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INTRODUCTION

Breast cancer is the fifth most common cause of death among 
women. In 2012, breast cancer was the most common cancer 
in women worldwide, with approximately 1.7 million new cases 
diagnosed.1,2 Approximately 8% of women suffer from breast 

cancer in modern developed countries, such as the US. Early 
detection of breast cancer in asymptomatic patients via the 
identification of microcalcifications and masses, vital indicators 
of the disease, can reduce the risk of mortality. Mammography 
screening is one of the most crucial early detection methods for 
breast cancer. However, some reports indicate that it is diffi-
cult for radiologists to differentiate breast carcinoma in mam-
mography screening, with an estimated sensitivity of approxi-
mately 75%. Accordingly, early stage detection has emerged as 
an important issue in computer-aided diagnosis (CAD) tech-
nology for diagnostic breast cancer pathology.3,4

For a CAD system, detecting masses in mammography is chal-
lenging due to the ambiguity of their shape and poor contrast. 
In general, masses are classified as either benign or malignant 
to improve the biopsy yield ratio. Research indicates that regu-
larity and radiolucency are deeply related to deciding whether 
or not a mass is benign.5-7 In many studies on the detection of 
masses, CAD is followed by feature-based discrimination us-
ing various artificial classifiers or enhancing the contrast and 
morphological features: the region of mass, segmentation, and 
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region of interest (ROI). Several studies have been conducted 
on contrast enhancement and segmentation, for example, den-
sity-weighted contrast enhancement based on the object re-
gion growing technique for the extraction of masses,8 adaptive 
thresholding followed by a modified Markov random field mod-
el,9 statistics-based enhancement by multilevel thresholding,10 
and region selection.11 Moreover, several segmentation tech-
niques exist, including region growing, region clustering, tem-
plate matching, stochastic relaxation, fuzzy techniques, bilater-
al image subtraction, and multiscale technique.12-18 The features 
are obtained from ROI-based mass segmentation regions19 and 
are classified using various methods, such as linear discriminant 
analysis,20 artificial neural networks,21 Bayesian networks,22 and 
binary decision trees.23

As for mass detection systems using deep learning, Domingues 
and Cardoso24 attempted ROI-based small patch-wise detec-
tion scanning of whole mammogram images using a deep learn-
ing model with up to three layers of trained inputs without ex-
planation of the detailed structure, cropping ROI images to 
achieve a resolution of 32×32 pixels from 116 dataset images 
containing masses. They achieved an accuracy of 85.9% in the 
ROI mass differentiation task on their test dataset composed of 
25% of their total mass acquisition, with no free receiver oper-
ating curve (FROC) results for the detection of masses. Dhungel, 
et al.25 applied their proposed state-of-the-art mass detection al-
gorithm using a cascade of deep learning and random forest 
classifiers for candidate ROI based evaluation, resulting in a true 
positive rate of 0.96±0.03 at 1.2 false positives per image on the 
INbreast data and a true positive rate of 0.75 at 4.8 false posi-
tives per image on the DDSM-BCRP data, consisting of 195 to-

tal images containing masses from the datasets. 
In this article, we propose deep-learning methodology with 

which to enhance the mass differentiation performance of con-
volutional neural network (CNN)26 based architecture, and we 
address weak segmentation exhibited by our method in view 
of the visualization of detected suspicious masses, along with 
numerical results, including FROC. To train the mass classifier 
employed in a CNN, we aimed to examine how scaling intensi-
ty (brightness) values in the input images affect the mass clas-
sifier performance. An outline of the experimental flow for the 
intensity scaling treatment of the input images is as follows: first, 
we trained mass classifying CNN models on input training im-
ages with a few steps of variation in their intensity scales in the 
ROI-based training modes, and then we evaluated each model 
against test data. Next, we employed the trained mass classifier 
to demonstrate the mass detection process and compared the 
efficiencies of the models along with each changing scale in the 
intensity of the grid images scanned over the entire surface of 
the sample mammography images. Moreover, we examined 
the effect of another type of intensity-scaling preprocessing 
wherein we assessed the detection performance of the model 
trained with a scaling parameter of one, that is, without scaling 
the original training data against only the test data of various in-
tensity scales. The potential significance of using this prepro-
cessing technique was supported by our numerical results in 
the task of mass detection. For additional issues regarding seg-
mentation in our proposed method, we determined whether 
clusters of suspicious locations of the masses, inferred by the 
grid-scanning mass classifier, perform as segmentation in a 
sense by providing approximate macro shapes of the masses. 

ROI of mass-like normal tissue ROI of masses

Fig. 1. Representative masses and mass-like normal breast tissue used to train the models. ROI, region of interest.
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In the following sections, we present the organization of our 
data for use in detection experiments, evaluations, and detec-
tion performance evaluation of the employed mass classifiers, 
discussions of our methodologies, and the conclusions of our 
study. 

MATERIALS AND METHODS

Data acquisition
The Institutional Review Board of Gachon University Gil Med-
ical Center approved (IRB No. GDIRB2016-088) this retrospec-
tive study. All methods were performed in accordance with 
the relevant guidelines and regulations. For our data, we ac-
quired 300 breast mammography images, 281 of which con-
tained masses. There were 146 cases of malignant masses in 
the mass-containing images. All images were 8-bit grayscale 
bitmap images. The training dataset for the CNN mass classifier 
model to detect masses was organized as follows: for the ROI-
based CNN inference model, we utilized sample mammogra-
phy images cropped into ROI patches with a resolution of 
128×128, resulting in 281 mass ROI images and 285 normal 
ROI images of breast tissue. For the normal ROI images, we 
manually chose mass-like normal tissue images because of the 
preconception that the accuracy of mass detection might 
heavily depend on the detector differentiation performance be-
tween masses and mass-like normal breast tissue regions (Re-
fer to the images of some of the masses and mass-like normal 
breast tissue in Fig. 1).

Augmentation in eight types of images by translation
We organized our data by cropping sample mammography im-
ages into ROI patches with a resolution of 128×128 to be used 
in our ROI-based CNN mass classifier. Then, we augmented 
each patch by shifting it slightly in eight radial directions from 
the center (Fig. 2). We did not employ any other augmentation 
methods for the translated augmentation dataset. An argument 

can still be made for the utility of other types of augmentation, 
such as flipping, being applied to the pre-augmented datasets. 
The art of augmentation is not the main scope of this study, and 
we did not compare the functional properties of different aug-
mentation methods in this study. In a previous study27 and the 
references therein, one may find issues related to data augmen-
tation and its efficiency.

Training and test datasets
As mentioned in the previous subsection, after data augmen-
tation, we obtained mass training data of 2529 ROI images, non-
mass training data of 2565 ROI images, mass test data of 377 
ROI images, and non-mass test data of 120 ROI images (Table 1). 
Our main interest in this study on mass differentiation was to 
determine how many similar mass lesion shapes are recogniz-
able, rather than how many mass structures that are difficult to 
train can be classified. Hence, in our approaches employing the 
trained mass detection model, we tested the performance of a 
mass detector for test data in which, for example, each test mass 
image is collected by a slight shift (different location and size) 
from the original non-augmented mass ROI image found in the 
training dataset. Nevertheless, the test image (test data) was not 
included in the training data. In short, test images were obtained 
by shifting in a different direction on existing mass images in the 
augmented ROI images (Fig. 3). Moreover, to weigh detection 
performance more heavily for masses than non-mass tissue, we 
tested more mass images (377) than non-mass images (120).

Structure of CNN
We applied a VGG-Net28 architecture to train the datasets, which 

Fig. 2. Data augmentation by translation to eight radial directions.

Table 1. Configuration of Our Sample Collection of the Mammography 
ROI Images

ROI 
(not augmented)

ROI 
(augmented)

ROI 
(shifted + ε)

Training data Test data
Mass 281 2529 377
Normal tissue  
  (mass-like)

285 2565 120

Total 566 5094 497
ROI, region of interest.

Fig. 3. Training and test data.
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comprised ten convolutional layers and four pooling layers. 
The structure is described in detail in Table 2 and Fig. 4: in Ta-
ble 2, the symbols m and n represent the size of the convolution 
kernel for each input channel and the number of whole kernels 
applied to each layer, respectively.

Training by the scaled intensity of images
To normalize the training data of the CNN mass detector, we 
applied mean-zero normalization. We then scaled the inten-
sity of the input images. Let a pair of indices (i, j) represent the 
pixel point in the i-th position on the x-axis and j-th position on 
the y-axis in each input image. The corresponding pixel value 
is denoted by uij; by applying a scaling parameter δ, the scaled 
normalization vij for the training data is given as

vij=
(uij-E[uij])

δ 
,                                                (1)

where E[uij] denotes the mean value of uij at position (i, j).
By defining the candidates for δ, δ∈{1, 2, 5, 10, 15, 20}, we ob-

tain the numerical results shown in Fig. 5. Here, the results of 
the area under receiver operating characteristic (AUROC) re-
veal that the CNN mass detector performance is best when δ=5, 
when the computational implementation is performed with 400 
epochs of training, a batch size of 100, a learning rate of 0.0001, 
and a dropout rate of 0.5, using a standard back-propagation al-
gorithm.26,29,30 These parameters reflect our experience gained 
performing experiments to enhance the performance of the 
CNN architecture during this study. From these results, we at-
tempted to evaluate the efficiency of the scaled normalization 
treatment using the δ parameter defined in (1).

Outline of the process of mass detection 
The entire process of our mass detection examination is listed 
below. Fig. 6 illustrates the proposed methodology of mass de-
tection and segmentation.

1) We subsampled the ROI patches to input into the CNN mass 
detector. Some arbitrary window sizing defines the cropped 
patches, ranging from 100 to 150 ±ε, with a constant increment 
of the cropping centers. Here, we set an increment of 50 pixels 
to move the cropping centers. 

2) We resized all the subsampled patches to a resolution of 
128×128, aligning for each target mammography image to de-
termine whether there are masses and where the masses are 
located. 

3) For the CNN models of the detector trained with δ=1, 5, we 
examined the detection rate and the rate of false detection per 
image, which resulted in the FROC for 150 types of malignant 
masses contained in the target mammography images.

To measure the success of correct detection, we defined a 
metric to approximate the diameter of each mass. If a point in-
cluded in a cluster of detection points fell within the mass di-
ameter, it counted as one instance of true detection without the 
allowance of multiple counts for points in the same cluster.

RESULTS

Detection results   
Here, we present the FROC results of mass detection with our 
model. To evaluate the detection rate, we first had to establish a 

Fig. 4. Convolutional neural network training architecture with 10-conv, 4-pool, and 2-fully-conn. Networks corresponding to the structure in Table 2.

Table 2. Training Structure of the Convolutional Neural Network (10-
Conv, 4-Pool, 2-Fully-Conn Structure)

Layer (m×m)×n Activation
Conv. (3×3)×16 ReLu
Conv. (3×3)×256 ReLu
Max-Pooling kernel size: (2×2) Strides: 2
Conv. (3×3)×512 ReLu
Conv. (3×3)×1024 ReLu
Max-Pooling kernel size: (2×2) Strides: 2
Conv. (3×3)×2048 ReLu
Conv. (3×3)×4096 ReLu
Conv. (3×3)×4096 ReLu
Max-Pooling kernel size: (2×2) Strides: 2
Conv. (3×3)×8192 ReLu
Conv. (3×3)×16384 ReLu
Conv. (3×3)×16384 ReLu
Max-Pooling kernel size: (2×2) Strides: 2
Fully-Conn. 512 ReLu
Fully-Conn. 256 ReLu (Dropout rate: 50%)
Fully-Conn. Softmax Output units: 2
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standard scheme for clustering the points of detection to dis-
criminate and identify closely detected points at the centers of 
the ROI patches examined by the scanning mass detector. In our 
experiment, we employed the well-known DBSCAN algorithm31 
to cluster some nearly detected suspicious mass points. We de-
fine a metric variable η by which the DBSCAN algorithm clus-

ters the detection points located within a distance η from each 
other (refer to Fig. 7, where we employed the MATLAB code of 
DBSCAN given in a previous study32). Additionally, by param-
eterizing η as [

η
5, 

η
10, 

η
15, 

η
20, 

η
25, 

η
30], we estimate each FROC perfor-

mance. In addition, we manually removed some falsely detect-
ed clusters of points made by DBSACN, located near the breast 

Fig. 5. ROC and AUC plots of the results, for δ∈{1, 2, 5, 10, 15, 20}. ROC, receiver operating characteristic; AUC, area under the curve.
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Fig. 6. Scheme of the mass detection and segmentation. ROI, region of interest; FROC, free receiver operating curve; CNN, convolutional neural network.
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and nipple area boundary, which affects the total FROC results 
depending on η. The detection results of the mass detector trained 
with δ=1, 5 are shown in Fig. 8 (for δ=1) and Fig. 9 (for δ=5).

Re-estimation by pseudo scaling normalization
Along with the results shown in Figs. 8 and 9 (in the previous 
subsection), the FROC performance was enhanced by increas-
ing the parameter η. However, false detection rates persisted to 
some degree, as it is difficult to control the dispersion of the false 
detection rate by the values of the thresholds splitting the Soft-
max classifier output values of the CNN mass detector while cal-
culating the FROC.

We applied the so-called pseudo scaling normalization, where-
in we perform scaling normalization only on the test data and 
not on the training dataset. This means that we trained the CNN 
mass detector with δ=1 and tested it for all δ∈{1, 2, 5, 10, 15, 

20}. The numerical results of the primary classification perfor-
mance of these models are shown in Fig. 10. As shown in Fig. 
10, as the value of δ increases, the classification performance 
increased. In Fig. 11, we also present the FROC results of mass 
detection for δ=15: the results are indistinguishable from those 
of other values of δ, such as δ=10, 20.

DISCUSSION

In our study of mass detection in gray-scale mammograms, we 
categorized ROI images into those with masses and those with 
normal breast tissue to train a CNN model to differentiate mass-
es, diagnosing those correctly classified images determined by 
medical experts in mammogram radiology to have masses as 
true positives. The deep-learning-based mass classifier screened 

Fig. 8. FROC plots of the results, for δ=1. FROC, free receiver operating curve.
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the entirety of mammography images, and subsampled test ROI 
images were successively input into the mass classifier. The sur-
viving input test ROI images were checked as suspicious mass 
detection points. We calculated the performance of our detec-
tion models by counting the clustering of near points. For clus-
tering, we applied the well-known DBSCAN algorithm, which 
clusters points located within a predefined distance from each 

nearest neighborhood point. Our mass detection experiments 
were conducted to identify masses with high performance in 
terms of the FROC, even though the actual training data for the 
mass classifier contained the perturbed mass ROI images found 
in the tested full DICOM mammography images. The reason 
for this experimental goal was based on the natural conjecture 
that, if our proposed method provides fairly clear detection or 

Fig. 10. ROC and AUC plots of the results of pseudo scaling normalization, for δ∈{1, 2, 5, 10, 15, 20}. ROC, receiver operating characteristic; AUC, area un-
der the curve.
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segmentation results derived from an ROI classifier trained on 
small ROI images describing a specific, limited area of the origi-
nal mammography, in the case of a given ideally big dataset with 
all characterizing properties available, such as macro shapes 
and image contrasts of masses, similar technology would be 
highly applicable with acceptable performance.

Our proposed method performed well in comparison to ex-
isting models. In the study of Ertosun and Rubin,33 masses were 
detected using a deep learning-based classification engine and 
a localization engine, which showed an accuracy of 85% and a 

false positive of 0.9. Li, et al.34 attempted to detect masses using 
an end-to-end network combining a Siamese-Faster-RCNN net-
work and a region proposal network and Siamese-FC (Sia-
mese Full Connected) networks, resulting in a true positive 
rate of 88% and false positives per image of 1.12. The study by 
Domingues and Cardoso24 describes a similar method to our 
proposed method in that it used a patch-wise detection meth-
od, with an accuracy of 85.9%, compared to an area under the 
curve of 89.65 for our method. Furthermore, our proposed 
method demonstrated that even weak divisions were possible.

Fig. 11. FROC plots of the results of pseudo scaling normalization, for δ=15. FROC, free receiver operating curve.
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In regards to the ROI classifier, we employed scaling to the 
intensity (brightness) of the input images. The first version of 
the scaling method trains the classifier model using intensity 
scaled training data. The second version scales the input imag-
es for the test data, but not for the training data, except for δ=1 
in (1). The reason we employ this parameter scaling during the 
process of normalization is related to the slopes of the activa-
tion function in the first layer of the CNN architecture. Let us 
define the convolutional operator Â, input resolution matrix 
Xˆ , output of the convolution Yˆ, and rectified linear unit (ReLu) 
activation function σ. Then, because the convolutional opera-
tor Â is linear, the following holds: 

1
δ 
σ(Yˆ )=σ(

1
δ 

Yˆ )=σ(
1
δ 

Â[Xˆ ])=σ(Â[
1
δ 

Xˆ ]).                       (2)

Hence, by scaling the brightness of the input images, we 
aimed to adjust the slope of the ReLu activation function of the 
first layer to perform the inference efficiently. 

Both versions of the mass classifier displayed a difference in 
performance when evaluated for applying the efficient ROI 
patch discriminator to mass detection by screening the whole 
mammography images patch by patch. The first model (the 
model scaling the training input data) had better AUROC val-
ues than the other (the model scaling the test input data but not 
the training data). Nevertheless, the first mass classifier model 
failed to activate canonical shapes of the curvatures in the FROC 
plots. In contrast, the latter activated many typical shapes with 
significantly increased accuracy in the detection rate per false 
positive per image. These results indicated that a higher perfor-
mance for an ROI-based test for differentiation does not always 
mean better activation in real-world detection tasks in mam-
mogram CAD equipped with our proposed types of bare deep-
learning models. In addition, such numerical results demon-
strate that simply scaling input data when testing a learned 
model can make a remarkable difference in the performance 
of a given model, depending only on the types of datasets. We 
have still not provided a theoretical proof of why scaling the in-
tensity of test data, but not training data, improves performance. 
We only suppose that the controversial issues of data normal-
ization are deeply associated with it. Accordingly, data blurring 
or smoothing preprocessing methods can be used as core me-
chanics of scaling normalizing treatment to suit highly complex 
macro shapes and structures of mammogram masses. Suppose 
this empirical deduction is reasonable for datasets with highly 
complex macrostructures. In this case, one may counterintui-
tively blur the input datasets to be tested to obtain somewhat 
improved numerical results. Altogether, if two opposing data-
sets are given to be differentiated from each other and both pos-
sess rather obscure macro structures, both datasets can be made 
more distinctive from each other by blurring during preprocess-
ing so that the trained model can even more easily differentiate 
between positive and negative instances with improved accu-
racy, compared to before blurring. Based on the idea of blur-

ring, we intended to accentuate the brightness of input images 
so that benign non-mass tissues in mammography look like 
smooth, plateaued normal tissue organizations, compared to 
significantly thicker and brighter mass lesions, to the trained 
ROI patch classifier. The second version of our employed blur-
ring pre-process treatment, which scaled the brightness of the 
test input datasets without scaling the training data, displayed 
acceptable performance.

Several studies have addressed segmentation issues.33,35-37 There-
in, the authors implemented visualizing techniques using acti-
vation maps of the trained convolution layer of the CNN. Howev-
er, none of the studies proposed a method of mass segmentation 
by applying detected points. In our study, we found that our pro-
posed model of mass detection would be useful as a segmen-
tation tool in terms of segmentation with points of detection of 
masses. As can be seen in Fig. 12, by increasing the threshold 
value of the output of the Softmax classifier in the trained CNN 
mass detection model, the clusters consisting of mass detection 
points appear to weakly describe an approximate outline of each 
mass shape, increasing the visual definition. We used a CNN 
with a basic structure; however, a variety of deeper and better-
performing CNN architectures continue to be released. There-
fore, it is necessary to apply our proposed method to various 
CNN structures and compare their performances, something 
that is planned through additional research in the future.

In our study of a CNN-based mass detection and segmenta-
tion approach, we determined that the characteristics of the sur-
rounding pixel intensity of masses and their fine-scale structural 
similarity can significantly affect the performance of our pro-
posed method as a segmentation-like detector. Here, for mass 
detection considering weak segmentation, the training data were 
composed of augmented mass ROI images obtained by trans-
lation in eight radial directions. Numerical results indicated that 
the clustering of the detection points resembles a description of 
the characteristics of the macro shapes of detected masses in 
terms of segmentation. The brightness of the input images was 
scaled down to some extent, and the full definition of the actual 
mass regions was enhanced. These results support the poten-
tial of our proposed patch-wise detection method to be utilized 
as a mass detection and segmentation tool.
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