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Abstract: Region proposal network (RPN) based trackers employ the classification and regression
block to generate the proposals, the proposal that contains the highest similarity score is formulated
to be the groundtruth candidate of next frame. However, region proposal network based trackers
cannot make the best of the features from different convolutional layers, and the original loss function
cannot alleviate the data imbalance issue of the training procedure. We propose the Spatial Cascaded
Transformed RPN to combine the RPN and STN (spatial transformer network) together, in order to
successfully obtain the proposals of high quality, which can simultaneously improves the robustness.
The STN can transfer the spatial transformed features though different stages, which extends the
spatial representation capability of such networks handling complex scenarios such as scale variation
and affine transformation. We break the restriction though an easy samples penalization loss
(shrinkage loss) instead of smooth L1 function. Moreover, we perform the multi-cue proposals
re-ranking to guarantee the accuracy of the proposed tracker. We extensively prove the effectiveness
of our proposed method on the ablation studies of the tracking datasets, which include OTB-2015
(Object Tracking Benchmark 2015), VOT-2018 (Visual Object Tracking 2018), LaSOT (Large Scale
Single Object Tracking), TrackingNet (A Large-Scale Dataset and Benchmark for Object Tracking in
the Wild) and UAV123 (UAV Tracking Dataset).

Keywords: visual tracking; spatial cascaded networks; shrinkage loss; multi-cue proposals re-ranking;
region proposals networks

1. Introduction

Visual tracking has drawn constant attention of the researchers and engineers over last decades.
Some novel applications are also inspired by the improvement of related research, such as auto-track by
drone [1], pose recognition by mobile payment [2], and remote control by space robot [3]. Although the
researchers are making much progress persistently, it is still a vital problem to achieve a tracking
procedure that simultaneously balances the accuracy, robustness, and tracking speed under complex
scenarios, such as occlusion, illumination change, and scale variation, to name a few [4].

Much progress [5] has made by the combined region proposal networks (RPN) and Siamese
networks recently [6]. Some of the trackers treat the tracking problems as the generation of the
similarity response map, which could distinguish the differences between the target templates and the
search candidates. The position candidates where reach the highest similarity score is performed as
the new target groundtruth. SiamRPN [7] combines Siamese networks and region proposal networks
in order to jointly perform classification and regression for tracking. The DaSiamRPN [8] comes up
with the distractor-aware module to distinguish hard negatives from easy ones, which could improve
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the discriminating power of such model. The other methods formulate the tracking problems as
tracking-by-detection problems, which firstly generate the proposals from the search area, then calculate
the classification score between proposal candidates and template target. The SiamRPN++ [9] introduces
a ResNet-driven Siamese tracker, which makes layer-wise and depth-wise aggregations explicit when
modeling network architecture, which can improve the accuracy and reduce the model size at the
same time. The DCFNet [10] further combines the Siamese network with region proposal networks,
and performs the domain specific updating to achieve a light-weight network in end-to-end learning.

There are still a few vital problems have not been settled during the tracking procedure though
the region proposal networks based trackers introduced above have achieved excellent performance
both in accuracy and speed. We notice that most trackers still employ the semantic features though
the networks which cannot ensure the tracking accuracy which is shown in Figure 1. During target
localization, One-stage region proposal network [11] proposes to perform a single regressor depends
on pre-defined anchor boxes, while it is still difficult to estimate the changing scale of target [12].
The RPN-based trackers applies the log loss function as classification loss function which cannot
effectively reduce the easy samples though training stage. Since the proposals generated by the
proposed networks need to be strictly screened, the more effective proposals re-ranking method need
to be proposed.
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Figure 1. Comparison with the target groundtruth, SiamRPN and Spatial Cascaded Transformed
Region Proposal Network (SCTRPN) on two sequences: It performs that the comparison between two
different region proposal networks (RPN)-based methods in UAV123 dataset. The deep convolutional
features can only be extracted to obtain the semantic information, it may easily drift away when
suffering from the similar distractors and heavy occlusions.

To overcome the restriction, we introduce a simple spatial cascaded strategy to apply the different
hierarchical features from convolutional layers. By analyzing the feature transfer function of the spatial
transformer networks (SPN), we successfully perform it as feature extraction model. The localization
network of STN can obtain the position of target in image frame accurately, which helps us to solve the
spatial transformation problems when suffering from heavy scale change and rotation. Benefiting from
the shrinkage loss, we could penalize the weights of easy samples to alleviate the data imbalance issue.
Considering the redundancy of the proposals, we find that multi-cue such as shape, color, and scale
can be applied to refine the high-quality proposals that can not only improve the tracking performance
in complex scenarios, but also reduce the computational effort. We name our proposed method as
SCTRPN (Spatial Cascaded Transformed Region Proposal Network).

To summarize, the main contributions of this work are threefold and are listed below:

1. We present the spatial cascaded region proposals networks that combine region proposal
networks and spatial transformer networks. In this circumstance, the deep and shallow layers’ features
can be extracted to represent the appearance and semantic characteristic of a certain target.

2. We propose to employ the shrinkage loss to penalize the weighting coefficient of easy
samples during the training procedure of the proposed networks to successfully reduce the samples
imbalance issue.

3. We provide the multi-cue proposals re-ranking method for the tracking frameworks, which helps
to refine the high quality proposals from the candidates.
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The rest of the paper is organized as follows: in Section 2, we illustrate the related research
work of our proposed method. In Section 3, we describe the proposed tracking framework in
details, including network structure, feature extraction model, loss function design, and a proposals
ranking strategy. In Section 4, we perform the numerous experimental results on the tracking dataset.
In Section 5, we summarize the conclusions drawn from our proposed method.

2. Related Work

Visual tracking based on deep convolutional networks have shown significant potentials in recent
decades. In the following section, we discuss the most relevant work, and refer readers to [13,14] for
recent surveys.

2.1. Deep Tracking

At their very beginning, deep neural networks were introduced to deal with the image recognition
problem [15]. Inspired by its successes, researchers are paying more attention to the application of
CNN frameworks in visual tracking. Wang et al. [16] proposed to employ the fully convolutional
network to accomplish a tracking procedure with an improved accuracy of estimated bounding box.
Danelljan et al. [17] proposed a continuous convolution operator to combine the discrete features
with the deep features, and achieve the efficient integration of deep feature maps by training spatial
continuous convolution filters. Danelljan et al. [18] also proposed a factorized convolution operation
to obtain an efficient convolution operator (ECO) for visual tracking, in order to prevent the low
efficiency caused by the convolutional neural network. Song et al. [19] performed different kinds of
adversarial networks to generate variable samples, which helped to identify richer representation
for tracking. Fiaz et al. [20] proposed a soft mask feature fusion mechanism, which can be easily
integrated into the conventional Siamese tracking framework to enhance the discriminative capability
when distinguish the target from the background. Gordon et al. [21] introduced the real-time recurrent
regression networks to combine the multiple appearance features and motion information together,
then perform the spatial-temporal fusion to accomplish a tracking network that increases the precision
of the tracking results. Guo et al. [22] proposed an effective online update mechanism using the
dynamic Siamese matching strategy, and the FFT (Fast Fourier Transform) acceleration can ensure the
real-time processing.

2.2. Tracking through Region Proposal Networks

Region proposal networks (RPN) draw much attention as an effective approach when faced
with target detection problems. They also have increasing potential for visual tracking for its object
classification and bounding box regression function. [23].

As far as we known, Li et al. [7] first interpolated the region proposal network to the Siamese
network, and obtained the one-stage Siamese-RPN tracker to gain tracking performance. Zhu et al. [8]
introduced the utilization of much more negative samples to train a distractor-aware Siamese-RPN
tracker. Despite the fact that the distractor-aware tracker has achieved a significant improvement,
it requires large extra training data from other computer vision datasets.

2.3. Tracking though Multiple Features Fusion

The multi-layer features strategy had made outstanding progress through the visual tracking
procedure. The features from shallow layers contains more spatial information [24]. On the other hand,
the deep layer features represent more semantic cues. Benefitting from the multi-features, tracking can
perform the balanced spatial accuracy and robustness. In order to learn multiple correlation filters,
Ma et al. [25] extracted the hierarchical convolutional features from three different layers of both deep
and shallow networks. Wang et al. [16] proposed to employ two regression models, which contain the
features from hierarchical convolutional layers to distinguish similar distractors.
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2.4. Loss Function Variation for Data Imbalance

The loss function acts an important role in deep convolutional tracker by solving the data imbalance
problem [26], though little attention had been paid to this kind of issue [27]. So far, the cost-sensitive
loss [28] is proven to be an effective approach when suffering data imbalance. When pre-training the
Siamese networks, Bertinetto et al. [29] proposed to balance the loss of positives and negatives in order
to improve the discriminative ability of the network. Li et al. [30] used a temporal sampling scheme to
balance positive and negative samples to facilitate CNN training.

2.5. Our Approach

In this paper, we introduce the multi-stage spatial cascaded region proposal networks to generate
the high-quality proposals. The baseline of our proposed method is one-stage region proposal network,
which does not take data imbalance problem into consideration. On the contrary, our method proposes
the spatial cascaded frameworks mainly to address the problem and filter the easy samples. We also
introduce spatial transformer networks (STN) to perform the feature extraction and transfer procedure,
which helps to improve the spatial transformer robustness. The shrinkage loss is also utilized to
constrain the weights of easy samples during the training procedure. In addition, the multi-cue
proposal re-ranking method is proposed to effectively refine the proposal candidates, improving the
capability of maintaining the hard samples, which can distinguish the target from complex scenario.
We name our proposed method SCTRPN. Figure 2 shows the flow diagram of our proposed method.
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Figure 2. Flow diagram of the proposed tracking algorithm. The improvements which should be
noticed are the feature extraction model, shrinkage classification loss, and proposal re-ranking strategy.

3. Proposed Method

3.1. Spatial Cascaded Region Proposal Networks

3.1.1. One-Stage Region Proposal Network

Before describing SCTRPN, we first represent the one-stage region proposal network [23], including
both classification and regression branches. The anchors are be obtained by the network structure,
which is shown in Figure 3.

For training the one-stage region proposal network, we first assign to each anchor the binary
class label, including the positives and negatives. The positives contain the anchors that has an IoU
(intersection-over-union) overlap higher than 0.7 with any groundtruth bounding box. The negatives
represent the anchors that has an IoU lower than 0.3 with the groundtruth. The positives and negatives
are applied to the training objective.



Sensors 2020, 20, 4810 5 of 20

Sensors 2020, 20, x FOR PEER REVIEW 5 of 20 

 

 
Figure 3. A brief structure of one-stage region proposal network in our networks. The main structure 
of one-stage region proposal network contains two branches, including classification and regression, 
which help the network seizing the proposals for detection or tracking. 

For training the one-stage region proposal network, we first assign to each anchor the binary 
class label, including the positives and negatives. The positives contain the anchors that has an IoU 
(intersection-over-union) overlap higher than 0.7 with any groundtruth bounding box. The negatives 
represent the anchors that has an IoU lower than 0.3 with the groundtruth. The positives and 
negatives are applied to the training objective. 

During the training procedure, we can obtain the classification scores  ip  and the regression 

offsets  it  for each anchor by computing     ,i iL p t . We minimize the loss function based on the 

multi-task loss in Fast R-CNN [31]. Thus, the loss function for one-stage region proposal network is 
defined as, 

        * * *1 1, , , ,i i reg i
i ire

i i cls i i
cl gs

L p t L p p p L t t
N N

    (1) 

where i  represents the index of the anchor, and ip  is the probability of anchor i , which 
represents the object. When the anchor belongs to the positives, the label *

ip  is assigned to 1. The 
anchor is negative if the label is 0. it  represents the 4 coordinates of the predicted bounding box, and 

*
it  is the groundtruth box, which is affiliated with the positive anchor. The classification loss clsL  is 

log loss between the object and non-object. The regression loss is represented by    * *,reg i i iiL t t R t t 

, where R represents the smooth 1L  loss function which is defined in [32]. The term *
ei r gp L  means 

that the regression loss can be activated when *
ip  equals to 1, and is disabled when *

ip  equals to 0. 
The outputs of the cls  and reg layers consist of  ip  and  it  respectively. The one-stage region 
proposal network is illustrated in detail in [20]. It can be employed to obtain the proposals for a visual 
tracker. When obtaining the proposals, we can perform the tracking procedure by calculating the 
maximum similarity score from the proposal candidates and target. However, the proposals that 
were obtained by the one-stage region proposal network usually cannot meet the requirements of 
trackers due to its low recall, which makes the tracker drift from the complex scenarios. 

3.1.2. The Proposed Networks 

The previous RPN-based trackers only employ the high-level semantic features from the last 
layer, which leads to the class imbalance. The phenomenon may result in unpromising performance 
when suffering from similar distractors. Faced with these problems, we introduce the multi-stage 
tracking framework, which is able to combine a set of  L L N  RPNs for the proposals generation. 

Figure 3. A brief structure of one-stage region proposal network in our networks. The main structure
of one-stage region proposal network contains two branches, including classification and regression,
which help the network seizing the proposals for detection or tracking.

During the training procedure, we can obtain the classification scores
{
pi
}

and the regression offsets
{ti} for each anchor by computing L(

{
pi
}
, {ti}). We minimize the loss function based on the multi-task

loss in Fast R-CNN [31]. Thus, the loss function for one-stage region proposal network is defined as,

L(
{
pi
}
, {ti}) =

1
Ncls

∑
i

Lcls
(
pi, p∗i

)
+ λ

1
Nreg

∑
i

p∗i Lreg
(
ti, t∗i

)
, (1)

where i represents the index of the anchor, and pi is the probability of anchor i, which represents the
object. When the anchor belongs to the positives, the label p∗i is assigned to 1. The anchor is negative if
the label is 0. ti represents the 4 coordinates of the predicted bounding box, and t∗i is the groundtruth
box, which is affiliated with the positive anchor. The classification loss Lcls is log loss between the
object and non-object. The regression loss is represented by Lreg

(
ti, t∗i

)
= R

(
ti − t∗i

)
, where R represents

the smooth L1 loss function which is defined in [32]. The term p∗i Lreg means that the regression loss
can be activated when p∗i equals to 1, and is disabled when p∗i equals to 0. The outputs of the cls and
reg layers consist of

{
pi
}

and {ti} respectively. The one-stage region proposal network is illustrated in
detail in [20]. It can be employed to obtain the proposals for a visual tracker. When obtaining the
proposals, we can perform the tracking procedure by calculating the maximum similarity score from
the proposal candidates and target. However, the proposals that were obtained by the one-stage region
proposal network usually cannot meet the requirements of trackers due to its low recall, which makes
the tracker drift from the complex scenarios.

3.1.2. The Proposed Networks

The previous RPN-based trackers only employ the high-level semantic features from the last layer,
which leads to the class imbalance. The phenomenon may result in unpromising performance when
suffering from similar distractors. Faced with these problems, we introduce the multi-stage tracking
framework, which is able to combine a set of L(L ≤ N) RPNs for the proposals generation.

For the lth(1 < l ≤ L) stage RPNl, it receives fused features Φl(x) of the conv-l layer and the
high-level layers from feature extraction model (FEM), instead of features ϕl(x) from a single separate
layer [7]. The Φl(x) are obtained as follows,

Φl(x) = FEM(Φl−1(x),ϕl(x)), (2)
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where denotes the FEM(·, ·), as described in Section 3.2. For RPN1, Φ1(x) = ϕ1(x). We can obtain the
related classification scores

{
pl

i

}
and regression offsets

{
tl
i

}
for the specific anchors in stage l as follows,{

pl
i

}
= Lshr

cls (Φl(x)){
tl
i

}
= Lreg(Φl(x)),

(3)

where Lshr
cls (Φl(x)) classification loss function Lcls (shrinkage loss), which is illustrated in Section 3.3

in detail, and Lreg(Φl(x)) are achieved by accomplishing the convolutional operations on Φl(x).
Assuming that Al represents the anchor set in stage l. The negative anchors Al can be filtered out

by threshold θ according to the classification scores
{
pl

i

}
, we screen the anchors whose confidences

are larger than the pre-defined threshold. We then achieve the positive anchors into a new set of
anchors Al+1. The positives are mainly utilized to train the networks. The initialization of the
regression branch has a great influence on accurate anchor localization. In our method, we obtain the
refined anchors Al+1 by the the regression results

{
tl
i

}
. Compared with the one-stage regression [23,25],

the cascaded structure improved the accurate localization when transferring between different stages,
as illustrated in Figure 4. We can see from Figure 4 that the results achieved by the response map of
deep stage are closer to the center of the tracking target.
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The loss function `RPNl for RPNl is composed of classification loss function Lshr
cls (shrinkage loss)

and regression loss function Lloc (smooth L1 loss), which is shown in Equation (4),

`RPNl

({
pl

i

}
,
{
tl
i

})
=

∑
i

Lshr
cls

(
pl

i, pl∗
i

)
+ ξ

∑
i

pl∗
i Lloc

(
tl
i, tl∗

i

)
, (4)

where i is the anchor index in Al of stage l, ξ is proposed to balance the classification and regression loss.
By default, we set ξ = 1, and thus, both Lshr

cls and Lloc are roughly equally weighted. We show by
experiments that the training results are insensitive to the values of ξ. pl∗

i represents the groundtruth
label of anchor i, and tl∗

i represents the distance between anchor i and groundtruth. Following [23],

tl∗
i =

(
tl∗
i(x), tl∗

i(y), tl∗
i(w)

, tl∗
i(h)

)
is a 4d vector, such that

tl∗
i(x) =

(
x∗ − xl

a

)
/wl

a tl∗
i(y) =

(
y∗ − yl

a

)
/hl

a

tl∗
i(w)

= log
(
w∗/wl

a

)
tl∗
i(h) = log

(
y∗/hl

a

)
,

(5)

where x, y, w, and h represent the center of the tracking bounding box and its width and height,
respectively. x∗ and xl

a are for the groundtruth and anchor of stage l (likewise for y, w and h). As far as
we know, the previous method [7] proposed to utilize fixe anchors in RPN-based tracker. We employ
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the adjustable anchors in SCTRPN, which can change according to the regressor in the previous stage
constantly, and computed as

xl
a = xl

a + wl−1
a tl−1

i(x) yl
a = yl

a + hl−1
a tl−1

i(y)

wl
a = wl−1

a exp
(
tl−1
i(w)

)
hl

a = hl−1
a exp

(
tl−1
i(h)

)
,

(6)

For the anchor in the first stage, x1
a , y1

a , w1
a , and h1

a are predefined.
The proposed cascaded structure of the RPN module is formed above. We perform the easy

negative anchors penalization, to ensure the balanced distribution of training samples gradually.
The cascaded structure makes full use of the multi-level features, which make the classifier more
discriminative in distinguishing intricate distractors in complex scenarios. Figure 4 also shows the
discriminative powers of different RPNs by demonstrating the detection response map at each stage.
The red spot represents the localization that achieve the highest response score.

The loss function `SCTRPN of SCTRPN consists of the loss functions of all RPNl. We compute the
isolated loss function by Equation (4), and `SCTRPN is expresses as

`SCTRPN =
L∑

l=1

`RPNl , (7)

3.2. Feature Extraction Model(FEM) though Spatial Transformer Network (STN)

Inspired by the affine robustness of the spatial transformer network (STN) proposed in [9],
the feature extraction model is built upon a combination with STN. The STN is utilized to calculate the
affine transformed parameters in order to make the classification procedure better. In [9], the STN
helps to change the posture of object to meet the requirement of accurate classification. In our research,
the STN acts as the feature extraction model to transfer the features of different stages to obtain
multi-features. In addition, the original function can also make the features extracted more robust to
target deformation.

The Overview of STN. The STN [32] consists of three essential parts, including localization
network, grid generator and sampler. Given the feature map, we perform the localization network
to estimate the translation, rotation, and scale of certain object. The variables for deformation will
transfer to the grid generator for updated feature map grid generation, and the sampler can utilize
the updated feature map to gain the deformed feature mapping. The deformed feature map can be
transferred to next layer, in order to improve the affine robustness of trained networks. To be noticed,
the STN is independent and can be inserted to any existing networks. The structure of STN in the
existing networks can also be series and parallel. The whole process is differentiable when inserting the
STN into the main networks. We can optimize the localization network, in order to gain the minimum
classification objective though back-propagation directly.

Feature Extraction Model. We obtain multi-level features from the multi-stages RPN structure,
in order to effectively leverage these features, we propose to elect FEM to combine features across layers.
During the combination, the high-level semantic features can be fused to improve the discriminability.
In detail, the STN layer is used to transfer the feature map and match the feature dimensions at the
same time. Different level features are fused by element-wise summation, followed a ReLU layer.
We apply the grid generation model of STN to rescale the fused features, so that the FEM can ensure
the same groundtruth for anchors in each RPN. In the meantime, we obtain the same resolution for
all RPN in the output classification maps and regression maps. Figure 5 shows the feature extraction
model for next layer.
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Figure 5. Flow chart of the feature extraction model though the spatial transformer network (STN).
We employ the STN in order to transfer features to next stage and ensure dimension of
feature simultaneously.

In our experiments, we find it very important to limit the rotation degrees produced by FEM.
Otherwise it is very easy to rotate the object upside down, which is the hardest to recognize in most
cases. We constrain the rotation degree within 10 degrees clockwise and anti-clockwise.

3.3. Learning with Shrinkage Loss

Considering of the classification loss of the SCTRPN, we realize that the surrounding background
contains much contextual information in. We can strengthen the discriminative power of classifier by
utilizing the related wide background. In the meantime, it also brings large number of easy samples
from the background, which cause the data imbalance issue. The easy samples may lead to undesirable
results that generate the large loss. The learning process may pay much attention to the invaluable
samples, which are far from the tracking target.

The research work in [33] found that the modulating factor can be applied to the loss, which can
alleviate the data imbalance issue effectively. We treat the modulating factor as the function of the
output possibility, and its function is to constraint the loss from easy samples.

Inspired by the shrinkage estimator [34] and the cost-sensitive weighting strategy [29], we propose
the modulating factor, which is represented by l to re-weight the loss. We penalize the easy samples
to achieve the hard samples by the optimization process. We compute the modulating function as a
Sigmoid-like function by,

f (l) =
1

1 + exp(a · (c− l))
, (8)

where a and c are hyper-parameters. The parameters are obtain to control the shrinkage speed and
the localization, respectively. We apply the modulating factor to weight the log loss, the proposed
shrinkage loss can be expressed as,

LS =
l

1 + exp(a · (c− l))
, (9)
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The proposed shrinkage loss only penalizes the importance of easy samples (when l < 0.5) and
keeps the loss of hard samples unchanged (when l > 0.5). Instead, we replace the classification loss by
the shrinkage loss Lshr

cls

(
pi, p∗i

)
= − log(pi)p∗i

, which is employed in Equation (4),

Lshr
cls

(
pi, p∗i

)
=

− log(pi)p∗i

1 + exp(a · c) ·
[
(pi)p∗i

]a , (10)

Considering of the implementation details, we set the value of a to be 10, in order to shrink the
weight function quickly. We also set the value of c to be 0.2, so that the localization is suitable for the
distribution of l. We constraint the value of c ranging from 0 to 1. Extensive comparison with the other
losses shows that the proposed shrinkage loss can improve the tracking accuracy and the training
speed at the same time.

3.4. Proposals Ranking Strategy

As we know, the high recall proposals can be generated by the spatial cascaded region proposal
networks, while it may bring any redundancy to the tracking frameworks. For this reason, we present a
multi-cue proposals re-ranking method, to obtain fewer and better proposals with high recall, which can
provide the top tracking candidates for evaluation. The re-ranking method is based on multiple cues
between proposal candidates and groundtruth, which include shape, color, and scale, which is shown
in Figure 2.

Shape. The contours which enclosed by the bounding box ρ can be calculated by the existing
method [35]. Furthermore, we can treat the number of contours enclosed by bounding box as shape
score. Thus, the shape cue value si,t between the i-th proposal candidate and target region τt is
illustrated by,

si,t = e(−|ρi−ρt |), (11)

where ρi and ρt represent the shape score of i-th proposal and the target, respectively.
Color. The color ci,t between the i-th proposal candidate and the target can be computed by

the response map. The mean of all the values of the pixels from the region of the response map
corresponded to the i-th proposal candidate, is computed as the color value between the i-th proposal
candidate and target.

Size. We propose to utilize the size information to filter out the mismatching proposal candidates,
which are undersized or oversized. The size value zi,t between the i-th proposal candidate and target is
defined as,

zi,t = e(−|ωi−ωt |) · e(−|hi−ht |), (12)

where ωi/hi and ωt/ht denote the width/height of the i-th object proposal candidate and the target,
respectively.

The three cues introduced above are independent, thus the multi-cues ai,t between the i-th proposal
candidate and target can be performed as the product of the three core cues by,

ai,t = si,t · ci,t · zi,t, (13)

During the proposals re-ranking process, we propose to rank the proposal candidates though
the multi-cues in descending order. Then, we could obtain the high-quality proposals successfully by
wiping out the proposal candidates with the low values. The high-quality proposals can maintain high
recall, which helps the tracker to achieve better performance.
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4. Experimental Results and Analysis

4.1. Training Dataset and Evaluation

Training. We train the SCTRPN by random interval sampling the images from the same sequences.
Usually, we generate at most 64 samples from one image. We also perform the end-to-end network
training, due to the combined spatial cascaded loss function. When it comes to the ratio of the
anchor, the scale of target change smoothly between two consecutive frames in most situations,
except for the fast motion sequences. Thus, we assign the ratios of anchors to [0.33, 0.5, 1, 2, 3] which
is same as [7]. As for the positives and negatives, the positives are represented by the anchors,
whose intersection-over-union (IOU) with groundtruth is over the threshold θpos. On the contrary,
the negatives are defined by the anchors, whose IOU with groundtruth is less than the threshold θneg.
The settings of shrinkage loss are described in Section 3.3.

Tracking. We evaluate the short-term object tracking on OTB2015 [36], VOT2018 [37],
and UAV123 [1], respectively. LaSOT [38] and TrackingNet [39] are two recent largest datasets
for single object tracking, and we validate the proposed method on these two datasets, to test its
generalization performance.

The tracking procedure is more like the multi-stage detection: we first extract the features from the
image in the first frame, using the pre-trained networks. For each stage, we utilize the FEM to combine
the features and calculate the classification score and regression offset. Then, we perform coarse refining
the anchor though RPN. The remaining anchors are regarded as proposal candidates, from which we
utilize the multi-cues proposal re-ranking strategy to filter out the candidates in descending order, to
obtain high-quality proposals. The final tracking results are determined by non-maximum-suppression
(NMS), which is performed afterwards to get the final tracking bounding box. After the final bounding
box is selected, the target size is updated by linear interpolation, to keep the shape changing smoothly.
The whole tracking process of SCTRPN is summarized in Algorithm 1.

Algorithm 1 Proposed Tracking Method.

Input: Given sequences {Xt}
T
t=1; Groundtruth boundingbox of first frame X1 named b1; The trained model SCTRPN;

Output: Tracking results {bt}
T
t=2;

Initialize anchors A1;
For t = 2 to T do

Extract features
{
ϕl(x)

}L
l=1 for x from SCTRPN;

For l = 1 to L do
If l equals to 1 then
Φ(x) = ϕl(x);
Else
Φl(x) = FEM(Φl−1(x),ϕl(x));
End
Calculate the classification score and regression offset using Equation (3);
Coarse refining the anchor i from Al using Equation (6);
Fine re-ranking the proposal candidates using multi-cues re-ranking strategy in Equation (13);

End
Select the best proposal as tracking result bs by the selection strategies in [22];

End

4.2. Implementation Details

Network Architecture. In experiments, the backbone networks adopts the AlexNet [15] by
reserving Conv layers to extract the features of images. The networks framework is described in detail
in Section 3.1. The networks we combined include AlexNet, spatial transformer networks, and region
proposal networks.

Optimization. We implement the whole training and tracking process using MatConvNet Deep
Learning Frameworks [40] on a PC with an Intel i7, 16GB RAM and single Nvidia GTX1080Ti with
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11GB video memory. The pre-trained parameters are directly come from the existing model on
ImageNet [15]. SCTRPN is end-to-end trained with stochastic gradient descent (SGD) by 40 epoches.
We employ a warmup learning rate of 0.001 for first 5 epoches to train the RPN braches. For the last
15 epoches, the whole network is end-to-end trained with the learning rate exponentially decayed
from 0.001 to 0.00001. We set the stage number L to 3. We also assign the IOU of the positives and
negatives to 0.7 and 0.3, respectively. The training loss is illustrated in Equation (7).

4.3. Relablity Ablation Study

Multi-features fusion through FEM. In order to test the validation of the multi-stage feature
combination though FEM, we first to do the experiments on VOT2018 dataset, and the results are
shown in Table 1. We firstly test the one-stage tracker and obtain the competitive performance with
0.321 in EAO. When we add another stage to the baseline, the EAO has increased to 0.352, and the
accuracy and robustness are both increased by 8% and 17%, respectively. After combining all three
stages, both accuracy and robustness steadily improve, with gains between 2.1% and 4.9% for VOT2018,
compared with two-stage results. When it comes to EAO, the three stages are 12.4% higher than
that of a single stage. We also provide the experimental results on different stages without STN,
which can be seen in the last three lines of Table 1. The Tracker with STN outperforms those without
STN in three main metrics except the tracking speed due to the accurate localization and affine
transformed evaluation of the proposed FEM based on STN. The spatial transformer networks in FEM
makes the effective progress when the image sequence suffering from deformation changes and affine
transformation which refers to the attributes-based comparison in Section 4.4. Considering of the
tracking speed, the three-stage tracker can also meet the demand of real-time tracking, though it costs
more computational time during the tracking process.

Table 1. The reliability ablation study on multi-features fusion considering the number of stages and
STN. The best two results are highlighted in red and blue fonts, respectively.

Stage One Stage Two Stages Three
Stages

One Stage
without STN

Two Stages
without STN

Three Stages
without STN

Accuracy↑ 0.523 0.565 0.577 0.508 0.538 0.566
Robustness↓ 1.23 1.02 0.97 1.34 1.19 1.04

EAO↑ 0.321 0.352 0.361 0.314 0.342 0.349
FPS↑ 45 30 22 54 36 25

Shrinkage loss. When replacing the proposed shrinkage loss with the original log loss, we evaluate
the experimental analysis on the VOT2018 dataset. Compared with the RPN baseline, the proposed loss
gains the large margin of 0.361, 5.1% higher than log loss. We also compare our proposed method with
online hard negative mining [41], which aims to evaluate the capability of alleviating the data imbalance
issue. Both methods penalize the importance of easy samples, due to the attribute of cost-sensitivity.
We experimentally set the threshold of mining to 0.01. Our proposed method outperforms the online
hard negative mining method. We can infer from the comparative results that easy samples still
contribute to the learning process, but they should not dominate the whole gradient. Online hard
negative mining was proposed to manually set the threshold, which cannot be appropriate for all the
testing sequences.

Multi-cue re-rank. As shown in Figure 6, we evaluate the qualitative proposal generation results
obtained by the proposal re-ranking method on some videos of the OTB-2015 dataset. Only the top ten
generated proposals are shown in the test images. Under most circumstances, the top score generated
proposals can cover the tracking groundtruth. We compare the proposed proposal re-ranking method
with several state-of-the-art proposal generation methods in terms of recall. Four methods are chosen
to achieve the evaluation, including CADM [42], MSTE [43], EdgeBoxes [44], and SelectiveSearch [45].
Selective Search and CADM are based on image segmentation; MSTE and EdgeBoxes are based on the
boundary or the edge feature. The multi-cue re-ranking strategy has the capability of integrating the
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proposals around the target, and distinguishing the foreground target from the background clutters,
which can obtain highly accurate proposal generation. As shown in Table 2, the recall obtained by
multi-cues proposal re-ranking method is the highest among those obtained by the competing methods,
higher by 34–70% when the top 50 ranked object proposals are used for calculating the recall. This is
because the proposed method can combine color, shape, and scale information to accomplish the whole
proposal generation process, which performs more robust to motion blur, illumination, deformation,
and some other complex scenarios. In this section, we briefly test the proposal generation capability
of our proposed networks. The OTB-2015 dataset, as a traditional benchmark, can clearly obtain the
visualization of the results. Due to the eleven multiple tracking attributes, which almost contain all the
tracking problems, the researchers still employ the OTB-2015 benchmark to accomplish a qualitative
and quantitative comparison in recent paper work. We need to solve the out-of-view problems in the
benchmark of OTB-2015 during proposals generation.
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Figure 6. Qualitative proposal generation results obtained by the proposal re-ranking method on some
videos of the OTB-2015 dataset. Only top ten generated proposals are shown in the test images.

Table 2. The recall obtained by the proposal re-ranking method and the other four competing methods
when varying the number of object proposals on the OTB-2015 dataset.

Methods
Number of Proposals

50 100 200 500 1000

CADM 0325 0.436 0.574 0.706 0.735
MSTE 0.253 0.424 0.567 0.632 0.653

EdgeBoxes 0.603 0.743 0.813 0.924 0.929
SelectiveSearch 0.246 0.392 0.521 0.732 0.841

SCTRPN 0.921 0.932 0.953 0.983 0.991

4.4. Comparison with State-of-the-Art Methods

OTB-2015 Dataset. The OTB-2015 dataset contains 100 sequences that mainly evaluate the
accuracy and robustness of the compared tracker via the location error ratio and overlap ratio.
The RPN-based tracker formulate the tracking as one-shot detection without online updating during
the whole procedure. As the proposed tracker employs the proposals to do the final tracking, it can
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overcome the fast motion attributes most times. The improved the classification loss and multi-cues
proposals re-ranking also help the proposed tracker to be top-performing method. We compare our
SCTRPN tracker on the OTB2015 with the state-of-the-art trackers. Figure 7 shows that our SCTRPN
tracker produces the leading result in overlap success and ranks second place in precision plots.
Compared with other RPN-based trackers, our SCTRPN outperforms DaSiamRPN by improving 3.2%
in precision and 5.1% in success. The VITAL tracker, which is performed via adversarial learning
representations, obtained the best results in precision, and the network has the capability of consistently
amending the edge information though adversarial learning. To compare with the correlation filters
method ECO [18], we elect the features fusion strategy for both, while the multi-stage features extracted
by feature extraction model are less sensitive to deformation variation and illumination, which results
in a more comparable performance. We should also notice that the online updating methods fail to
outperform other methods in the precision plot, due to the drift away caused by template updating.
We also evaluate the proposed tracking method without the STN model, the scores of the precision
and success drop dramatically, according to the details in the figure.
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VOT-2018 Dataset. We validate our SCTRPN tracker on the VOT-2018 dataset in comparison
with seven other state-of-the-art methods. The VOT-2018 public dataset includes 60 public sequences
with different challenging attributes. It is treated as one of the most recent datasets for evaluating
online model-free single object trackers. According to protocol, the expected average overlap (EAO),
accuracy (A), and robustness (R) and no-reset-based average overlap (AO) are used to compare
different trackers. The comparisons between state-of-the-art methods are reported in Table 3, and red,
blue represent 1st and 2nd, respectively. Table 3 shows that the proposed SCTRPN tracker achieves
the top-ranked performance on EAO and AO criteria. We also rank second place in the criteria of
accuracy. As for robustness, the MFT and LADCF rank 1st and 2nd place, respectively. Due to the
multi-stage fusion and proposal re-ranking strategy, our proposed SCTRPN method yields substantial
gains of 10.9% on accuracy. The STN plays the key role in feature extraction model. Without the
STN model, the other RPN-based methods outperform the SCTRPN-No STN, due to the lack of
appearance change processing. The SiamRPN also obtains a high accuracy, mainly considering of the
Siamese matching structure. Compared with the LADCF method, the proposed method achieves a
performance gain of 1.5% on EAO criteria. Due to not matching the template, the robustness still has a
gap with the state-of-art Siamese based trackers. We adopt one pass evaluation to test the different
trackers. From the results of the AO criteria, we can observe that our proposed method outperforms
the SiamRPN and DaSiamRPN method by 3.4% and 8.9% on AO, that is to say, our method achieve
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comparable performance compared with other RPN-based methods, and also has the capability of
long-term tracking.

Table 3. Comparison with the state-of-the-art in terms of accuracy, robustness (failure rate), expected
average overlap (EAO) and no-reset-based average overlap (AO) on the VOT2018 dataset. The best
two results are highlighted in red and blue fonts, respectively.

Tracker SCTRPN SCTRPN-No
STN MFT LADCF DRT SiamRPN DaSiamRPN

Accuracy↑ 0.583 0.564 0.525 0.503 0.519 0.586 0.569
Robustness↓ 0.243 0.269 0.140 0.159 0.201 0.276 0.323

EAO↑ 0.395 0.381 0.385 0.389 0.357 0.382 0.327
AO↑ 0.478 0.453 0.393 0.421 0.426 0.462 0.439

Accuracy vs. Speed. As shown in Figure 8, we perform the EAO performance on VOT2018 dataset
to evaluate the tracking speed with respect to frames-per-second (FPS). The proposed network is not
that complex, thus the device we chosen is single NVidia GTX1080Ti with 16GB Memory. We compare
the proposed method with the results provided by the VOT2018 official data. We visualize that our
SCTRPN achieves the best performance compared with other state-of-the-art methods running at
real-time speed (22 FPS). When it comes to the MFT and LADCF, the tracking speed is low, due to the
computational complexity and hardware limitation. From Figure 8, we can see that the SiamRPN is
the most efficient approach among the compared methods. However, the proposed method achieved
the higher EAO score than that of the SiamRPN, and the tracking speed can also meet the demand
of real-time processing (22 FPS) in the computer vision application. Compared with the one-stage
and two-stage SCTRPN, the fewer stages we employ, the faster the trackers perform. We set the stage
number L to 3, considering the balance between effectiveness and efficiency.
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The expected average overlap (EAO) with respect to the frames-per-second (FPS) are visualized in the
Figure. Note that the FPS axis is in the log scale.

LaSOT Dataset. We elect the experiments on LaSOT to further validate the proposed method on
a larger and more challenging dataset. We have got 1400 videos in total and 280 videos with large
scale and high quality in the LaSOT dataset. Figure 9 reports the overall performances of our SCTRPN
tracker on LaSOT testing set. Our SCTRPN method outperforms other state-of-the-art methods by 0.559
and 0.487 on normalized precision and success. Compared with the RPN-based method DaSiamRPN,
our SCTRPN tracker increases the normalized distance precision and success by 12.7% and 18.2%.
Due to the shrinkage loss, we could penalize the importance of easy samples to alleviate the data
imbalance issue, which makes the tracker more appropriate for long-term tracking.
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TrackingNet Dataset. The TrackingNet dataset contains a large amount of data in the wild,
which can evaluate the trackers’ performance in complex scenarios. There are 511 videos in the dataset.
Among these videos, the tracking object is mainly suffering from illumination variation, heavy occlusion
and background clutters. The TrackingNet dataset provides three criteria including success (A),
precision (P) and normalized precision (Pnorm) for evaluation. Table 4 visualizes the comparison results,
the SCTRPN achieves the best results on all three criteria from the second row. Specifically, the SCTRPN
achieves 69.7%, 66.4%, and 76.4% on A, P, and Pnorm, respectively. The RPN-based methods outperform
the methods of other tracking frameworks. Among the RPN-based methods, DaSiamRPN tracker
obtains the second best results of 63.8% and 59.2% on A and P, and the SiamRPN achieves the second
best results of 74.1% on Pnorm. The SCTRPN tracker gains the capability of tracking the object in the
wild, due to multi-stage feature fusion and proposals re-ranking strategy, thus, the proposed method
is more appropriate to handle the attributes of illumination change, background clutters, and also
scale variation.

Table 4. Comparison on the TrackingNet in terms of success, precision, and normalized precision. The
best two results are highlighted in red and blue fonts, respectively.

Tracker SCTRPN SCTRPN-No
STN ECO MDNet SiamFC SiamRPN DaSiamRPN

A(%)↑ 69.7 62.7 55.4 60.6 57.2 62.4 63.8
P(%)↑ 66.4 59.4 49.3 56.8 53.6 58.4 59.2

Pnorm(%)↑ 76.3 73.9 62.1 71.2 66.6 74.1 73.2

UAV123 Dataset. UAV123 dataset includes 123 sequences with average sequence length of
915 frames, recent researches mainly employ the length of the UAV123 dataset to validate the long-term
tracking ability of trackers. We test state-of-the-art methods on UAV123 dataset, and infer from the
results that the convolutional features are more robust than conventional handcrafted features, and the
networks-based tracking frameworks outperform other compared frameworks, such as correlation
filters during long-term tracking. Figure 10 illustrates the precision and success plots of the compared
trackers. Specifically, our tracker achieves 0.797 and 0.613 on precision and success ranking the first
place, which outperforms other two RPN-based methods DaSiamRPN (0.794, 0.584) and SiamRPN
(0.748, 0.527). As for ECO and ECO-HC, the ECO only gains the precision and success by 3.4% and 2.5%,
compared with ECO-HC. The convolutional features do little to influence the filters based trackers in
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long-term tracking, while the multi-stage features fusion strengthen the ability of robust tracking in
complex scenarios.
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Figure 10. Precision and success plots show a comparison of our SCTRPN tracker with state-of-the-art
trackers on the UAV123 dataset. (a) Precision plots of OPE on UAV123; (b) Success plots of OPE
on UAV123.

Attribute-based Evaluation. The VOT2018 dataset is per-frame annotated with visual attributes to
allow the detailed analysis of per-attribute tracking performance. Six attributes are chosen to accomplish
the attribute-based evaluation for their importance to the compared trackers, including deformation
variation, heavy occlusion, in-plane rotation, off-plane rotation, illumination change, and background
clutter. Figure 11 shows the per-attribute plot for the top-performing trackers on VOT2018 in EAO.
The proposed method was consistently ranked among the top trackers on the four attributes.
The proposed SCTRPN performs the best in terms of deformation variation, occlusion, in-plane rotation,
and illumination change. In summary, our proposed SCTRPN method can handle the extreme tracking
situation under complex scenarios.
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4.5. Hyper Parameters Selection

Different values of ξ. In Table 5, we briefly test the different values of ξ in Equation (4). By default,
we use ξ = 1 which makes the two terms in Equation (4) roughly equally weighted after normalization.
Table 5 shows that our result is impacted just marginally (by 2%) when ξ is within a scale of about two
orders of magnitude (1 to 100). This demonstrates that the result is insensitive to ξ in a wide range.

Table 5. Tracking results of EAO on the VOT-2018 benchmark using different values of ξ in Equation (4).
The best results are highlighted in red fonts.

ξ ξ=0.1 ξ=1 ξ=10 ξ=100

EAO↑ 0.389 0.395 0.392 0.387

The values of a and c in shrinkage loss. The modulating function is with the shape of a
Sigmoid-like function, which is shown in Equation (8). Where a and c are hyper-parameters controlling
the shrinkage speed and the localization, respectively. Figure 12a shows the shapes of the modulating
function with different hyper-parameters. When applying the modulating factor to weight and the
square loss, we have the proposed shrinkage loss as Equation (9). In this section, we mainly discuss
the values of a and c hyper parameters in our proposed shrinkage loss. As shown in Figure 12b,
the shrinkage loss only penalizes the importance of easy samples (when l < 0.5), and keeps the loss
of hard samples unchanged (when l > 0.5) when compared to the square loss (L2). The focal loss
(L3) penalizes both the easy and hard samples. We set the value of a to be 10 to shrink the weight
function quickly and the value of c to be 0.2 to suit for the distribution of l, which ranges from 0 to 1.
An extensive comparison with the other losses shows that the proposed shrinkage loss not only
improves the tracking accuracy but also accelerates the training speed.Sensors 2020, 20, x FOR PEER REVIEW 18 of 20 
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5. Conclusions

In this paper, we proposed a brand new framework for visual tracking which consists of spatial
cascaded region proposals networks combining region proposal networks and spatial transformer
networks to fully utilize multi-features. We also introduced the employment of the shrinkage loss to
penalize the importance of easy samples to effectively alleviate the data imbalance issue. We provided
the multi-cue proposals re-ranking method for the tracking frameworks, which can screen high quality
proposals. Numerous experimental results demonstrated that the proposed tracker outperforms
state-of-the-art trackers, highlighting the significant benefits of our method. However, we still cannot
solve the problems of the “Tracking-by-understanding” mechanism. For future research, we will
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focus on the application of the combination between different networks accomplishing the action and
pose detection during visual tracking. The enhancement of the deep learning network can not only
improve the tracking performance, but also make the high-level computer vision applications based
on tracking methods come true.
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