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1  |  INTRODUC TION

Gynostemma pentaphyllum Makino (Cucurbitaceae; Gp) is a perennial 
creeping plant and has been used for herbal tea (called jiaogulan) in 
China. For centuries, the herbal tea made from the aerial part (includ-
ing stems and leaves) of Gp has been consumed in China as a general 
tonic. Today, it is progressively popularizing around the world for 
lowering serum lipid and cholesterol levels (Chen et  al.,  1991; Lin 
et al., 2000). Like green tea, jiaogulan tea also holds anticarcinogenic 
and antioxidative activities (Lin et al., 2000; Razmovski-Naumovski 
et  al.,  2005). Increasing research interest in Gp is evident from a 
search of the PubMed database (Figure 1).

Traditionally, jiaogulan has been broadly applied for the treat-
ment of various illnesses, including hepatitis, diabetes, and car-
diovascular disease (Li et al., 2019). However, in the last 20 years, 

extensive research has been conducted to investigate the medic-
inal prospects of jiaogulan, which has resulted in the discovery 
of more than 230 compounds with medicinal properties. These 
compounds have shown a variety of pharmacological properties, 
including anti-inflammatory (Cai et al., 2016; Quan & Qian, 2010), 
antioxidative (Zhao et al., 2014), antiproliferative (Yan, Wang, Niu, 
et  al.,  2014), anxiolytic activities (Choi et  al.,  2013), anti-cancer 
(Hou et  al.,  1991), lipid metabolism regulation (Qin et  al.,  2012), 
anti-diabetes (Gao et al., 2016), and cardiovascular disease treat-
ment (Circosta et al., 2005). Out of 230 compounds, 189 are sa-
ponins, also known as gypenosides (Li et al., 2016). Among these 
gypenosides, 165 have been classified into 12 types based on the 
nature of aglycone moiety (Lin, 2011). The details of these gype-
nosides and their pharmacological properties have been discussed 
elsewhere (Nguyen et  al.,  2021). Gypenosides possess several 
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Abstract
Jiaogulan (Gynostemma pentaphyllum) is a traditional Chinese medicinal herb that has 
been widely used in food and supplemental products. In the last 20 years, extensive 
research has been conducted to investigate the medicinal prospects of jiaogulan, and 
in this regard, more than 200 compounds have been isolated with various medicinal 
properties such as anticancer, anti-obesity, anti-inflammation, and antioxidation. In re-
spect of potential benefits, jiaogulan market is likely growing, and various food items 
comprised of jiaogulan (beverage, sport drinks, cola, beer, tea, bread, and noodles) 
have been commercialized in the United States of America, China, and other Asian 
countries. More recently, there has been growing interest in the prebiotic potential 
of jiaogulan, especially at the interface of the gut microbiota. This review focuses on 
the prebiotic and therapeutic aspects of saponins and polysaccharides of jiaogulan 
tea by summarizing the literature on cancer, obesity, antioxidant activity, and immune-
modulatory properties.
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therapeutic properties including anticancer and anti-obesity (Lee 
et al., 2019; Lu et al., 2010).

Like other basic research, Chinese medicine research is entering 
into a new paradigm from one-gene-one-phenotype model toward a 
much sophisticated and complex model, known as omics strategies, 
that is based on data-driven untargeted management, diagnosis, and 
treatment (Cagan et al., 2013; Yoo et al., 2018). Chinese medicine is 
holistic in nature and it would be impractical to comprehend it with 
conventional research tools. Therefore, more recently, researchers 
have started to evaluate the prebiotic potential of jiaogulan at the 
interface of the gut microbiota (GM).

The pharmacological properties of jiaogulan at the interface of the 
GM should be evaluated as commensals that play an important role in 
human physiology. For instance, the human microbiome constitutes 
about 47% of our body by cell count and encodes 1000 times more 
genes than our own body genes (Institute for Genome Sciences, 2017; 
Knight et al., 2017). It is estimated that the human microbiome en-
codes 2–20 million genes that surpasses the ~20,000 human genes 
(Knight et  al.,  2017). These microbial genes are presented to the 
host for digestion, metabolism, and immune system maturation 
(Cani, 2009). Targeted intervention to remodel GM composition has 
shown encouraging results in disease prevention and treatment. 
Mounting lines of evidence indicate that various bioactive natural 
products, such as dietary fibers, phenolic compounds, and undigested 
carbohydrates, can upregulate beneficial intestinal microbes, improve 
gut homeostasis, and alleviate disease symptoms (Makki et al., 2018).

In this review, we highlight some key findings by evaluating ji-
aogulan extracts and the therapeutic nature of purified compounds 
(gypenosides, polysaccharides, and flavonoids) at the interface 
of the GM. The study particularly focuses on the anticancer, anti-
obesity, and antidiabetic properties of jiaogulan.

2  |  ANTIC ANCER PROPERTIES

Jiaogulan is known to possess potent anticancer abilities. 
So far, several mechanisms of action have been determined 

regarding the anticancer activities of jiaogulan, including antioxidant 
(Li et al., 2015), cell cycle arrest, apoptosis, prevention of invasion 
and metastasis (Yan, Wang, Niu, et  al.,  2014), and immunomodu-
lating activities. For instance, G.  pentaphyllum saponin (GpS) was 
reported for the anticancer properties by upregulating Prdx1 and 
Prdx2 expression and suppressing Ras, RAF/MEK/ERK/STAT, PI3K/
AKT/mTOR signaling (Tai et  al.,  2016). Another in vitro study also 
showed that GpS revealed the anti-proliferation effect by arresting 
cell cycle at the G0/G1 phase, and induced apoptosis of HepG2 cells 
via death receptor and mitochondrial pathway (Hussain et al., 2020). 
Yan, Wang, Wang et al. (2014) showed that GpS could significantly 
upregulate the intracellular ROS level, which induced cell toxicity, 
apoptosis, and mitochondrial damage in colorectal cancer cells. The 
anticancer abilities of jiaogulan, both direct and indirect, have been 
summarized in Figure 2.

2.1  |  Anticancer properties of jiaogulan's saponin

Unlike the in vitro system, saponins are poorly absorbed and have 
a long residence time in the intestine when tested in preclinical 
models (Navarro del Hierro et  al.,  2018). However, through the 
recent integration of herbal medicine and GM research, the long 
residence of saponin in the intestine turned out to improve its 
efficacy. We and several other studies have demonstrated that 
GpS improves gut microbial composition by promoting the growth 
of beneficial bacteria and suppressing potential pathogens (Chen 
et  al.,  2015, 2016; Huang et  al.,  2017, 2018; Khan et  al.,  2019; 
Shen, Zhong et  al.,  2020). While evaluating the anticancer ef-
fects of GpS in a ApcMin/+ mouse model, GpS displayed a stimu-
lating effect on the abundance of Lactococcus, Bifidobacterium, 
Lactobacillus, and short-chain fatty acids (SCFAs) producing bac-
teria. However, the growth of potential pathogens, for example, 
Dysgonomonas spp., Helicobacter spp., sulfate-reducing bacteria, 
were suppressed after GpS introduction to mouse gut (Chen 
et  al.,  2015, 2016; Huang et  al.,  2017; Khan et  al.,  2019; Liao 
et al., 2020) (Figure 3).

F I G U R E  1  Bar chart presentation 
of Gynostemma pentaphyllum reported 
in PubMed database. These data were 
generated by including clinical trials, 
research articles, review articles, and 
abstracts. Numbers at the top of the bar 
show G. pentaphyllum reported times per 
year, ranging from 2000 to 2021. The 
search was conducted on August 4, 2021
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After noticing the stimulating effect of GpS in SCFAs producer 
in the mouse gut, we proved that GpS could increase the growth of 
Bifidobacterium animalis, Lactobacillus casei, and Lactobacillus reuteri 
(Liao et al., 2020). By gavaging B. animalis and butyrate (separately) 
to a cancer preclinical mouse model and noticing anticancer effects, 
we proved that the anticancer effect of GpS is partly through stimu-
lating the growth of beneficial bacteria in the gut (Liao et al., 2020). 
The anticancer efficacy of GpS could be improved in the presence 
of polysaccharides. We confirmed the enhanced cancer-preventive 
properties of GpS when applied in combination with Ganoderma lu-
cidum (Lingzhi) polysaccharides. It was observed that GpS and 
polysaccharides from lucidum can greatly improve the inflamed 
gut barrier of ApcMin/+ mice by inhibiting polyp formation, changing 
colonic M1 to M2 macrophages, stopping the oncogenic signaling 
molecules, and increasing the E-cadherin/N-cadherin ratio (Khan 
et al., 2019).

2.2  |  Anticancer properties of jiaogulan's 
polysaccharides

In addition to the GpS, GP's polysaccharides (GpP) also be reported 
for anticancer properties. Polysaccharides are potential prebiotic 

polymers that have been extensively studied. They promote 
the growth of certain beneficial bacteria (e.g., Bifidobacterium, 
Lactobacillus) and in the large intestine, metabolize into lactic acid 
and SCFAs that improve host physiology, particularly gastrointes-
tinal health (Azmi et  al.,  2012; Devillé et  al.,  2007; Zaporozhets 
et  al.,  2014). Accumulating evidence reports that GpP revealed 
the anticancer effect in vivo and in vitro. The molecular weight, 
degree of branching, and solubility of GpP are closely related to 
its anticancer property. Different molecular weights in the range 
of 103–106 Da have been found in various GpP using different ex-
perimental conditions (Ji et  al.,  2018). A neutral polysaccharide 
fraction of GP was found to effectively inhibit the solid tumor 
growth of H22 hepatocarcinoma transplanted in ICR mice (Liu 
et al., 2014). Another study showed that GpP improved the pro-
portion and mitochondrial level of T cells, and promoted the secre-
tion of IL-2 and IFN-γ in the ascites of mice (He et al., 2020). Yu 
et al. (2020) reported that a novel acidic polysaccharide from GP 
exhibited significant apoptotic characteristics, such as cell shrink-
age, decreased cell adherence, and the appearance of apoptotic 
bodies in SPC-A-1 and MGC-803 cells. Chen et al. (2011) isolated 
a novel GpP and synthesized four sulfated polysaccharides from 
this GpP using the chlorosulfonic acid method. The results showed 
that the polysaccharides significantly inhibited the growth of 
HepG2 cells and Hela cells.

2.3  |  Anticancer properties of jiaogulan's flavonoid

Flavonoid is a main polyphenolic compound that is widely found in 
herbal medicines. Flavonoid is also a major constituent of GP, and re-
veals certain bioactivities, especially anticancer and antioxidant ef-
fects. It has been established the flavonoid from GP (GpF) and GpS 
could equally suppress the growth of prostate cancer PC-3 cells, 
with IC50 values of 39.3 and 33.3 μg/ml, respectively. These two GP 
fractions induced cell cycle arrest at both S and G2/M phases as 
well as apoptosis (Cheng et  al.,  2011). Another research reported 
that GpF induced apoptosis and concomitantly altered the balance 
of BCL-2 and BAX expression as well as caspase-3 expression in both 
A549 and H469 lung cancer cell lines. However, the authors found 
that GpF induced cell cycle arrest at both S and G2/M phases and 
regulated cellular proteins cyclin A, B, p53, and p21 expression in 
A549, but not H460 (Tsui et al., 2014). Lin et al. (2019) isolated four 
flavonoids from GP using chromatography and found that the flavo-
noids could act against AAPH-induced oxidative damage in LLC-PK1 
cells by suppressing the increase in MDA, and the decrease in SOD 
and glutathione. Wang, Yang, et al. (2018) showed that GpF exerted 
antioxidant effect on A549 with H₂O₂-induced oxidative stress 
through increasing SOD, GSH, and HO-1 expression and simultane-
ously decreasing ROS and MDA expression. Jang et al.  (2016) iso-
lated eight flavonoids from GP, including a novel compound, and 
evaluated the antioxidative effect by the DPPH radical scavenging 
assay. The results showed that rutin possessed the strongest anti-
oxidative property.

F I G U R E  2  Thematic presentation of the jiaogulan tea's 
anticancer effects. Through literature review, it is observed that 
different components of the jiaogulan tea possess anticancer 
properties that these compounds exert either directly or indirectly. 
Through indirect approach, jiaogulan tea's component exerts 
anticancer effects through the interface of the gut microbiota. 
Here, we summarize that jiaogulan promotes the growth of 
beneficial bacteria, particularly the short-chain fatty acid (SCFA) 
producers. SCFAs eventually exert anticancer properties
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3  |  HEPATOPROTEC TIVE EFFEC T

Lipopolysaccharide (LPS) and Toll-like receptor 4 (TLR4) are signifi-
cantly increased during the progression of nonalcoholic fatty liver 
disease (NAFLD). A report showed that GpS improved NAFLD in-
duced by high-fat diet induced through regulating LPS/TLR4 sign-
aling pathway (Shen, Wang et  al.,  2020). Hong et al. investigated 
the underlying mechanisms of GP and its derived compounds on 
protecting NAFLD through network pharmacology prediction. The 
authors claimed that GpS, especially gypenoside XL, could target 

peroxisome proliferator-activated receptor alpha (PPARα), the ex-
pression of which was downregulated in alcoholic fatty liver dis-
ease and NAFLD patients in the liver. Further research proved that 
gypenoside XL could upregulate the expression of acyl-CoA oxidase 
and carnitine palmitoyltransferase-1, which contributed to the anti-
NAFLD effect (Hong et al., 2018). Other related reports showed that 
GpS protected against NAFLD progression by upregulating the ex-
pression of PPARα and downregulating the inflammatory cytokines, 
oxidative stress indices, and de novo lipogenesis (Gou et al., 2016; 
He et  al.,  2015; Qin et  al.,  2012). Bae et  al.  (2018) reported that 

F I G U R E  3  Schematic presentation of GpS' anticancer effects through gut microbiota. (a) In colorectal cancer (CRC), the intestinal track 
is characterized by polyp formation, imbalanced gut microbiota, reduced mucus layer, suppressed population of goblet and Paneth cells, 
and inflamed immune milieu. (b) Treated CRC preclinical mouse model with GpS reinstates the inflamed mucosal immunity, promotes goblet 
and Paneth cell population – that results in mucus layer thickness and higher secretion of lysozyme. Most importantly, the gut microbial 
composition improves with the prevalence of SCFA producers. (c) At the subcellular level, GpS-associated increase in SCFAs upregulates 
fatty acid-sensing GPCRs that results in the suppression of histone deacetylases and PPARγ, which downstream inhibits PI3K/AKT 
oncogenic signaling pathways, as well STAT3 and Src. This graph is based on results published by Hsiao's group (Chen et al., 2016; Khan 
et al., 2019; Liao et al., 2020)
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gypenoside UL4 enriched in GP extract exerted the hepatoprotec-
tive effect on diet-induced NAFLD through increasing levels of sir-
tuin 6 and phase 2 antioxidant enzymes in vivo and in vitro. A recent 
study showed that GpS could change the GM composition of NAFLD 
mice to alleviate disease progression. The results showed that GpS 
reduced the ratio of Firmicutes to Bacteroidetes, elevated GM di-
versity, and decreased the relative abundance of Fissicatena and 
Akkermansia, which are enriched in high-fat and high-cholesterol-
induced NAFLD mice (Huang et  al.,  2019). Similar research also 
showed that GpS alleviated NAFLD by maintaining the gut barrier 
and reversing gut dysbiosis in a high-fat diet-induced NAFLD rat 
model. Results showed that GpS reduced the ratio of Firmicutes 
to Bacteroidetes; meanwhile, GpS enriched the abundance of ben-
eficial bacteria (Lactococcus spp.) and inhibited potential pathogens 
(Shen, Zhong, et al., 2020).

4  |  ANTI- OBESIT Y EFFEC T

AMPK is an intracellular energy sensor and regulates the whole-
body and cellular energy balance in response to energy demand 
and supply. Nguyen et al.  (2011) demonstrated that dammarane-
type glucosides from GP were the potential activator of AMPK. 
Further study from this research team also showed that GP en-
riched with saponins could improve obesity in ob/ob mice by ac-
tivating AMPK (Gauhar et al., 2012). Lee et al. demonstrated that 
GP extract enriched with gypenosides could reduce serum levels 
of triglyceride, total cholesterol, and LDL-cholesterol and display 
the anti-obesity effect in HFD-induced obesity. The research 
mechanism showed that GpS could increase AMPK activation and 
suppress adipogenesis by decreasing CCAAT/enhancer-binding 
protein-α (C/EBPα), PPARγ, sterol regulatory element-binding 
protein-1c (SREBP1c), PPARγ coactivator-1α, fatty acid synthase, 
adipocyte protein 2, and sirtuin 1 (Lee et al., 2019). Inhibiting pan-
creatic lipase activity is considered one of the treatment strate-
gies for obesity. Previous reports showed that GpS could inhibit 
pancreatic lipase activity and possibly possess anti-obesity ef-
fect (Bai et  al.,  2010; Su et  al.,  2016). Liu et al. found that GpS 
significantly reduced body weight, plasma total cholesterol, and 
homeostasis model assessment-estimated insulin resistance index 
in a HDF-induced obese mice model. The authors also showed 
that GpS could increase brown adipocyte tissue activity and white 
adipose tissue browning. The gene expression involved in mito-
chondrial activity and fatty acid β-oxidation were also increased 
in both brown and white adipocyte tissues. Moreover, GpS de-
creased the ratio of Firmicutes to Bacteroidetes, and increased 
Akkermansia muciniphila abundance in the GM (Liu et al., 2017).

5  |  ANTIDIABETIC EFFEC T

Gynostemma  pentaphyllum saponin has been reported for hypo-
glycemic properties by enhancing the Nrf2 signaling pathway in 

streptozotocin-induced diabetic rats (Gao et  al.,  2016). GP con-
taining standardized gypenosides significantly elevated the plasma 
insulin concentration and profoundly affected the intraperitoneal 
insulin tolerance test compared with the control group (Wang, Ha, 
et al., 2018). In the streptozotocin-induced diabetic rat model, GpS 
showed the hypoglycemic effect through enhancing the Nrf2 sign-
aling pathway. Results also showed that GpS increased the level 
of insulin in the blood, as well as increased SOD and GSH-px ac-
tivities (Gao et  al.,  2016). Norberg et  al.  (2004) isolated a novel 
gypenoside from GpS, which was named phanoside, and the re-
sults showed that phanoside and its stereoisomers could signifi-
cantly stimulate insulin secretion. Wang, Ha, et  al. (2018) found 
that two compounds from gypenosides could significantly enhance 
2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose 
(2-NBDG) uptake and glucose transporter 4 (GLUT4) transloca-
tion via activating the AMPK and acetyl-CoA carboxylase signaling 
pathway. Recently, in a research profiling and screening the ac-
tive compounds of GP in the diabetic rat model, 27 dammarane-
type triterpenoids were characterized by mass spectrometry and 
NMR spectroscopy. One of these triterpenoids showed glucose-
dependent insulin secretion activity (Lundqvist et al., 2019). These 
studies provided the potential candidates for the development of 
antidiabetic agents of GpS.

Except for the mentioned effects, GpS also possesses other 
bioactive properties. Research showed that GpS possessed the 
anti-fatigue property for exercise-induced fatigue. GpS could ex-
tend the swimming time for the mice, effectively delay the lowering 
of glucose in the blood, and prevent the increase in lactate (Ding 
et al., 2010). Aktan et al. (2003) found that GpS could suppress NO 
synthesis in murine macrophages by inhibiting iNOS enzymatic ac-
tivity and attenuating NF-κB-mediated iNOS protein expression. 
Tsang et  al.  (2019) reported that GpS induced melanogenesis and 
activated cAMP/PKA and Wnt/β-catenin signaling pathways in both 
B16 and B16F10 cells. Yang et  al.  (2013) found that two new sa-
ponins from Gp could inhibit lipopolysaccharide (LPS)-induced IL-1β, 
IL-6, and COX-2 mRNA expression in RAW 264.7 which showed a 
prominently anti-inflammatory effect.

6  |  ANTIOXIDANT EFFEC T

Li et  al.  (2015) isolated three acid polysaccharides from GP—
GPA1 (19.6  kDa), GPA2 (10.6  kDa), and GPA3 (6.7  kDa)—
that displayed the antioxidant effect through scavenging 
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and hydroxyl radical, 
chelating ferrous ion, and reducing ferric ion. GpP increased the 
scavenging activity of DPPH, hydroxyl radical, superoxide anion, 
and ABTS radical in vitro (Li et al., 2015). Furthermore, an animal 
experiment showed that GpP could enhance SOD, CAT, GSH-Px 
activities, and decrease MDA activity (Wang et  al.,  2020). Yu 
et al. (2020) isolated a novel acid polysaccharide from Gp, and an-
tioxidant assays showed that this GpP could scavenge superoxide 
radical, ABTS, and DPPH radicals. Chi et  al.  (2012) showed that 
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GpP significantly prolonged the exercise time to exhaustion of 
mice, and increased the glycogen level and antioxidant enzymatic 
activity in the skeletal muscle.

7  |  IMMUNOMODUL ATION EFFEC T

Mounting evidence indicated that polysaccharides from Chinese 
herbal medicines usually act as an immunomodulator that pro-
vides benefits for the host (Chen et  al.,  2020; Gan et  al.,  2004; 
Khan et  al.,  2019; Xu et  al.,  2011; Zhao et  al.,  2010). GpP acti-
vated macrophage phagocytosis and NK cells, and exhibited ac-
tivity on none or Con A/LPS-stimulated splenocytes in C57BL/6 
mice. GpP also increased CD4+ lymphocyte quantitation and the 
ratio of CD4+/CD8+, and increased IL-2 secretion in serum and 
spleen in immunosuppressed mice (Shang et al., 2016). Ren et al. 
reported that the acid polysaccharide fraction from Gp could 
markedly promote the secretion of NO, TNF-α, IL-1β, and IL-6 in 
murine macrophage RAW264.7. The authors claimed that MAPK, 
PI3K/Akt, and NF-κB signaling pathways were involved in these 
GpP-induced macrophage activations (Ren et al., 2019). The neu-
tral polysaccharide fraction from GP could modulate the activ-
ity of NK cells and cytotoxic T lymphocytes besides increasing 
the secretion of IL-2, TNF-α, and IFN-γ in tumor-bearing mice (Liu 
et al., 2014).

The hepatoprotective effect of GpP was proved by decreasing 
serum ALT and AST levels, as well as the hepatocyte MDA content 
and hepatocyte necrosis in the liver-injured animal model (Song 
et  al.,  2013; Zhang,  2013). GpP possessed hypoglycemic and hy-
polipidemic effects in a streptozotocin-induced type 2 diabetes rat 
model (Du et al., 2011). Jia et al. (2015) investigated the neuropro-
tective effect of GpP and found that GpP could be effective against 
Aβ (25–35)-induced neurotoxicity in PC12 cells by inhibiting oxida-
tive stress and suppressing the mitochondrial apoptotic pathway 
(Jia et al., 2015). Moreover, an associated research also showed that 
treatment with GpP could markedly increase the exhaustive exercise 
time of mice through scavenging excessive ROS produced during the 
exercise regimen (Chi et al., 2012).

8  |  CONCLUSION

This study summarized the therapeutic and prebiotic properties of 
various saponins and polysaccharides from jiaogulan. The study also 
highlighted GM-modulating properties of various compounds from 
jiaogulan. This review further highlighted the therapeutic effect of 
jiaogulan on the diversity and composition of the GM.
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