can also produce matrix metalloproteinases, such as MMP-2, MMP-9,
and MMP-14, and matrix metalloproteinase inhibitors, such as matrix metalloproteinase
inhibitor 1 and PAI-1, to affect fibrosis [73–75]. MMT is an important participant in many fi-
brosis events, such as idiopathic pulmonary fibrosis [76], liver fibrosis [77], and myocardial
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infarction scarring [78,79]. MMT was first noticed in peritoneal dialysis and is thought to be
the basis for peritoneal thickening and fibrosis [37], followed by the discovery of MMT in
PAs [80]. The important aspect of MMT in PMCs is their transdifferentiation, where PMCs
are transformed from the epithelial cell phenotype to the mesenchymal phenotype [31,81].
This transformation is manifested by the loss of the apical–basolateral polarity of PMCs
and E-cadherin expression, as well as overexpression of α-smooth muscle actin (α-SMA)
and vimentin. The PMCs eventually transform into fibroblast-like cells with enhanced
migratory ability and production of ECM to promote PA formation [30,33,82].

Myofibroblasts have a strong ability to synthesize and secrete ECM and contribute
to the development of PAs (Figure 1D). The occurrence of MMT in PMCs may be a direct
source of myofibroblasts [83–86]. Sandoval et al. demonstrated for the first time that
myofibroblasts in PAs are derived from the MMT of PMCs and emphasized that MMT
contributes to the development of pathologic PAs [80]. PMCs are transformed into my-
ofibroblasts and participate in PA formation driven by epithelial growth factor receptors
through a genetic lineage tracing system [83]. Cells present at the end of PAs express
platelet-derived growth factor receptor alpha (PDGFRα), indicating that these cells have
fibroblast properties. Further studies have shown that most of the myofibroblasts express-
ing PDGFRα are derived from PMCs [17]. Uyama et al. also found that the proliferation
of PMC-derived myofibroblasts promotes PA formation [43]. The above findings confirm
that PMCs undergo MMT transdifferentiation into myofibroblasts and are involved in
promoting fibrosis and PA formation.

The TGF-β superfamily may be indispensable in PMC-induced fibrosis and the PA
formation process [61,87,88]. First, there are many sources of TGF-β in the process of fibrosis.
In mouse models of cecum cauterization-induced PAs, neutrophils and myofibroblasts
are able to produce TGF-β1 [43]. Additionally, inflammatory factors, such as IL-1β, can
promote the release of TGF-β [89]. TGF-β1 is a powerful cytokine that can activate the
classical Smad signaling and Smad-independent signaling pathways, such as the MAPK
pathway and the small GTPase, RhoA, involved in MMT [90]. TGF-β1 receptor inhibitors
can effectively attenuate the MMT of PMCs induced by the TGF-β1 signaling pathway [91].
TGF-β1 can also promote fibrosis and PA formation by upregulating PAI-1 and inducing
collagen production [3].

In addition, the Wnt/β-catenin signaling pathway is involved in the MMT of
PMCs [92–95]. The Wnt/β-catenin signaling pathway is upregulated in peritoneal
dialysate-induced peritoneal fibrosis; the MMT process is blocked by the use of recombi-
nant human Dickkopf-related protein 1, an inhibitor of the Wnt/β-catenin pathway [32].
The PI3K/AKT pathway also plays a role in MMT. Wang et al. found that AKT is
overactivated during MMT [96], and the expression levels of p-AKT and α-SMA in
PMCs are significantly inhibited after intervention with the PI3K/AKT pathway blocker
wortmannin [97]. RhoA/Rho kinase signaling plays a promoting role in advanced gly-
cation end product-induced MMT in PMCs [98]. These pathways cooperate with the
TGF-β1 signaling pathway to improve fibrosis [90].

Oxidative stress may also be an integral part of the occurrence of MMT in PMCs [99–102].
Mitochondrial-generated reactive oxygen species (ROS) may contribute to the early stages of
peritoneal injury under high glucose conditions, and astaxanthin may prevent MMT through
its antioxidant and anti-inflammatory effects [103]. In addition, it was found that mitochon-
drial damage of PMCs in peritoneal dialysis patients leads to an increase in mitochondrial
reactive oxygen species (mtROS), which in turn promotes MMT [104]. Moreover, TGF-β1
increases mtROS, which triggers an inflammatory response, changes the phenotype of PMCs,
and leads to fibrosis [105–108].

Although both surgery and peritoneal dialysis promote MMT and fibrosis, there are
differences in the mechanisms of occurrence. Biomechanical signaling may play a small
role in MMT in peritoneal dialysis and play a major role in acute abdominal trauma [73],
suggesting that mechanical damage caused by dialysis tubes and peritoneal dialysis may
not be as toxic as with dialysis fluid. Further studies have also provided evidence to support
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this claim, such as acidic substances in peritoneal dialysis fluid and high concentrations
of glucose stimulating the activation of peritoneal renin angiotensin, leading to fibrosis in
peritoneal dialysis patients and angiotensin receptor blockers preventing the progression
of peritoneal fibrosis and PAs [109]. In summary, although the mechanical stimulation of
the formation of dialysis tubes and dialysate in peritoneal dialysis is involved in MMT and
fibrosis, their contribution may be inferior to the cytotoxicity of the peritoneal dialysate
itself. The mechanical stimulation brought by surgery mainly leads to the MMT and fibrosis
of PAs.

5. Prevention and Treatment Strategies for PAs from the Perspective of PMCs
5.1. Protection and Reconstitution of PMCs

Noncoding RNAs participate in gene transcription and their intervention with related
molecules may play an integral role in protecting PMCs. In a model of lipopolysaccharide-
induced PA formation, it was found that large intergenic noncoding RNA cyclooxygenase-2
(COX-2) was highly expressed in PA tissues. After inhibiting COX-2, the lipopolysaccharide-
induced damage of PMCs was alleviated, and the release of inflammatory factors was
reduced. Further studies found that through TLR4/MyD88/NF-κB signaling, COX-2
negatively regulates the injury of PMCs induced by miR-21 [110].

In addition, alanyl glutamine may play a role in protecting PMCs. Glutamine-
containing peritoneal dialysate can improve the resistance of PMCs to low-biocompatible
peritoneal dialysate and reduce the formation of peritoneal fibrosis [111,112]. Acetylation
of HMGB1 in peritoneal dialysis-associated peritonitis may promote PMC apoptosis, and
this process is mediated by JNK1 [113]. Therefore, JNK inhibitors may protect PMCs. There
is also evidence that general control nonderepressible-2 kinase protects PMCs by reducing
the toxicity caused by high glucose to PMCs and inhibits MMT [35].

Mesenchymal stem cells and autologous peritoneal grafts can also promote the recon-
stitution of PMCs and protect the mesothelial barrier. Studies have found that adipose
mesenchymal stem cell-derived extracellular vesicles can promote the proliferation and
migration of PMCs, accelerate wound healing, and prevent PAs [58]. In addition, rat
bone marrow mesenchymal stem cells were found to reduce inflammation and fibrosis by
repairing PMCs [114]. Autologous fat transplantation has an immunomodulatory effect
and can be used to treat hypertrophic scars and prevent PA formation [41]. There is strong
evidence that fat transplantation prevents the occurrence of PAs by promoting the rapid
regeneration of damaged PMCs. Autologous fat transplantation was also found in rat
models of cecal wall and peritoneal injury to promote mesothelial healing and reduce
PA formation in rats [115]. Autologous peritoneal grafts including PMCs can prevent PA
formation by promoting the formation of a healthy peritoneum and mesothelial remodeling
of the lesion [116]. The above evidence shows that both mesenchymal stem cells and
autologous peritoneal grafts can effectively promote the regeneration of PMCs and play
a role in preventing PA formation. Moreover, mesenchymal stem cells and autologous
grafts have the advantages of easy access and low immune rejection [41,115,116]. Therefore,
mesenchymal stem cells and autologous peritoneal grafts may be the most promising
approaches in reducing PA formation by promoting the regeneration of PMCs.

In addition, in vitro-cultured autologous peritoneal PMCs and their ECM scaffolds are
feasible options for implantation into an injured peritoneum for repair. Some studies have
implanted a designed gelatin-based macroporous flexible cryogel scaffold and scaffold-
cultured PMCs into the defective peritoneum. With the complete degradation of the
scaffold, the implanted functional PMCs successfully repaired the damaged PMCs [117].
In addition, some groups found that PMCs in peritoneal grafts obtained from sheaths
were able to repair the damaged peritoneum. Moreover, further studies found that PMCs
need to be located on ECM-containing scaffolds to repair the peritoneum and prevent
PA formation [116]. Therefore, the transplantation of PMCs alone cannot prevent the
occurrence of PAs, suggesting that suitable stents should be selected when formulating the
strategy of transplantation of PMCs for the prevention of PAs.
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5.2. Preventing MMT in PMCs

As mentioned earlier, MMT is an important player in many fibrosis events. In recent
years, MMT has been shown to be involved in the development of tumors, related to tumor
progression [118–121]. Therefore, disease treatment by inhibiting relevant molecules that
promote MMT progression has great value.

The use of specific antagonists may have important preventive effects on MMT, such
as TGF-β1 antagonists or specific antibodies that block the transdifferentiation of PMCs.
The peptide inhibitor P144 of TGF-β1 has been shown to interfere with PA-related MMT
and fibrosis in a Smad-dependent manner [80]. The use of anti-mesothelin antibodies in
ischemic button mouse models has been shown to effectively reduce PAs by depleting
PMCs of adhesion phenotypes [2]. Specific antibodies are highly targeted and have the
potential to kill myofibroblasts and prevent early PAs from forming. Therefore, therapies
based on specific antibodies to prevent PAs should also be valued by relevant researchers.

Noncoding RNAs may act in the MMT of PMCs, and their functional regulation can
help prevent MMT and alleviate fibrosis and PAs. Using a rat model of peritoneal dialysis,
miR-200a was found to target the zinc finger E-box-binding homeobox 1/2 (ZEB1/2) in
PMCs to negatively regulate TGF-β1-induced MMT and fibrosis [122]. Another study found
that miR-200c could prevent TGFβ1-induced MMT and fibrosis by directly targeting ZEB2
and Notch1 [21]. There are other reports that microRNAs can modulate TGF-β1-induced
MMT [123–126]. The above evidence indicates that some noncoding RNAs may engage
in the MMT of PMCs, and intervention at the transcriptional level can effectively prevent
MMT and fibrosis.

Some chemicals may also reverse the MMT of PMCs, which is beneficial for preventing
peritoneal fibrosis and PA formation. There is evidence that zinc can inhibit the MMT of
high glucose-induced PMCs by stimulating the Nrf2 antioxidant pathway and reducing
oxidative stress [127]. In addition, hydrogen sulfide can inhibit the high glucose-induced
MMT of PMCs through its anti-inflammatory property and by inhibiting TGF-β1-Smad3
signaling pathways [128].

5.3. Application of PA-resistant Biomaterials

Currently, the complications of postoperative adhesions pose a hazard to patients, and
more and more research is devoted to the development of biobarrier materials, including
films, solutions, and hydrogels, for preventing adhesions [129]. There are currently five
materials considered biocompatible and have the advantage of inhibiting PAs. However,
using these materials against PAs poses a risk. The first material is found in humans, such
as HA and gelatin, and may promote PAs by promoting the proliferation of fibroblasts; the
second is starch, cellulose, and other natural molecules that cannot be obtained from the
human body, which may cause inflammation and aggravate PAs; the third is synthetic poly-
mers that degrade into small molecules, and acidic substances produced by the metabolism
of these polymers may also aggravate PAs; the fourth is polymers, such as polyethylene
glycol and polyvinyl alcohol, which have anti-specific protein adsorption properties but
are not metabolic and degradable. Finally, inert synthetic polymers with high chemical
stability, such as PTFE, may lead to the promotion of the adsorption of collagen on its
surface during persistent inflammation [11]. As a result, these barrier materials reduce the
incidence of PAs to some extent, but their limitations may reduce their clinical application.
The prevention and treatment of PAs through anti-MMT therapy may have advantages.

Firstly, MMT is a pathological mechanism involved in many diseases. Therefore, block-
ing the MMT of PMCs may not only help prevent PAs but may also treat other concomitant
diseases. Second, there are many ways to block MMT, such as using TGF-β1 antagonists
to block relevant MMT pathways, designing protocols to intervene in noncoding RNAs,
or using drugs to target transdifferentiated PMCs. These protocols do not have surgical
area restrictions and toxic side effects. When using a physical barrier to block PAs, the
placement of the film may be affected by complex surgical sites [130], or the barrier material
may be separated from the surgical site due to weak adhesion force [131].



Biomolecules 2022, 12, 1498 9 of 15

In summary, the therapeutic strategy based on blocking the MMT of PMCs has great
research value. This strategy can fundamentally block the progress of PAs; however,
some myofibroblasts do not originate from the MMT of PMCs [132], so the promotion
of this strategy may need further exploration. Although biological barrier materials may
not be able to be applied in some patients due to immune rejection and other issues, the
current development of more suitable liquid or solid barrier materials is ongoing, and many
developed materials have also shown great potential, such as albumin-based hydrogels
with dynamic and spatial control [133], and bio-targeted photolinkable nanosheets [8].
Considering that barrier materials can carry drugs to the wound site, future studies can
combine drugs that block the MMT process of PMCs and barrier materials to maximize the
potential of both strategies and avoid the formation of PAs induced by other mechanisms.

6. Summary and Prospects

In conclusion, PMCs may play a central role in causing PAs. PMCs promote PA
formation by promoting fibrin deposition and participating in inflammatory responses and
fibrosis. These PA mechanisms work synergistically with each other. For example, fibrin
deposition promotes inflammation and fibrosis. Nonactivated plasminogen can bind to the
receptors on PMCs to promote the ability of PMCs to break through the collagen barrier of
the basal layer and promote wound healing and tissue remodeling [72], suggesting that the
process of fibrin deposition may affect fibrosis. Fibrin deposition also provides attachment
points for myofibroblasts to accumulate, thereby accelerating fibrosis. Another study found
that the increase in the amount of fibrin was associated with more inflammatory cells
and fibroblast aggregation [134]. In addition, a large number of inflammatory factors and
pro-fibrotic factors released during the inflammatory process aggravate the fibrosis process.
Owing to the multi-faceted effects of PMCs on PAs, it is important to develop preventive
strategies against PMCs. Currently, research is focused on the protection of PMCs, the
promotion of PMC reconstruction, and the prevention of the MMT of PMCs. Mesenchymal
stem cells and autologous peritoneal grafts may have major advantages in this regard due
to their abundant sources and low immune rejection [41,115,116].

To date, there have been many studies on the MMT of PMCs. Numerous studies have
demonstrated that PMCs can directly participate in the formation of PAs by producing
myofibroblasts through MMT. Myofibroblasts have a strong ability to produce ECM and
collagen, which eventually leads to the formation of permanent PAs. However, PAs are
formed primarily by tissue-resident progenitor fibroblasts [132]; therefore, the main cells
that promote PA formation need to be further studied. In terms of the prevention and treat-
ment of PAs, the current strategies are relatively simple, such as inhibiting inflammation
and preventing the MMT of PMCs. However, these strategies may have limited effects.
Therefore, it is necessary to further explore strategies and measures to prevent and treat
PAs through multiple approaches.

PMCs participate in the occurrence and development of PAs through various mecha-
nisms, all of which involve the release of cytokines and pro-fibrotic mediators. Molecular
intervention can most effectively prevent the formation of PAs, without interfering with
the normal function of cells [43,62]. This suggests that studies on the molecular mecha-
nisms involved in PA formation should be strengthened in the future to formulate the best
prevention and treatment strategies for PAs.
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