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The fungal pathogen Cryptococcus neoformans can cause life-threatening infections in

immune compromised individuals. This pathogen is typically acquired via inhalation, and

enters the respiratory tract. Innate immune cells such as macrophages and dendritic

cells (DCs) are the first host cells that encounter C. neoformans, and the interactions

between Cryptococcus and innate immune cells play a critical role in the progression

of disease. Cryptococcus possesses several virulence factors and evasion strategies

to prevent its killing and destruction by pulmonary phagocytes, but these phagocytic

cells can also contribute to anti-cryptococcal responses. This review will focus on the

interactions between Cryptococcus and primary macrophages and dendritic cells (DCs),

dealing specifically with the cryptococcal/pulmonary cell interface.

Keywords: Cryptococcus, pulmonary macrophages, pulmonary dendritic cell, primary phagocytes, innate
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INTRODUCTION

Cryptococcus neoformans is a ubiquitous environmental fungal organism that primarily inhabits
soil and bird excrement, and this organism can cause opportunistic infections in humans (reviewed
in Kwon-Chung et al., 2014). Initial interactions of immune cells with Cryptococcus usually occur
in the lung following inhalation of cryptococcal spores or basidiospores (reviewed in Ellis and
Pfeiffer, 1990; Perfect and Casadevall, 2002). In recent years, there have been many published
studies examining the intracellular parasitism of macrophages byCryptococcus (reviewed in Coelho
et al., 2014; Mansour et al., 2014; Leopold Wager et al., 2016; Heung, 2017), and there have also
been several published studies examining the anti-cryptococcal capabilities of dendritic cells (DCs)
(reviewed in Wozniak, 2018). Many studies examining macrophage-Cryptococcus interactions
have been performed with cell line macrophages, which has yielded valuable information on the
cryptococcal factors involved in intracellular growth of Cryptococcus in macrophages. However, as
we will discuss in this review, primarymacrophages and DCs (non-immortalized cells derived from
humans or mice), and particularly those from the pulmonary tissues (which originate from the fetal
yolk sac and liver before the onset of hematopoiesis) (Guilliams et al., 2013; Hoeffel et al., 2015;
Cybulsky et al., 2016), can have different interactions which lead to different outcomes with this
organism. Few studies have examined these phenomena in primary phagocytic populations from
mouse or human cells, and even fewer have examined these in primary phagocytic cells derived
from the pulmonary tissues of mice or humans. Recent literature has identified multiple subsets
of both macrophages and DCs present in the pulmonary compartment of both mice and humans
(reviewed in Guilliams et al., 2013; Misharin et al., 2013; Gordon et al., 2014; Desch et al., 2016;
Patel et al., 2017; Hoffmann et al., 2018), and studies are beginning to show that these subsets

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2020.00037
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2020.00037&domain=pdf&date_stamp=2020-02-11
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Karen.Wozniak@okstate.edu
https://doi.org/10.3389/fcimb.2020.00037
https://www.frontiersin.org/articles/10.3389/fcimb.2020.00037/full
http://loop.frontiersin.org/people/898421/overview
http://loop.frontiersin.org/people/825041/overview
http://loop.frontiersin.org/people/31546/overview


Nelson et al. Cryptococcus Interactions With Pulmonary Phagocytes

have functional differences in their interaction with pathogenic
microorganisms (Patel et al., 2017; Huang et al., 2018), which
is now influencing the way that we view interactions of these
cells with pulmonary pathogens such as Cryptococcus. In this
review, we will summarize the current literature examining
primary mouse and human macrophage and DC interactions
with Cryptococcus as well as discuss the future of identifying
mechanisms of cryptococcal resistance or susceptibility in each
of these phagocytic subpopulations.

MURINE MACROPHAGE/
CRYPTOCOCCUS INTERACTIONS

Murine Pulmonary Macrophages With
Cryptococcus
Innate immune cells serve as the first line of defense against
invading airway pathogens (Cheung et al., 2000; Margalit
and Kavanagh, 2015; Espinosa and Rivera, 2016; Lloyd and
Marsland, 2017; De Leon-Rodriguez et al., 2018). In the mouse
lung, mononuclear cells, consting of monocytes, are recruited
to the lung tissue and can differentiate into macrophages,
and DCs during a cryptococcal infection (Wozniak et al.,
2006, 2009; Yang et al., 2014; Heung and Hohl, 2019). In
addition, it is now appreciated that monocytes can traffic to
the pulmonary tissues and continue to be functional monocytes
(without needing to differentiate into macrophages or DCs)
(Jakubzick et al., 2013). Over the years, many studies have
examined the role of murine pulmonary macrophages in
response to Cryptococcus (Kawakami et al., 1994; Feldmesser
et al., 2000; Kechichian et al., 2007; Osterholzer et al.,
2009a; Hardison et al., 2010; Arora et al., 2011; Leopold
Wager, 2014, 2015; Chen et al., 2016; Stepanova et al.,
2018). As discussed later in this review, using mutant,
or depletion mouse models along with mutant cryptococal
strains can also yield different information about macrophage-
cryptococcal interactions.

Cryptococcus neoformans can be a facultative intracellular
pathogen in vitro, and in vivo and it can sometimes be found
intracellularly inside of macrophages in infected tissues of mice
(Hardison et al., 2010), or alternatively, murine macrophages can
kill C. neoformans (Levitz et al., 1999; Feldmesser et al., 2000;
Hardison et al., 2012; Leopold Wager, 2015; De Leon-Rodriguez
et al., 2018). Therefore, macrophages are a major determinant
of the outcome of a murine cryptoccocal infection (Shao et al.,
2005; Kechichian et al., 2007; Alanio et al., 2011; Mansour et al.,
2011; Sabiiti et al., 2014; Leopold Wager, 2015; Tenor et al., 2015;
Johnston et al., 2016). Once inside macrophages, C. neoformans
has the ability to impair mitochondrial function and alter
protein synthesis (Ben-Abdallah et al., 2012; Coelho et al., 2015).
Cryptococcus neoformans is also capable of a non-lytic form of
exocytosis from macrophages, which begins with the formation
of large vacuoles in the cytoplasm by which C. neoformans can
exit (Ma et al., 2006; Alvarez and Casadevall, 2007). The ability
of C. neoformans to surivive inside of phagocytic cells allows the
pathogen to exhibit a trojan horse mechanism (Charlier et al.,
2009) that enables the fungal pathogen to successfully cross the

blood brain barrier through transendothelial pores contributing
to cryptococcal brain invasion (Santiago-Tirado et al., 2017).

The ability of macrophages to contain a cryptococcal infection
is dependent upon the specific type of macrophage activation
(Arora et al., 2005; Muller et al., 2007; Osterholzer et al.,
2009a, 2011; Voelz et al., 2009; Zhang et al., 2009; Hardison
et al., 2010; Davis et al., 2013). Macrophages display phenotype
plasticity which alters their functioning depending upon various
environmental factors (reviewed in Mosser and Edwards,
2008; Shapouri-Moghaddam et al., 2018). During murine
infections, macrophage-cryptococcal outcomes are dependent
upon M1/M2 (classical/alternative) macrophage polarization
pathways (reviewed in Leopold Wager and Wormley, 2014).
Macrophage polarization status is constantly in flux, influenced
by cytokines, and chemokines in the microenvironment (Davis
et al., 2013; Ruytinx et al., 2018). Polarization states are influenced
by various combinations of microenvironmental cues that allow
for M1/M2 phenotype switching. These cues consist of the
activation of signaling pathways due to the presence of specific
stimuli, the activation of specific miRNAs, and the expression
of certain genes (Wang et al., 2014). The classically activated
macrophage phenotype (M1, induced by IFN-γ and other
inflammatory chemokines) is associated with reduced fungal
burden, enhanced fungicidal activity and the resolution of lung
tissue inflammation (Davis et al., 2013; Ruytinx et al., 2018).
This is opposed to the alternatively activated (M2, induced by
IL-4 and IL-13) phenotype (Hardison et al., 2010; Davis et al.,
2013; Leopold Wager, 2014, 2015), which is associated with
being a reservoir for replicating cryptococci (Muller et al., 2007;
Hardison et al., 2010). STAT1 dependent activation pathways
are essential for M1 polarization as well as for C. neoformans
fungicidial activity via the production of nitric oxide (Hardison
et al., 2010, 2012; Leopold Wager, 2014, 2015). Infection of
STAT1 KO mice and STAT1 conditional KO mice using an IFN-
γ producing strain of C. neoformans resulted in increased fungal
burden, increased M2 activation, and reduced anti-cryptococcal
activity compared to WT mice (Hardison et al., 2012; Leopold
Wager, 2014, 2015; Leopold Wager et al., 2018).

In mice, classically activated macrophages produce large
amounts of nitric oxide, a main effector mechanism contributing
to anti-cryptococcal activity (Zhang et al., 2009, 2010; Hardison
et al., 2010, 2012; Leopold Wager, 2014, 2015). Pulmonary
murine macrophages allow increased amounts of intracellular
cryptococcal replication when isolated from mice deficient in
iNOS, an enzyme necessary for nitric oxide production (Leopold
Wager, 2015). In the murine lung environment, response to a C.
neoformans infection results in a fluctuating Th1/Th2 cytokine
response over time (Arora et al., 2011). A higher IL-4/IFN-γ ratio
contributes to a greater polarization toward the M2 phenotype,
whereas a higher IFN-γ/IL-4 ratio contributes to a greater
polarization toward the M1 phenotype. Equal amounts of IL-
4/IFN-γ lead to an M1/M2 intermediate macrophage phenotype
(Arora et al., 2011). Intracellular cryptococcal replication in
murine alveolar macrophages induces phagolysosome damage.
However, once the cells are polarized to the M1 phenotype
via stimulation with IFN-γ, the ability of the pathogen to
induce phagolysosome damage is abolished and the macrophages
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can successfully kill C. neoformans (Davis et al., 2015). While
these findings relate to macrophage activation status, the initial
interactions between lung macrophages (prior to activation
to either the M1 or M2 phenotype) with Cryptococcus are
currently unknown. This may be due to the presence of multiple
macrophage subsets present in the naïve lung (Vermaelen and
Pauwels, 2004; Gautier et al., 2012; Misharin et al., 2013;
Zaynagetdinov et al., 2013; Tan and Krasnow, 2016; Gibbings
et al., 2017) and our lack of knowledge in understanding
the role(s) of each subset with C. neoformans. In addition,
once infection is established, these populations can then also
be influenced by cytokines and chemokines present in the
pulmonary tissue microenvironment (reviewed in Leopold
Wager and Wormley, 2014; Leopold Wager et al., 2016).
Understanding which naïve phagocytic subset(s) are able to kill
C. neoformans and which subset(s) allow intracellular growth will
be important in understanding their role in either prevention
of cryptococcal dissemination or enhancement cryptococcal
dissemination of to the central nervous system (CNS).

Murine Pulmonary Macrophage
Populations
The murine pulmonary cavity consists of a heterogeneous
population of macrophages which were identified by flow
cytometry and gene expression profiling (Vermaelen and
Pauwels, 2004; Gautier et al., 2012; Misharin et al., 2013;
Zaynagetdinov et al., 2013; Tan and Krasnow, 2016; Gibbings
et al., 2017). The distinct populations were identified as: alveolar
macrophages, interstitial macrophages, monocyte-like Ly6C+

macrophages and monocyte-like Ly6C− macrophages, each
expressing unique cell surface markers (Misharin et al., 2013;
Zaynagetdinov et al., 2013). In addition, the inflammatory
monocyte population has also been defined in the pulmonary
tissues (Palframan et al., 2001; Yang et al., 2014; Hey et al.,

2016; Heung and Hohl, 2019). Alveolar macrophages are
defined as CD11c+, CD11b−, F4/80+, SiglecFhi, CD24−, CD68hi,
Ly6C−, Ly6G−, and pulmonary interstitial macrophages are
F4/80+, CD11b+, CD11clo, Ly6G−, and MHC II+, CD14lo

Pulmonary monocyte-like Ly6C− macrophages are F4/80+,
CD11b+, CD11c−, Ly6Glo, MHC II−, CD24− and Ly6C−, while
the pulmonary monocyte-like Ly6C+ macrophages have the
same markers but are Ly6C+ (Guilliams et al., 2013; Misharin
et al., 2013; Zaynagetdinov et al., 2013; Kopf et al., 2015; Gibbings
et al., 2017). The inflammatory monocyte population is defined
as Ly6Chi, CD11b+, CD115+, CCR2hi (Yang et al., 2014; Hey
et al., 2016; Menezes et al., 2016). All macrophage and monocyte
markers are summarized in Table 1. Although each population
has not been extensively studied with C. neoformans, murine
alveolar macrophages and interstitial macrophages as well as
inflammatory monocytes have been examined.

Murine Alveolar Macrophages
Murine alveolar macrophages are the first line of defense
against inhaled pulmonary pathogens (Todd et al., 2016;
Xu and Shinohara, 2017). Alveolar macrophages are tissue
resident macrophages of the alveoli that are derived during
early fetal development from either the fetal yolk sac or
fetal liver (reviewed in Hoeffel et al., 2015; Kopf et al.,
2015). During early developmental stages, fetal monocytes
colonize embryonic lungs, and upregulate surface expression of
Siglec F and CD11c, and develop into tissue resident alveolar
macrophages (Guilliams et al., 2013). After inhalation and
phagocytosis of C. neoformans, alveolar macrophages showed
intracellular cryptococcal cells, and electron microscopy of these
lung macrophages indicated cell damage (Feldmesser et al.,
2000). In mice lacking NK cells and T cells infected with a
glucosylceramide deficient cryptococcal strain, 1gcs1, depletion
of alveolar macrophages by clodronate liposomes administered
weekly via intranasal injection starting 48 h prior to an intranasal

TABLE 1 | Markers for murine pulmonary macrophage and dendritic cell subsets.

Marker Alveolar Mac Interstitial Mac Ly6c+ Mo-like Mac Ly6c- Mo-like Mac Inflam mono CD103 DC CD11b DC

CD45 + + + + + + +

CD11b − + + + hi − +

CD11c + lo +/− +/− − + +

CD68 hi lo − − − hi hi

MHC II +/− + − − − + +

Siglec F hi − − − − − −

F4/80 + + + + + − −

CD14 − lo − −

CD24 − − − − − + +

CD103 − − − − − + −

Ly6c − − + − hi − −

Ly6G − − − − −

CD115 − − − − + − −

CCR2 − − + + hi − −/+

Murine pulmonary macrophages/monocytes are divided into 5 subsets and pulmonary conventional DCs are divided into 2 subsets based on cell surface expression of multiple markers

(Guilliams et al., 2013; Misharin et al., 2013; Zaynagetdinov et al., 2013; Yang et al., 2014; Kopf et al., 2015; Hey et al., 2016; Menezes et al., 2016; Gibbings et al., 2017).
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cryptoccocal infection improved mouse survival and decreased
the dissemination of C. neoformans to the CNS. Though this
is a highly modified system and differs greatly from wild type
mice and wild type C. neoformans, these data suggest that the
alveolar macrophages were involved in the dissemination of
C. neoformans (Kechichian et al., 2007). A more recent study
examined murine alveolar macrophage polarization following
infection with high- and low-uptake clinical C. neoformans
isolates, and showed that the alveolar macrophages from mice
infected with the high-uptake strains had increased expression of
M2-associated genes (Arg1, Fizz1, Il13, and Ccl17), while those
from mice infected with the low-uptake strains had increased
expression of M1-associated genes (Nos2, Ifng, Il6, Tnfa, Mcp1,
Csf2, Ip10) (Hansakon et al., 2019), suggesting that cryptococcal
strains may influence macrophage polarization.

Murine Interstitial Macrophages
Although few studies have examined murine interstitial
macrophages, one study showed that interstital macrophages
harbored intracellular C. neoformans following intratracheal
administration. In addition, transfer of infected pulmonary
interstitial macrophages, that were collected by agitating
extracted lung tissue with sterile 5-mm diameter glass beads
and morphologically characterized by Giemsa-stained smears
and flow cytometry, into recipient mice via the tail vein led
to hematogenous dissemination of C. neoformans to the brain
(Santangelo et al., 2004).

Murine Inflammatory Monocytes
Murine inflammatory monocytes are precursors to macrophages
and DCs that are recruited to the site of infection, and
these cells express the chemokine receptor CCR2 (reviewed
in Murray, 2018). Inflammatory monocytes are sometimes
considered the precursor to macrophages and dendritic cells
(Palframan et al., 2001; Yang et al., 2014), but other studies
suggest that distinct monocyte subsets give rise to inflammatory
monocytes and DCs (Menezes et al., 2016). Regardless of
the eventual fate of these cells, several studies have shown
that inflammatory monocytes are important in cryptococcal
clearance. Cryptococcal infection of CCR2−/− mice leads to Th2-
type responses, increased lung fungal burden, and decreased
recruitment of macrophages and DCs compared to WT mice
(Traynor et al., 2000; Osterholzer et al., 2008, 2009a, 2011).
In addition, in mice infected with C. neoformans, Ly6Chi

CCR2+ monocytes are recruited and can differentiate into
fungicidal macrophages and DCs (Osterholzer et al., 2008, 2011).
Interestingly, a recent study showed inflammatory monocytes
are rapidly recruited to the lung during cryptococcal infection,
but depletion of these cells using the CCR2 diptheria toxin
receptor (DTR) system leads to improved host survival, reduced
pulmonary fungal burden, and reduced dissemination (Heung
and Hohl, 2019). These cells also upregulate genes involved
in M2 macrophage polarization, suggesting that in this model,
the inflammatory monocytes differentiate into M2 macrophages,
leading to a more severe outcome during cryptococcal infection
(Heung and Hohl, 2019).

MURINE DC/CRYPTOCOCCUS
INTERACTIONS

Dendritic cells (DCs) play an important role in controlling
Cryptococcus infection (reviewed in Wozniak, 2018). DCs are
recruited to the murine lung during a cryptococcal infection
(Wozniak et al., 2006), and in a protective model of cryptococcal
infection, more DCs are recruited to the lungs in protected
mice compared to non-protected mice, suggesting an anti-
cryptococcal role for DCs (Wozniak et al., 2009). Following DC-
cryptococcal interactions, DCs mediate the adaptive immune
response by presentation of antigen to Cryptococcus-specific T-
cells (Wozniak et al., 2006). Upon cryptococcal phagocytosis
by murine bone marrow-derived DCs (BMDCs), the fungal
pathogen is intracellularly trafficked to the endosomal and
lysosomal compartments where it is then degraded and
destroyed by oxidative and non-oxidative mechanisms (Kelly
et al., 2005; Wozniak and Levitz, 2008). The depletion of
pulmonary murine DCs via the administration of diphtheria
toxin (DT) to CD11c-DTR transgenic (Tg) mice leads to
increased morbidity and mortality as well increased B cell and
neutrophil accumulation which causes severe lung inflammation
(Osterholzer et al., 2009b).

Murine Pulmonary DC Subsets
In the murine lung, DCs are a heterogeneous population
consisting of distinct subsets (Shortman and Liu, 2002; Condon
et al., 2011;Misharin et al., 2013; Zaynagetdinov et al., 2013). This
heterogeneous population consists of the CD11b+ myeloid DCs,
plasmacytoid DCs (pDCs) and CD103+ DCs (Condon et al.,
2011) (Table 1). CD11b+ DCs are characterized by their high
expression of CD11c, MHC class II, and absence of CD103. pDCs
are characterized by expression of CD11c, B220, and PDCA-
1. Finally, CD103+ DCs are characterized by their expression
of CD103, CD11c, MHC class II, and their lack of CD11b
(Sung et al., 2006).

Murine Pulmonary CD103+ DCs
The CD103+ population localizes in the lung mucosa and along
the lung vascular wall (Leepiyasakulchai et al., 2013), however,
few studies have examined these subsets in greater detail. Studies
that have examined this cell type showed that of the DCs that
infiltrated to the lung during cryptococcal infection, the CD103+

population was a very small proportion of total DCs (Osterholzer
et al., 2009a; Eastman et al., 2015).

Murine Pulmonary pDCs
Pulmonary pDCs infiltrate into the lungs during cryptococcal
infection, and pDCs isolated from murine bone marrow have
anti-cryptococcal activity (Hole et al., 2016). The recognition and
uptake of C. neoformans by pDCs is dependent on expression of
Dectin-3 and the chemokine receptor CXCR3, and the fungicidal
activity of pDCs is attributed to the production of reactive oxygen
species (ROS) within the lysosome (Hole et al., 2016).
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Murine Pulmonary CD11b+ DCs
Studies of cryptococcal infection models have shown that
CD11b+ CD11c+ DCs traffic to the murine lung during
cryptococcal infection and can present antigen to cryptococcal-
specific T cells (Wozniak et al., 2006). CD11b+ DCs are required
for clearance of C. neoformans from the lung (Osterholzer
et al., 2009a). In addition, in a vaccine model of cryptococcosis,
CD11b+ CD11c+ DCs infiltrate to the lungs during a protective
immune response (Wozniak et al., 2009), and these cells are also
capable of generating trained immunity memory-like responses
toward the fungal pathogen (Hole et al., 2019).

HUMAN MACROPHAGE/CRYPTOCOCCUS
INTERACTIONS

Human primary macrophage interactions with C. neoformans
can be variable—in some studies, human macrophages
have anti-cryptococcal capabilities, while in other others,
C. neoformans can survive/replicate within human macrophages
(Weinberg et al., 1987; Cameron et al., 1990; Levitz and
Farrell, 1990; Vecchiarelli et al., 1994; Levitz et al., 1997,
1999). However, clinical studies have given some insight into
human macrophage-cryptococcal interactions. Cryptococci
can be observed within pulmonary macrophages in samples
from patients with cryptococcosis (Gal et al., 1986). However,
even in the presence of IFN-γ and inflammatory mediators,
non-HIV patients with cryptococcal meningitis had M2
polarized macrophages and a poor prognosis (Panackal et al.,
2015). This contrasts with the M1 skewing of macrophages
during HIV-related cryptococcal meningitis with immune
reconstitution, suggesting that human macrophage/cryptococcal
interactions are more complex than what has been observed
previously (reviewed in Barber et al., 2012). Macrophages
themselves have a dual role within the immune system
which includes both inflammatory (fungicidal) and non-
inflammatory (tissue repair) functions (reviewed in Heung,
2017). The regulation and switching between the two activation
phenotypes is controlled by cytokines in the local milieu (Davis
et al., 2013). As discussed with murine macrophages, M1
or classical activation is thought to be protective against
C. neoformans, while the M2 phenotype or alternative

activation allows for cryptococcal survival (reviewed in
Leopold Wager et al., 2016).

Human Pulmonary Macrophages
Human pulmonary macrophages, like murine macrophages,
also have distinct subsets within the lung, identified by cell
surface markers and transcriptional regulation (Patel et al., 2017).
Thesemacrophage subsets consist of alveolarmacrophages (AFhi,
CD11c+), BDCA1− CD14+ macrophages, and BDCA1− CD14−

macrophages (Patel et al., 2017) (Table 2). Early studies examined
human alveolar macrophages (AMs) and their interactions
with C. neoformans. Weinberg et al. showed that human AMs
had either fungistatic or fungicidal activity in response to an
in vitro fungal challenge depending on the presence of serum.
In order to be fungistatic, these resident phagocytes did not
require stimulation, serum, or opsonizing antibody. However,
for fungicidal activity, the addition of serum and phagocytosis
by AMs was required (Weinberg et al., 1987). In other studies,
human AMs inhibited cryptococcal replication, which requires
serum but does not require activation of macrophages by L-
arginine or endotoxin (Cameron et al., 1990). Furthermore, this
activity did not produce any detectable levels of nitric oxide
or arginase activity nor was it enhanced by IFN-γ (Cameron
et al., 1990; Vecchiarelli et al., 1994). In contrast, another
study concluded that unstimulated AMs could not effectively
kill C. neoformans due a lack of phagosome-lysosome fusion
(Vecchiarelli et al., 1994). AMs did induce proliferation of
autologous T cells by antigen presentation through HLA-DR.
However, the authors did note that T cell proliferation may be
caused by memory T cell populations, due to the ubiquitous
nature of the organism and presumed previous interactions
between donors and C. neoformans (Vecchiarelli et al., 1994).

Human PBMC-Derived Macrophages
Due to difficulty in obtaining human pulmonary macrophages,
only a few studies have examined their interaction with
C. neoformans. Instead, the more readily available peripheral
blood mononuclear cells (PBMCs) can be differentiated into
macrophages in vitro. While not tissue resident lung immune
cells, PBMC-derived monocytes and macrophages provide
an approximation of pulmonary macrophage responses to a
cryptococcal challenge. Some of the first work with human

TABLE 2 | Markers for human macrophage and dendritic cell subsets.

Alveolar

macrophages

BDCA1− CD14+

macrophages

BDCA1− CD14−

macrophages

Langerin+

DCs

BDCA1+ CD14+

DCs

BDCA1+ CD14−

DCs

Autofluorescence hi lo lo lo lo lo

HLA-DR + + + + + +

Langerin − − − + − −

CD11c + + + − + +

CD14 − + − − + −

BDCA1 − − − − + +

Human pulmonary macrophages are divided into 3 subsets and pulmonary DCs are divided into 3 subsets based on cell surface expression of multiple markers (Demedts et al., 2005;

Patel et al., 2017).
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PBMC-derived macrophages and C. neoformans was in 1973 by
Diamond and Bennet who showed that macrophages cultured
from PBMCs were able to phagocytose the fungus but were
unable to kill it effectively (Diamond and Bennett, 1973). In
fact, these “poorly encapsulated” intracellular cryptococcal cells
grew more rapidly when compared to an extracellular control
(Diamond and Bennett, 1973). Later studies showed that the
effectiveness of PBMC-derived monocytes to inhibit the fungus
depends upon culture surface, opsonins, cytokines, and the
presence of the polysaccharide capsule (Levitz and Farrell, 1990).
For opsonization, binding to the capsule either by specific
antibodies or with complement components is required. In the
absence of cryptococcal-specific antibodies, fungal opsonization,
and phagocytosis is mediated primarily through complement
(Levitz and Tabuni, 1991).

Upon phagocytosis, the endosome containing C. neoformans
fuses with the lysosome, which acidifies the pH of the
compartment to ∼5.0 (Levitz et al., 1999). This is unlike
many other intracellular organisms that attempt to avoid this
fusion and subsequent drop in pH. Chlamydia, Coxiella, and
Mycobacterium and are among several different bacteria that
escape the phagosome-lysosome fusion by different means
and replicate intracellularly outside of the acidic lysosome
(reviewed in Mitchell et al., 2016). However, during a
cryptococcal infection, the phagolysosome goes through the
normal maturation process and acidification that does not inhibit
fungal growth (Qin et al., 2011). In fact, alkalinization with
either chloroquine, or ammonium chloride markedly inhibited
the growth of both intracellular cryptococcal cells and free-living
cryptococcal cells in media (Levitz et al., 1997). Interestingly,
more recent studies in human PBMC-derived macrophages
have shown that C. neoformans can prevent maturation and
complete acidification of the phagosome, calcium flux, and
protease activity, making the environment more favorable
for cryptococcal growth (Smith et al., 2015). Although these
studies seem contradictory, each had different criteria for
describing acidification—the Levitz et al. paper described the
phagosome as pH 5.0 (Levitz et al., 1999), the paper by
Smith et al. posits that the phagosome is prevented from
complete maturation/acidification (Smith et al., 2015), as the
pH of the macrophage phagosome can go as low as pH 4.3
(Chen, 2002).

Escape mechanisms by C. neoformans from cell line
macrophages, murine macrophages, and human macrophages
were described in 2006 in which following non-lytic cryptococcal
exocytosis (vomocytosis), both pathogen and host appear
morphologically normal and continue to function (Alvarez and
Casadevall, 2006; Ma et al., 2006). This function is mediated by
the canonical Arp2/3 complex and is suppressed by the MAP
kinase ERK5 (Johnston and May, 2010; Gilbert et al., 2017).
Inhibition of ERK5 increases vomocytosis, while stimulation of
ERK5 decreases vomocytosis (Gilbert et al., 2017). In addition,
donor-to-donor macrophage variation has been observed in
both intracellular proliferation rates as well as vomocytosis rates
(Garelnabi et al., 2018). Interestingly, these variations did not
depend on gender, cytokine profiles, or gene polymorphisms
(Garelnabi et al., 2018).

HUMAN DENDRITIC
CELL/CRYPTOCOCCUS INTERACTIONS

While it has been known for some time that dendritic cells (DCs)
are present throughout the human lung, they are difficult to
study due the problems associated with acquiring them from
healthy donors (Sertl et al., 1986; Demedts et al., 2005). As with
human pulmonary macrophages, pulmonary DC subsets have
been identified (Patel et al., 2017) (reviewed in Condon et al.,
2011). Three subsets of conventional pulmonary DCs in a non-
diseased lung have been identified by transcriptional profiling
and flow cytometry as Langerin+ DCs, BDCA1+ CD14+ DCs,
and BDCA1+ CD14− DCs (Demedts et al., 2005; Patel et al.,
2017) (Table 2). However, as with human macrophages, most
human DC studies have focused on using PBMC-derived DCs
with C. neoformans.

Human PBMC-Derived DCs
Early studies focused onDCmaturation and antigen presentation
following phagocytosis of the fungus. Interaction of acapsular
strains of C. neoformans with DCs induced surface expression
of DC maturation markers including MHC class I and II and
the costimulatory markers CD40 and CD83 (Vecchiarelli et al.,
2003).Without the addition of an anti-GXMopsonizing antibody
or complement, a fully encapsulated strain was unable to induce
this DC maturation. This would prevent the subsequent T cell
responses necessary for clearance of the pathogen. Engagement
of additional receptors may contribute to the maturation of
DCs and future investigations should examine this. Three
cryptococcal mutants, lacking a visible capsule due to a defect
in GXM synthesis (serotype A cap10 and cap59, and serotype
D CAP67), were also tested for DC maturation (Grijpstra
et al., 2009). The cap10 mutant was unable to induce DC
maturation, while the cap59 and CAP67 strains were able to
induce DC maturation as shown by increased expression of the
costimulatory markers CD80 and CD86 as well as increased
production of IL-10 and TNF-α. Interestingly, the cap59 mutant
lost this ability when co-cultured with wild type C. neoformans,
suggesting that intact GXM is not required to prevent DC
maturation (Grijpstra et al., 2009).

Phagocytosis of the fungus with anti-GXM antibody occurs
following recognition via FcγRII (CD32) and FcγRIII (CD16)
(Vecchiarelli et al., 2003; Wozniak and Levitz, 2008). However,
receptor binding alone is not enough to induce maturation.
Phagocytosis via complement also induced similar maturation
patterns; however, heat-treated serum abrogated this, indicating
a role for the heat-labile complement components (Kelly
et al., 2005). Additional cryptococcal surface molecules include
mannosylated glycoproteins known as mannoproteins that make
up a large portion of the fungal cell wall (reviewed in Mansour
and Levitz, 2003; Levitz and Specht, 2006). Similar to the
phagocytosis of acapsular C. neoformans, mannoproteins are
also able to induce DC maturation by induction of CD80,
CD86, CD40, CD83 and the inhibition of the CD14, CD16,
and CD32 receptors (Pietrella et al., 2005). In addition, these
DCs are induced to secrete IL-12 and TNF-α, which are both
important in anti-cryptococcal responses (Pietrella et al., 2005).
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These mannoproteins are recognized by C-type lectin receptors
such as DC-SIGN (CD209) andmannose receptor (MR) (CD206)
(Mansour et al., 2006).

Similar DC maturation studies have been investigated with
Cryptococcus gattii, which can cause fatal infections in otherwise
healthy individuals. It has been shown that DCs can effectively
phagocytose and kill C. gattii (Huston et al., 2013). However,
DC maturation does not occur, preventing a T cell-mediated
response and its anti-cryptococcal effects. This is marked by a
lack of expression of MHC class II, CD86, CD83, CD80, and
CCR7, and a lack of TNF-α production (Huston et al., 2013).
Addition of recombinant TNF-α or other stimulation resulting
in the production of TNF-α leads to the maturation of DCs
and restoration of T cell responses. Similar to C. neoformans,
an acapsular C. gattii cap59 mutant was able to induce DC
maturation and T cell responses (Huston et al., 2016). This
maturation is dependent on signaling with TNF-α and p38
MAPK, but not ERK activation (as is the case with macrophages).

Upon recognition with either antibody or complement,
phagocytosis by PBMC-derived DCs occurs through the
conventional zipper mechanism (Wozniak and Levitz,
2008). Human PBMC-derived DCs can rapidly phagocytose
C. neoformans and localize it to LAMP-1+ lysosomal
compartments (Wozniak and Levitz, 2008). Providing evidence
that contents of the human DC lysosome is fungicidal, purified
DC lysosomal extract from human DCs can kill the fungus
in vitro (Wozniak and Levitz, 2008). The exact molecules
and mechanisms are not completely known, however, there is
evidence that lysosomal enzymes such as human cathepsin B can
kill C. neoformans in vitro (Hole et al., 2012). Antifungal activity
of human PBMC-derived DCs is reduced by inhibitors of reactive
oxygen species (ROS), and opsonized C. neoformans elicits the
release of TNF-α but not IL-10 (Kelly et al., 2005). In addition,
antifungal activity of blood-derived human plasmacytoid DCs
(pDCs) is not dependent on ROS or on recognition by Dectin

3 (in contrast to murine pDCs), leaving the mechanism of
anti-cryptococcal activity unknown (Hole et al., 2016).

Future Questions and Conclusions
While much has been learned about phagocyte-cryptococcal
interactions over the years using cell lines and non-pulmonary
primary macrophages, and DCs, differences have been observed
between cell lines, and primary cells, and even between
primary cells (from bone marrow or PBMCs) and pulmonary
macrophages, and DCs. Differences in the origin of cell types
and even environmental difference in specific organs/tissues
are far too great to ignore. Future studies will need to focus
on subsets of pulmonary phagocytic cells in order to better
understand the interactions between pulmonary phagocytes
and the fungal pathogen Cryptococcus neoformans. Especially
considering that different outcomes have been described with
pulmonary phagocytic subsets of mice and human in regards to
bacterial pathogens, it is important to identify the interactions
of these subsets with fungal pathogens. Understanding these
tissue-relevant primary macrophages and DCs and their
interactions with C. neoformans may lead to the development of
immunotherapies to combat this deadly fungal infection.
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