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Abstract

Background: Use of alternative gene promoters that drive widespread cell-type, tissue-type or
developmental gene regulation in mammalian genomes is a common phenomenon. Chromatin
immunoprecipitation methods coupled with DNA microarray (ChIP-chip) or massive parallel
sequencing (ChIP-seq) are enabling genome-wide identification of active promoters in different
cellular conditions using antibodies against Pol-II. However, these methods produce enrichment
not only near the gene promoters but also inside the genes and other genomic regions due to the
non-specificity of the antibodies used in ChIP. Further, the use of these methods is limited by their
high cost and strong dependence on cellular type and context.

Methods: We trained and tested different state-of-art ensemble and meta classification methods
for identification of Pol-II enriched promoter and Pol-II enriched non-promoter sequences, each of
length 500 bp. The classification models were trained and tested on a bench-mark dataset, using a
set of 39 different feature variables that are based on chromatin modification signatures and various
DNA sequence features. The best performing model was applied on seven published ChIP-seq
Pol-II datasets to provide genome wide annotation of mouse gene promoters.

Results: We present a novel algorithm based on supervised learning methods to discriminate
promoter associated Pol-II enrichment from enrichment elsewhere in the genome in ChIP-chip/seq
profiles. We accumulated a dataset of 11,773 promoter and 46,167 non-promoter sequences, each
of length 500 bp, generated from RNA Pol-II ChIP-seq data of five tissues (Brain, Kidney, Liver,
Lung and Spleen). We evaluated the classification models in building the best predictor and found
that Bagging and Random Forest based approaches give the best accuracy. We implemented the
algorithm on seven different published ChIP-seq datasets to provide a comprehensive set of
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promoter annotations for both protein-coding and non-coding genes in the mouse genome. The
resulting annotations contain 13,413 (4,747) protein-coding (non-coding) genes with single
promoters and 9,929 (1,858) protein-coding (non-coding) genes with two or more alternative
promoters, and a significant number of unassigned novel promoters.

Conclusion: Our new algorithm can successfully predict the promoters from the genome wide
profile of Pol-II bound regions. In addition, our algorithm performs significantly better than existing
promoter prediction methods and can be applied for genome-wide predictions of Pol-II promoters.

Background
Alternative promoter usage is known to affect more than
half of all human and mouse genes, and has been
proposed as a primary driver of varied transcriptional
regulation in different cellular conditions or develop-
mental stages [1-4]. Numerous genes displaying complex
transcriptional regulation, because of the use of alter-
native promoters, have been studied thoroughly [5].
Recent annotations of the human and mouse genomes
suggest that many differentiation and disease-associated
genes contain alternative promoters. Annotation of all
human and mouse gene promoters that are differentially
used during development, in different cell/tissue types or
aberrantly activated in disease conditions is still incom-
plete and is essential for defining the transcriptome and
proteome of human and mouse genomes.

The development of chromatin immunoprecipitation
methods coupled with DNA microarray (ChIP-chip)
technology and massively parallel sequencing (ChIP-
seq) has enabled genome-wide identification of promo-
ters, using antibody against RNA polymerase II (Pol-II)
in different cells or tissues [6,7]. The combined
signatures of RNA Pol-II binding and histone modifica-
tion marks like H3K4me3, H3K9Ac obtained by these
high throughput technologies are being used to identify
human and mouse transcriptional units [8]. However,
there are some challenges in predicting promoter usage
based on the enrichment regions/peaks observed in these
ChIP-chip/seq experiments. The ChIP-chip/seq technol-
ogy requires antibodies with extremely high affinity and
specificity for the target transcription factors. Unfortu-
nately, such antibodies are not available for most human
transcription factors, including Pol-II, producing non-
specific enrichment in the ChIP-chip/seq profiles. The
non-specific enrichment regions could be eliminated
from the analysis by performing a ChIP-chip/seq
experiment on the same cell or tissue lacking the specific
factor. However, in most cases this is not feasible and we
have to rely on other methodologies like the use of non-
specific IgG ChIP-chip/seq to decrease the non-specific
enrichment background. The major challenge in anno-
tating promoters based on RNA Pol-II enriched regions/
peaks is the spread of the transcribing polymerase

throughout the gene and as a result all genomic regions
bound by RNA Pol-II are enriched in these experiments,
producing significantly large number of enriched peaks
after the initial statistical analysis [9]. Though the
initiator form of RNA polymerase II (phosphorylated
CTD at Ser5) is enriched at a higher level in promoter
region of actively transcribed genes, it is not restricted to
the promoter region. Moreover, the promoters with
stalled RNA Pol-II do not show an enrichment for the
Ser5 phosphorylated form of RNA Pol-II [10]. Similarly,
the histone marks namely H3K4me3 and H3K9Ac,
which are highly enriched in promoter regions, are not
exclusively present in promoter regions [8,11]. Currently
it is not possible to identify promoters with high
confidence based on RNA Pol-II ChIP-chip/seq enrich-
ment data alone, thus warranting development of better
classification algorithms for accurate identification of
promoter related Pol-II enriched regions.

Here, we developed a computational method to dis-
criminate promoter associated RNA Pol-II enriched
regions of length 500 bp from the enrichment at other
genomic regions, using the rich source of existing
promoter data and associated chromatin modification
signatures and various DNA sequence features. We
prepared a data-set consisting of 11,773 Pol-II enriched
promoters and 46,167 Pol-II enriched non-promoter
regions from our recent ChIP-seq experiments, using
antibody against Pol-II on five mouse tissues. We
systematically trained and evaluated recent ensemble
classifiers on this data set, using both 10-fold cross
validation and testing on independent test set, and
selected Bagging and Random Forest classifier for the
final algorithm.

Methods
Dataset of Pol-II enriched promoters and non-promoters
for training the classification models
The training set was generated from RNA Pol-II ChIP-seq
data of five mouse tissues (Brain, Kidney, Liver, Lung
and Spleen) generated by our lab. The RNA Pol-II ChIP-
seq data was first processed and Pol-II enrichment peaks
were identified at an FDR of 0.001, by assuming that
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peaks in the random background would follow Poisson
statistics. The identified peaks were compared with TSS
of non-redundant gene list generated from four different
sources: RefSeq, Vega, Ensembl and UCSC. The gene lists
were downloaded from UCSC genome browser [12] for
mm9. Any peak that falls within -300 bp to +200 bp of
known TSS (from compiled non-redundant TSS) were
taken as promoter peak. The Pol-II peaks which are
inside a gene but do not overlap with any of the known
TSS are candidate non-promoter peaks. For our negative
set, we consider only those peaks which fall within
transcripts that possess a Pol-II enriched peak at the
corresponding promoter (-300 bp to +200 bp). Also, any
peak which falls within the promoter region of homo-
logous gene known in other organism and within the 5’
end of compiled set of non-redundant expression
sequence tags (ESTs) was removed from the negative
set, because some of those could be undiscovered novel
promoters in the mouse genome. The homologous gene
track (xenoRefGene track) was downloaded from UCSC
genome browser. After identification of promoter and
non-promoter peaks, the Pol-II peak was annotated as
actual TSS for the transcript in that particular tissue. For
each annotated peak (in both promoter and non-
promoter sets), sequences were generated each of length
500 bp (-300 bp to +200 bp around the peak). After
performing this procedure for all the tissues, we again
compared the records in promoter and non-promoter
sets with each other and removed the overlapping
records from the non-promoter set. Finally, our com-
plete dataset has 11,773 records in the promoter set and
46,167 records in the non-promoter set. We used 8,793
and 34,686 records from promoter and non-promoter
sets respectively for training the classification models. In
addition to 10-fold cross-validation, we used the
remaining records (2,980 promoter and 11,481 non-
promoter cases) to test the performance of the fitted
models. The data sets are available as supplementary
information at [13].

Classification models
We tried different state-of-art ensemble and meta
classifiers for identification of promoter and non-
promoter classes. The WEKA data-mining toolbox [14]
was used for building the classification models. The
different classifiers tested on 39-dimensional feature
vector are: LogitBoost [15], Bagging [16], Rotational
Forest [17] and Random Forest [18]. The detailed
description of the classification methods is provided in
Supplementary Method.

Feature variables used in classification model
Each sequence record (500 bp window) of the promoter
and non-promoter set is represented by a 39-

dimensional feature vector. The feature values were
calculated based on (a) DNA sequence composition;
(b) DNA physico-chemical-structural properties, and (c)
experimental data. Most of the conversion tables that are
based on DNA physical-chemical-structural properties
were downloaded from [19]. The feature variables used
in the classification models are briefly described below.

Let a given DNA sequence be: S = s1s2s3s4...sL-1sL, where si
Œ {A, C, G, T}, 1 ≤ i ≤ L (length of sequence, here L =
500). Let Δ1 ≡ {A, C, G, T}, Δ2 ≡ {AA, AC, AG, AT, CA,
CC, CG, CT, GA, GC, GG, GT, TA, TG, TC, TT}, Δ3 ≡
{AAA, AAC, AAG, AAT, ACA, ACC, ..., TTT}, Δ4 ≡ {AAAA,
AAAC, AAAG, AAAT, AACA, AACC, ..., TTTT} represent
single, di, tri, tetra nucleotide symbol set respectively.

(a) Properties based on DNA sequence composition
We calculate 10 different features in this category. The
first 7 features are calculated from single nucleotide
composition. Let nx represents the total number of times
symbol x appeared in S and x Œ Δ1 for single nucleotide
features.

1. A_Fraction: nA/L
2. C_Fraction: nC/L
3. G_Fraction: nG/L
4. T_Fraction: nT/L
5. PurPyr_Fraction: (nA + nG - nC - nT)/L
6. AmKe_Fraction: (nA + nC - nG - nT)/L
7. WeSt_Fraction: (nA + nT - nC - nG)/L
The remaining 3 features are related to CpG island.
One of the features is based on di-nucleotide
composition, where x Œ Δ2. And remaining 2 features
are based on tri-nucleotide composition, where x Œ
Δ3. Similar CpG features were used in [19] for
promoter prediction.
8. CpG1: (2*nCG + 2*nGC)/(L-1)
9. CpG2: (nACG + nAGC + nCAG + nCCG + nCGA + nCGC +
2* nCGG + nCGT + nCTG + nGAC + nGCA + 2* nGCC +
nGCG + nGCT + 2* nGGC + nGTC + nTCG + nTGC)/(L-2)
10. CpG3: (4* nCAG + nCCG + nCGG + 4* nCTG + 4*
nGAC + nGCC + nGGC + 4* nGTC)/(L-2)

(b) Properties based on physico-chemical-structural property of
DNA sequences
In this category we calculate 22 features. Let �p(x)
represent a mapping function for a property ‘P’, where x
Œ Δ1 or x Œ Δ2 or x Œ Δ3 or x Œ Δ4 depending upon given
property. The feature value for a given sequence ‘S’ based

on property ‘P’ is given by fP

x nxx P
S= ∀ ∈∑

+ −
( )*

| | log | |
Δ

Δ
ϕ

1 4
, where nx

represents total number of times symbol x has appeared
in S. And Δ ≡ Δ1 or Δ ≡ Δ2 or Δ ≡ Δ3 or Δ ≡ Δ4 depending
up on the property ‘P’.
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The DNA sequence properties ‘P’ from which the features
are calculated is as follow:

1. A-philicity [20]
2. Base-stacking [21]
3. B-DNA twist [22]
4. DNA bending stiffness [23]
5. Di-nucleotide flexibility energy [24]
6. DNA denaturation [25,26]
7. Duplex stability disrupt energy[27]
8. Duplex stability free energy [28]
9. Helical rise [29]
10. Helical twist [29]
11. Helical tilt [29]
12. Helical roll [29]
13. Helical shift [29]
14. Helical slide [29]
15. Propeller twist [30]
16. Protein induced deformability [31]
17. Protein-DNA twist [31]
18. Z-DNA stabilizing energy [32]
19. Tri-nucleotide bendability [33]
20. Nucleosome position preference [34]
21. Tetra-nucleotide flexibility [35] and
22. EIIP [36]

(c) Feature variables from experimental data
In this category we calculate 7 features. The feature
values are calculated from CAGE tags, RNA Pol II Chip-
seq and H3K4me3 Chip-seq data sets. The CAGE tags
were downloaded from FANTOM4 project [37]. RNA Pol
II and H3K4me3 ChIP-seq datasets taken up for our
study were downloaded from NCBI GEO website. The
accession numbers for the datasets are as follow:
GSE14254 [38], GSE12241 [39], GSE11074 [40],
GSM281696 [41], GSM307623 [39], GSE13511 [42].
Each ChIP-seq dataset was processed at an FDR of 0.001
using our program for significant region identification.
The tags which are part of significant regions were
considered for feature value calculation. In total 16
different samples of H3K4me3 ChIP-seq datasets and 12
different samples of Pol-II (including 5-different tissue
data generated at our lab) were collected. Total number
of CAGE tag count per million (TPM) that falls in 500 bp
windows was taken as CAGE tag related feature. For
both, H3K4me3 ChIP-seq and RNA Pol-II ChIP-seq data
we calculated the following three different features:

1. Average Tag count per million (TPM)
2. Maximum TPM
3. Maximum TPM/average TPM

The performance of the fitted models and other best
performing promoter prediction programs, which are

publicly available for download to run on whole
chromosomes on a local computer, was tested on an
independent un-seen data set. When a predicted pro-
moter overlaps with Pol-II enriched promoter, then the
respective record is counted as true positive (TP). And
when such case is missed it is termed as false negative
(FN). When a predicted promoter overlaps with Pol-II
enriched non-promoter, then such case is counted as
false positive (FP). And if such case is predicted as non-
promoter then it is termed as true negative (TN). The
performance of classifier is evaluated based on the
promoter prediction metrics suggested by Bajic et. al.
[43]: sensitivity (SN), positive predictive value (PPV),
correlation coefficient (CC) and true-positive cost (TPC).
The equations for the performance metrics are as follow:

SN
TP

TP FN

PPV
TP

TP FP

CC
TP TN FP FN

TP FP TP FN TN

=
+

=
+

= −
+ +

( * ) ( * )
( )*( )*( ++ +

=

FP TN FN

TPC
FP
TP

)*( )

Results
Classification models to predict promoters using
chromatin modification signatures and DNA sequence
features
For selecting the best performing classifier, we trained
four different ensemble and meta classification models
on 3/4th of the dataset and tested on the remaining 1/4th

of the dataset. The performance measures obtained by
using 10-fold cross-validation and independent test set
are presented in Tables 1 and 2. The performance
measures, in terms of sensitivity and positive predictive
accuracy, among the classifiers do not vary much over the
four different models. Bagging and Random Forest
models are slightly better than the other two models,
showing lower error rates. Figure 1 allows for a more
informative discussion on the relative predictive perfor-
mance of the models. It is clear that Bagging, LogitBoost
and Random Forest perform more or less similar and
slightly better than Rotational Forest, with overall
positive predictive value greaten than 95 and correlation
coefficient greaten than 0.9. We then implemented the
classification models given by Bagging and Random
Forest methods in our algorithmwhich, will be applied to
scan all the Pol-II enriched peaks in the mouse genome.

While the classification methods used here are consid-
ered “black box” methods, with no interpretable
classification model, the methods still provide useful
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information, such as variable importance. One of the
measures of variable importance in Random Forest
method is the mean decrease in accuracy, calculated
using the out-of-bag sample. The difference between the
prediction accuracy on the untouched out-of-bag sample
and that on the out-of-bag sample permuted on one
predictor variable is averaged over all trees in the forest
and normalized by the standard error. This gives the
mean decrease in accuracy of that particular predictor
variable which has been permuted. Thus, the importance
of the predictor variables can be ranked by their mean
decrease in accuracy. Figure 2 shows the list of feature
variables ranked according to mean decrease in accuracy
of classification. It is interesting to note that feature
variables based on experimental data such as CAGE tags,
Pol-II enrichment, and H3K4me3 enrichment rank
among the most discriminative variables from mean
decrease in accuracy graph (Figure 2).

Comparison with other promoter prediction programs
We compared our algorithm with some of the existing
best performing promoter prediction methods [44]:

Table 1: Performance statistics of classification models based on 10-fold cross validation

Method 10-fold cross-validation test result, 39 features, Promoters = 8793, NonPromoters = 34686

# of true
positive

# of false
negative

# of true
negative

# of false
positive

Sensitivity
(%)

Positive predictive
value (PPV)

Mathew correlation
coefficient

True positive
cost

ROC
Area

Bagging 7603 1190 34354 332 86.47 95.82 0.89 0.04 0.97

LogitBoost 7638 1155 34252 434 86.86 94.62 0.88 0.06 0.97

Random
Forest

7626 1167 34921 395 86.73 95.08 0.89 0.05 0.97

Rotational
Forest

7153 1640 34198 488 81.35 93.61 0.84 0.07 0.96

Table 2: Performance statistics of classification models and other existing programs based on independent test set

Method Promoters = 2980, NonPromoters = 11481

# of true
positive

# of false
negative

# of true
negative

# of false
positive

Sensitivity
(%)

Positive predictive
value (PPV)%

Mathew correlation
coefficient

True positive
cost

Bagging 2593 387 11385 96 87.01 96.43 0.9 0.04

LogitBoost 2594 386 11356 125 87.05 95.4 0.89 0.05

Random Forest 2599 381 11349 132 87.21 95.17 0.89 0.05

Rotational Forest 2391 589 11332 149 80.23 94.13 0.84 0.06

EP3 Program 2493 487 11064 417 86.91 85.67 0.81 0.17

Eponine Program 2581 399 9633 1848 87.01 58.28 0.62 0.72

ProSOM 2563 417 8817 2664 86.01 49.03 0.53 1.04

FirstEF 1714 1226 11402 79 57.52 95.6 0.70 0.05

Figure 1
ROC curve for four classification models. The ROC
curve obtained by 10-fold cross-validation test for the four
different classification methods.
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EP3 [19], Eponine [45], FirstEF [46], ProSOM 2.5 [47].
Table 2 and Figure 3 show that our classification model
out-performs these existing programs based on indepen-
dent (unseen) test set of Pol-II enriched promoters and
Pol-II enriched non-promoters.

Annotation of promoters in mouse genome using
Pol-II ChIP-seq data
Although extensive promoter annotations are available
from the EBI and UCSC genome servers, most annota-
tions do not contain information about tissue or

Figure 2
Variable Importance table. Top ranking feature variables selected by Random Forest and their mean decrease in accuracy
and mean decrease in Gini measure in discriminating Pol-II enriched promoter regions and Pol-II enriched non-promoter
regions. The mean decrease in accuracy/Gini measure was an average of 100 runs of RF.

Table 3: Summary of prediction and annotation of Pol-II promoters from published ChIP-seq datasets

Stage D0 D1 D2 D3 D4 D6 ES Cell

Total tags 5252311 5252311 5252311 5252311 5252311 5252311 2688589

# of peaks 108416 134674 153097 140137 159599 88606 13942

# of peaks predicted as promoter 24888 25179 24510 25101 22374 15838 5889

# of predicted promoters assigned to known coding genes 10645 10632 10349 10539 9701 8153 5034

# of predicted promoters assigned to known non-coding genes 1039 1095 1088 1101 1029 708 313

# of unassigned predicted promoters (potential novel promotes) 11684 13452 13673 13461 11644 6977 542
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cell-type information from experimental data. To
demonstrate the efficacy of our new algorithm in finding
promoters and to provide the annotation of potential
novel promoters, we used the Pol-II enrichment peaks
obtained from seven ChIP-seq datasets available on in
vitro adipocyte differentiation of mouse 3T3-L1 cells and
mouse ES cells, and the results are presented in Table 3.
We applied the Random forest classification model
(built using the training set) on a sequence of length
500 bp around each Pol-II enriched peak (-300 to +200
bp) in both strands. If 500 bp region from both strands
are predicted as peak then they are merged and counted
as one promoter. For each predicted promoter region, we
annotated it to a nearby gene, if the Pol-II enriched peak
is located within -2 Kbp to +500 bp around the
corresponding gene TSS. We generated a non-redundant
TSS file for coding genes from Refseq, Vega, ensembl and
UCSC genes. For non-coding genes we used information
available at RefSeq, Vega, ensembl, UCSC, miRBase [48]
and recently discovered large non-coding RNAs
(lincRNA) [49]. Table 3 presents the total number of
peaks predicted by the model as promoters and also the
number of annotated coding and non-coding genes in
each sample. We then combined the results from all
seven samples of predicted promoters in order to
identify alternative promoters for each gene. For protein
coding gene set, we found that there are 13413, 5064,
and 4865 genes with one promoter, two promoters, and
three or more promoters respectively. In other words,
based on these annotations, 42.5% of the protein coding
genes in mouse genome have two or more alternative
promoters. For non-coding genes, we found that 4757,
1181, and 677 genes with one promoter, two promoters,
and three or more promoters respectively.

Future directions
We will use this program to annotate human gene Pol-II
promoters by running on all the publicly available ChIP-
seq Pol-II enrichment profiles. Our method successfully
predicts 500 bp promoter regions (-300 bp to + 200 bp)
and to better localize the core-promoter regions within
the predicted promoters, we will apply recently devel-
oped CoreBoost_HM program published by Zhang
Laboratory at CSHL [50].

Discussion
Chromatin modification and transcription factor bind-
ing profiles in the mammalian genomes is rapidly
accumulating with the advent of next generation
sequencing approaches. However, computational meth-
ods to effectively integrate these profiles to identify and
annotate the promoter usage in specific cell/tissue types
or developmental stages, are still limited. Recently,
machine learning strategies have been applied to
combine some of the wealth of published ChIP-seq
data sets, such as chromatin modification signatures, to
predict core promoter regions [50]. A logical step in
analyzing the Pol-II enriched genomic regions is to scan
those regions by existing promoter prediction methods
to predict whether the enriched region is a promoter or
non-promoter. However, we found that the performance
of the existing methods is not satisfactory, and we
speculate that the training set used in building the
classifier was mostly responsible for their poor perfor-
mance. We, therefore, build a bench-mark data set of
Pol-II enriched promoters and Pol-II enriched non-
promoters to train the classifiers, which shows signifi-
cant improvement over the existing programs. Theore-
tical and empirical works using classification, regression
trees, variable selection in linear and non-linear regres-
sion have shown that bagging and ensemble based
methods can generate substantial prediction gain. In fact,
based on the evaluation of 10-fold cross validation and
testing on an independent data set, we found that both
Bagging and Random Forest methods performed with
highest accuracy (better than 95% prediction accuracy).

Conclusion
In conclusion, we have developed a novel algorithm
based on Bagging and Random Forest based classifica-
tion methods to predict Pol-II bound promoters from
ChIP-seq profiles. The present algorithm will help the
discovery of novel promoters and ongoing annotation of
alternative promoters of human and mouse genes from
different ChIP-seq experiments.

Supplementary material
Supplementary material is available at http://bioinfo.
wistar.upenn.edu/promoterprediction/.

Figure 3
ROC curve for comparison of our method with
existing programs. The ROC curve obtained on the test
set using our method and other existing programs: EP3,
Eponine, FirstEF and ProSOM.
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