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ABSTRACT: Cholesterol is a vital component of the human body. It stabilizes cell membranes and is the precursor of bile 

acids, vitamin D and steroid hormones. However, cholesterol accumulation in the bloodstream (hypercholesterolemia) can 

cause atherosclerotic plaques within artery walls, leading to heart attacks and strokes. The efficiency of cholesterol ab-

sorption in the small intestine is of great interest because human and animal studies have linked cholesterol absorption 

with plasma concentration of total and low density lipoprotein cholesterol. Cholesterol absorption is highly regulated and 

influenced by particular compounds in the food supply. Therefore, it is desirable to learn more about natural food compo-

nents that inhibit cholesterol absorption so that food ingredients and dietary supplements can be developed for consum-

ers who wish to manage their plasma cholesterol levels by non-pharmacological means. Food components thus far identi-

fied as inhibitors of cholesterol absorption include phytosterols, soluble fibers, phospholipids, and stearic acid. 
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INTRODUCTION

Cholesterol is an essential component of the human 

body. Cholesterol functions in a variety of capacities in-

cluding, but not limited to, stabilizing cell membranes 

and serving as precursor for bile acids, vitamin D, and 

steroid hormones. Every cell of the human body can syn-

thesize cholesterol when needed, but cells cannot catab-

olize cholesterol by oxidative processes. Therefore, any 

excess cholesterol must be transported to the liver, se-

creted into bile (as cholesterol or bile acids), and elimi-

nated from the body by the intestinal route. Whole body 

cholesterol metabolism is in a delicate balance. When 

imbalances occur, cholesterol can accumulate in the gall-

bladder promoting gallstone formation. Cholesterol ac-

cumulation in the bloodstream (hypercholesterolemia) 

can cause atherosclerotic plaques to form within artery 

walls. 

The discovery of transporters, receptors, and enzymes 

specific to cholesterol metabolism has changed our un-

derstanding of how sterols are absorbed into the body. 

The transport of cholesterol and phytosterols into the 

enterocyte is a tightly regulated process (Fig. 1). From a 

health standpoint, the efficiency of cholesterol absorp-

tion and the crosstalk with the processes of cholesterol 

and lipoprotein synthesis is of great interest, as many 

studies have linked cholesterol absorption with plasma 

total and low density lipoprotein (LDL) cholesterol con-

centration (1-5). This link is so important that a class of 

drugs was developed that blocks the intestinal absorp-

tion of cholesterol and, consequently, lowers plasma LDL 

cholesterol concentration. This class of drugs has also 

helped researchers elucidate some of the mechanisms of 

cholesterol transport at the cellular level (6,7). One of 

the drugs, ezetimibe, has become an important therapy 

in managing LDL cholesterol levels in individuals who 

can tolerate drug therapy. However, because drugs can 

produce severe side effects, it is desirable to learn more 

about natural food components that inhibit cholesterol 

absorption so that food ingredients and dietary supple-

ments can be developed for consumers who wish to man-

age their plasma cholesterol levels by non-pharmacologi-

cal means. Mc Auley et al. (8) developed a mathematical 

model of whole body cholesterol metabolism and the 

dysfunction that can follow with aging. The authors hy-

pothesized that their model could be used to evaluate 

the effects of lifestyle modifications, such as phytosterol 

and fiber intake, to inhibit cholesterol absorption and ul-

timately the potential for lowering plasma LDL choles-

terol. 

When foods are consumed, cholesterol arrives in the 

small intestine from both the diet and bile (Fig. 1). Die-
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Fig. 1. Transport of cholesterol (CHOL) and phytosterols (PS) in the intestinal lumen, enterocytes, hepatocytes, and plasma. Dietary 
CHOL and PS mix with biliary CHOL from the gallbladder to form micelles within the intestinal lumen. The micelles also contain 
other digested lipids that are transported to the brush border where the lipids are delivered to the enterocyte. Specific transporters, 
scavenger receptor class B type I (SR-BI) and Neiman-Pick C1 Like 1 (NPC1L1), transport the majority of CHOL and PS into the 
enterocyte. However, nearly all of the PS is redirected back to the intestinal lumen by the transporters ATP binding cassette (ABC)
transporter G5 and G8 (ABCG5 and ABCG8, respectively) for excretion from the body. Some CHOL may also be transported back 
into the intestinal lumen by ABCG5 and ABCG8, although evidence for this is less conclusive. About half of the CHOL is packaged 
into lipoproteins and transported into the lymphatic system and eventually the bloodstream for delivery to the liver. Consequently, 
cholesterol absorption efficiency is generally estimated to be about 50∼60%.

tary cholesterol accounts for approximately 300 mg/d (9- 

11), whereas biliary cholesterol is estimated to contrib-

ute 800∼1,400 mg/d (12,13). The liver－not the diet－ 

is therefore the primary source of cholesterol available 

for intestinal absorption, a point that is often underap-

preciated. Consequently, therapies that block cholesterol 

absorption are effective at lowering LDL cholesterol 

mainly because they prevent the reabsorption of endoge-

nous cholesterol back to the liver. This explains why in-

dividuals who consume no animal products (i.e., no cho-

lesterol) will also experience reductions in LDL choles-

terol when given absorption-blocking therapies.

Biliary cholesterol enters the small intestine unesteri-

fied, along with the other major components of bile 

(phosphatidylcholine and bile acids). As the components 

of bile mix with dietary lipids, micelles form spontane-

ously. Micelles are lipid aggregates that form when a 

critical concentration of lipid from bile mixes with lipids 

entering the small intestine from the diet. Bile acids act 

as detergents allowing the lipids to “dissolve” in an aque-

ous environment, facilitating their delivery to the brush 

border. The proportion of bile acids, phospholipid, and 

cholesterol must be maintained within a specific range to 

optimize the formation of micelles in the lumen of the 

intestine (14). 

Furthermore, bile acids are required for the micellar 

solubilization of cholesterol, but are also synthesized 

from cholesterol within the hepatocyte. After micelles 

have facilitated the solubilization, digestion, and absorp-

tion of lipids in the proximal small intestine, bile acids 

are reabsorbed in the distal small intestine (ileum) by 

the apical sodium-dependent bile acid transporter specif-

ic bile acid transporter, ASBT (15). Pharmaceutical com-

pounds known as bile acid sequestrants (cholestyramine 

and colestipol) are effective at lowering plasma LDL cho-

lesterol because they promote intestinal bile acid excre-

tion, which limits their reabsorption, and results in the 

liver using more cholesterol for bile acid synthesis. This 

increased demand for cholesterol in the liver causes an 

upregulation of LDL uptake from the plasma, thus re-

sulting in lower plasma LDL cholesterol concentration. In 

this pathway, micelle formation and cholesterol absorp-

tion is not affected by treatment with bile acid seques-

trants or inhibition of ASBT, because the liver compen-

sates for the reduced bile acid reabsorption by increasing 

the synthesis of bile acids (16,17). This allows the total 

bile acid pool size to remain unchanged, even though the 

turnover of bile acids due to pharmaceutical or dietary 

factors is much greater.

The discovery of intestinal cholesterol transporters has 

been a key component to the continued understanding 

of cholesterol absorption. Transport into enterocytes is 

mediated by a specific transporter, Neiman-Pick C1 Like 

1 (NPC1L1) protein in the proximal small intestine and 

has been shown to be inhibited by the pharmaceutical 

ezetimibe (6). NPC1L1 also transports dietary phytos-
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terols into the enterocyte. Davis et al. (18) first demon-

strated NPC1L1 knockout mice have significantly reduced 

uptake of cholesterol and phytosterols, compared to wild 

type mice. Cholesterol and phytosterols are utilized quite 

differently once taken up into the enterocyte. Despite 

the ability of NPC1L1 to transport both cholesterol and 

phytosterols, less than 1% of dietary phytosterols enter 

the circulation, whereas 50∼60% of intestinal cholester-

ol enters the circulation. This alternate processing of 

phytosterols is due to the ATP binding cassette (ABC) 

transporter G5 and G8 (ABCG5 and ABCG8, respective-

ly) effectively secreting phytosterols back into the lumen 

of the intestine (19-21). Though the role of intestinal 

ABCG5 and ABCG8 in cholesterol transport is not well 

studied, there is some support to the hypothesis that 

upregulating intestinal ABCG5 and ABCG8 transporters 

will divert more cholesterol from the enterocyte back in-

to the intestinal lumen, effectively creating an anti-hy-

perlipidemic effect (22). Yet the potential inability (or di-

minished ability) of cholesterol to interact with ABCG5 

and ABCG8 is one possible explanation for the differenti-

al absorption rates between cholesterol and phytosterols.

Dietary components reduce cholesterol absorption 

through one or more mechanism and a primary mode of 

inhibiting cholesterol absorption is through the binding 

of bile acids and disrupting the formation of micelles. 

When dietary lipids are consumed, all of the components 

of the micelle are transported from the lumen of the in-

testine to the brush border. While absorption of dietary 

triacylglycerol is absorbed very efficiently (90∼100%); 

cholesterol absorption is generally found to be less well 

absorbed at a rate of 50∼60% (23). Although the impact 

on whole body cholesterol balance may be slight, there 

is evidence to support the hypothesis that biliary choles-

terol is absorbed more efficiently than dietary cholester-

ol, due to its association with the bile acids and phos-

pholipid in bile (24).

The following sections of this review focus on specific 

dietary components that inhibit cholesterol absorption 

through known or hypothesized mechanisms. 

PHYTOSTEROLS

Phytosterols are structural components of plant cell 

membranes and function similarly to cholesterol in ani-

mal cells. The most abundant phytosterols are sitosterol, 

campesterol, and stigmasterol, with the structural differ-

ences occurring in the side chain attached to the steroid 

ring. Plant stanols are saturated sterols (i.e., no double 

bond in the steroid ring) and are much less abundant in 

nature compared to their corresponding sterols. In the 

human diet, phytostanols comprise about 5∼10% of the 

total sterol/stanol present (10,25,26). Due to their low 

abundance in the diet, phytostanols are often reported 

as a part of the total “phytosterol” content of a particular 

food or dietary intake. Western societies consume about 

200∼300 mg phytosterols per day (10,25-30), whereas 

Asian and vegetarian diets provide higher amount of 

phytosterols in the diet (31,32).

The cholesterol lowering properties of dietary phytos-

terols have been known for decades. Moderate levels of 

phytosterols consumed in usual diets probably exert 

some minimal effect on cholesterol absorption, although 

higher amounts (1∼3 g/d) are needed to produce signif-

icant reductions in plasma LDL cholesterol. As a thera-

peutic food ingredient, phytosterols/stanols are often es-

terified with long-chain fatty acids to increase their solu-

bility for incorporation into food products. Meta-analyses 

have consistently shown that intake of 1∼3 g/d of phy-

tosterol (or stanol) esters lowers plasma LDL cholesterol 

concentration up to 15% compared to placebo (33-36). 

An inverse dose response relationship exists between 

phytosterol/stanol ester intake and LDL cholesterol con-

centration, but tapers off at intakes above 3 g/d with lit-

tle added benefit at higher intakes (37). 

The mechanisms whereby phytosterols inhibit choles-

terol absorption are not entirely clear and likely includes 

multiple pathways to disrupt cholesterol absorption. Pro-

posed mechanisms include the inhibition of cholesterol 

ester hydrolysis; competition with cholesterol for solubi-

lization into mixed micelles; co-crystallization of choles-

terol and phytosterols; competition for transport across 

the apical membrane of enterocytes; and impaired intra-

cellular re-esterification of cholesterol by acyl-coenzyme 

A:cholesterol acyltransferase-2 (ACAT-2) for incorpora-

tion into chylomicrons and secretion into the lymphatic 

system.

First, the interaction of phytosterol esters with diges-

tive enzymes is a possible point of regulation, although 

the extent of interaction is still uncertain. On one hand, 

Nissinen et al. (38) demonstrated that high levels of si-

tostanol esters infused into healthy subjects were rapidly 

hydrolyzed and incorporated into micelles, causing cho-

lesterol and its esters to accumulate in the oil phase. 

Preferential interaction of phytosterol esters with diges-

tive enzymes would also preclude dietary cholesterol es-

ters from hydrolysis, further limiting cholesterol absorp-

tion. In contrast, it has been suggested that phytosterol 

esters are poorly hydrolyzed by digestive enzymes (39). 

If the phytosterol esters remain intact within the intesti-

nal lumen, they could attract other lipophilic compounds, 

including cholesterol and cholesterol esters, and carry 

them to distal parts of the intestinal where cholesterol 

absorption is much less efficient. Absorption of dietary 

cholesterol esters is dependent upon hydrolysis by pan-

creatic cholesterol esterase (PCE) to yield free cholester-

ol and a free fatty acid. The free cholesterol is then solu-
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bilized by bile to form mixed micelles in the lumen of 

the intestine (40). PCE is responsible for the hydrolysis 

of both cholesterol and phytosterol esters. One study 

has found that both sterol and fatty acid components of 

a sterol ester influence the rate of hydrolysis by PCE, 

with cholesterol esters having the highest rate of hydrol-

ysis by PCE, followed by sitosterol, stigmastanol, and 

stigmasterol esters (41). The authors hypothesized that 

PCE may play a discriminatory role in the hydrolysis of 

sterol esters, specifically phytosterols that can compete 

with cholesterol for incorporation into mixed micelles. 

In a similar study, phytosterol esters fed to hamsters 

were effective at inhibiting cholesterol absorption if the 

phytosterol esters were hydrolyzed and the free sterol 

was allowed to compete with cholesterol for incorpora-

tion into micelles (42). Further research is clearly needed 

to resolve this issue.

Second, as mentioned previously, micelles play a key 

role in lipid absorption, acting as vehicles that transport 

both lipophilic and amphiphilic compounds towards the 

intestinal wall. Cholesterol not dissolved in micelles will 

form a separate oil phase within the intestinal lumen, 

making it generally unavailable for absorption (43). Us-

ing model bile solutions in vitro, Ikeda and coworkers re-

ported that cholesterol solubility was significantly de-

creased in the presence of sitosterol (44-46). They fur-

ther demonstrated that sitosterol, infused with choles-

terol into rat intestinal tracts as an artificial “bile” mix-

ture, significantly reduced cholesterol absorption in vivo 

(45). Armstrong and Carey (40) conducted a thermody-

namic analysis of micellar solubilities and found that si-

tosterol, compared to cholesterol, had a higher binding 

affinity for micelles. In vitro studies in our laboratory sug-

gest that the higher affinity of phytosterols causes choles-

terol to be displaced from the micelle (47). Heinemann 

et al. (48) published an intestinal perfusion study in 

healthy volunteers and found that both sitosterol and si-

tostanol reduced cholesterol absorption by disrupting 

cholesterol solubility in micelles. In another infusion 

study, Nissinen et al. (38) observed that in subjects re-

ceiving either high or low amounts of plant stanol esters, 

cholesterol solubility in micelles was decreased due to 

displacement by plant stanols. Using a variety of in vitro 

techniques, Mel’nikov et al. (49) found the both sitoster-

ol and sitostanol reduced the concentration of cholester-

ol in dietary mixed micelles via a dynamic competition 

mechanism. These investigators further concluded that 

cholesterol, sitosterol and sitostanol compete equally for 

solubilization in micelles. While there is general agree-

ment that phytosterols compete with cholesterol during 

micelle formation, the degree of solubilization likely de-

pends on the composition of other lipids－dietary and 

biliary－present in the intestinal lumen (14).

The third proposed mechanism whereby phytosterols 

reduce cholesterol absorption is co-crystallization of cho-

lesterol with phytosterols. The concept that co-crystal-

lization would render cholesterol unavailable for absorp-

tion has been considered for some time, but the data are 

quite limited. Christiansen et al. (50) investigated the 

solubility and phase behavior of sitosterol and cholester-

ol (and mixtures thereof) in the presence and absence of 

water. As expected, the solubility of both sitosterol and 

cholesterol were significantly reduced in water-acetone 

solutions compared to acetone alone, but the decrease in 

solubility was much greater with sitosterol. When mix-

tures of cholesterol/sitosterol in ratios of 3:1, 1:1, and 1:3 

were co-precipitated from the water-acetone solution, the 

total sterol solubility decreased with increasing propor-

tions of sitosterol, suggesting that the more hydropho-

bic sitosterol promotes co-crystallization with cholester-

ol. Under more realistic conditions, Mel’nikov et al. (51) 

examined the co-crystallization properties of cholesterol 

/sitosterol and cholesterol/sitostanol mixtures from tri-

glyceride oil that was hydrolyzed to mimic the intestinal 

environment during digestion. However, during lipoly-

sis of the model dietary emulsions, no crystal formation 

was detected. The researchers concluded that the solu-

bility of sterols significantly increased in the products of 

lipid hydrolysis and that their solubility increased in par-

allel with solvent polarity (free fatty acids> diglyceride 

oil> triglyceride oil). These results suggest that co-crys-

tallization of phytosterols and cholesterol may not occur 

to a great extent in vivo and would not be a major con-

tributor in reducing cholesterol absorption (51). 

The fourth proposed mechanism involves the regu-

lation of the intestinal transporters NPC1L1, ABCG5, 

and ABCG8. As described earlier, NPC1L1 resides in the 

brush border membrane and transports both cholesterol 

and phytosterols into the enterocyte (6,18,52-54), where-

as ABCG5 and ABCG8 transport phytosterols and possi-

ble cholesterol back to the intestinal lumen (21). In this 

way, phytosterols could compete with cholesterol for 

binding to NPC1L1, although direct evidence for this is 

lacking. It is also possible that phytosterols could inhibit 

gene expression of NPC1L1 (55) or, conversely, enhance 

expression of ABCG5 and ABCG8, which could promote 

cholesterol efflux if, indeed, cholesterol is transported 

by ABCG5 and ABCG8. However, Field et al. (56) re-

cently reported that NPC1L1 mRNA was not changed in 

hamsters fed plant stanols. They also found that ABCG5 

and ABCG8 mRNA was decreased by plant stanols rath-

er than increased, suggesting that the cholesterol low-

ering effect of plant stanols (and sterols) is unrelated to 

changes in gene expression of NPC1L1, ABCG5, or 

ABCG8. The study by Field et al. (56) does not exclude 

the possibility that unknown transporters of cholesterol 

are regulated by phytosterols.

The fifth possible mechanism, in which intestinal 



Foods That Inhibit Cholesterol Absorption 71

ACAT-2 is inhibited by phytosterols, is based on the dif-

ferential affinities of sterols for the enzyme. ACAT iso-

forms have been shown to have significantly lower sub-

strate specificity for phytosterols than for cholesterol 

(57-59), resulting in more unesterified phytosterol being 

available for return to the intestinal lumen (via ABCG5/ 

ABCG8). However, this difference in specificity does not 

appear to be an important mechanism for lowering cho-

lesterol absorption as the presence of sitosterol along 

with cholesterol did not inhibit cholesterol esterification 

(45,57). While the difference in sterol specificity may ac-

count for very low plasma concentration of phytosterols 

in humans, inhibition of ACAT-2 is unlikely a major 

mechanism for reduction in cholesterol absorption.

SOLUBLE FIBERS

Dietary fiber is defined as consisting of nondigestible 

carbohydrates and lignin that are intrinsic and intact in 

plants (60). While dietary fiber is consumed as a part of 

plant material, functional fiber is used as an added in-

gredient in manufactured food products. The Institute of 

Medicine’s Food and Nutrition Board has defined fiber 

accordingly: “dietary fiber” consists of nondigestible car-

bohydrates that are intrinsic and intact in plants, where-

as “functional fiber” consists of isolated nondigestible 

carbohydrates that have beneficial physiological effects 

in humans (61).

Fibers are also categorized by their solubility in water. 

Insoluble fibers are found mainly in cell walls of plants 

and include cellulose, some hemicelluloses and lignin. 

Good sources of insoluble fiber are vegetables, legumes, 

whole wheat (particularly bran), nuts, and seeds. Though 

insoluble fibers have some capacity to hold water, much 

of insoluble fibers impact on the gastrointestinal tract is 

due to added dietary “bulk” that increases both the rate 

of transit through the gastrointestinal tract and fecal vol-

ume. Alternate terms have been suggested by the Insti-

tute of Medicine. It was proposed to use “viscous fiber” 

instead of soluble fiber, and “fermentable fiber” instead 

of insoluble fiber to describe the physiochemical proper-

ties of fiber. Interestingly, previous evidence indicates 

insoluble fibers have little impact on cholesterol concen-

trations (62). More recent evidence shows carrot insolu-

ble fiber consumption results in significant reductions in 

serum triacylglycerol and serum and liver cholesterol, 

while increasing fecal cholesterol and bile acid excretion 

(63). 

In contrast to insoluble fiber adding to fecal bulk, sol-

uble fiber is attracted to water in the intestine and forms 

a viscous matrix that in turn leads to a variety of effects 

on the body. Although soluble fibers are both viscous and 

fermentable, the independent role of viscosity in reduc-

ing cholesterol absorption has been clearly demonstrated 

(4). The consumption of fiber rich foods, specifically sol-

uble fiber, has been associated with improvements in 

diabetes (64), plasma LDL concentrations and coronary 

heart disease (65,66), and gastrointestinal health of pa-

tients with intestinal cancers (67). Much of the evidence 

supporting soluble fibers contribution to improving cor-

onary heart disease is due to their ability to inhibit cho-

lesterol absorption. The hypolipidemic and cardioprotec-

tive effects have been documented feeding trials in ani-

mal (68,69), human (70,71), and systematic reviews and 

meta-analyses (72,73). Furthermore, the U.S. Food and 

Drug Administration has issued statements supporting 

the consumption of dietary fiber in the prevention of both 

cancer and coronary heart disease (74,75).

Soluble fibers can be considered both dietary and func-

tional fibers as they are in native foods and used as addi-

tives in food products. These include pectin, β-glucans, 

fructans, gums, and resistant starch (RS) (i.e., resistant 

to digestion by mammalian enzymes). The pectin family 

has excellent binding and gel-forming properties and has 

been used widely in the food industry as a food additive 

as a thickener, gelling agent, or health supplement. A re-

cent study examining the effect of adding pectin to the 

diet of male Syrian hamsters on high-cholesterol diet 

showed significant reductions in plasma and liver lipids 

(triacylglycerol and cholesterol), and significant increases 

in fecal lipids (cholesterol, triacylglycerol, and bile acids) 

(76). The authors concluded that the soluble dietary fi-

ber included in the diet decreased plasma lipids by re-

ducing lipid absorption in the intestine. 

β-Glucans are found in cereal brans, especially oats 

and barley, and in yeast, the latter being an important 

commercial source (77). β-Glucans provide thickening 

properties when used as a food ingredient. A randomized 

controlled trial was designed to identify the physiologi-

cal effects of concentrated oat β-glucans in humans. The 

trail targeted outcomes related to cardiovascular disease 

risk by measuring serum total cholesterol, LDL-choles-

terol, high density lipoprotein (HDL)-cholesterol, triac-

ylglycerol, apolipoprotein A-1, and apolipoprotein B. Af-

ter the six-week trial was completed, oat β-glucans sig-

nificantly reduced total cholesterol and LDL-cholesterol 

(78). Although fructans are soluble in water, they do not 

have the typical gel-forming or ion- binding properties of 

other soluble fibers (79). Fructans are primarily known 

for their ability to support the growth of beneficial intes-

tinal microflora, rather than contributing to the physical 

characteristics of food products (80).

Gums are consumed as both dietary fiber from leg-

umes, oats, and barley, and as functional fibers. Gums 

consumed as a functional fiber are extracted from seeds, 

seaweed, plant exudates, and microbial fermentation and 

are used for their ability to provide thickening, stability, 
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emulsification, and glossy appearance to food products 

(81). Gums have long been shown to reduce plasma cho-

lesterol in humans (82) and animals (83). More recent 

evidence in rats fed diets enriched with cluster beans for 

eight weeks found significant reductions in serum total 

cholesterol and LDL-cholesterol when compared to the 

respective chow fed controls or high cholesterol diet con-

trols (84). Furthering this point, a confirmatory study 

feeding gum arabic for six months to a Sudanese patient 

population with newly discovered hyperlipidemia found 

significant reductions in total cholesterol, LDL-choles-

terol, and triacylglycerol (85).

RSs are found in a wide variety of plant-based foods 

and are a low calorie, prebiotic dietary fiber. RSs are 

classified into four categories (RS1, RS2, RS3, and RS4) 

based on their physiochemical properties. When added 

as a food ingredient, RSs can impart viscosity to the final 

product. Several types of RS are commercially available 

and may be used as functional fibers to improve intes-

tinal health (86). RS4 is of particular interest, as this RS 

is of the crosslinked type and when added to food, it has 

little impact on the physiochemical and organoleptic 

properties final product. Additionally, RS4 has some 

gastrointestinal side effects such as bloating (87,88). In a 

double blind controlled crossover trail, 86 men and wom-

en were given flour containing RS4. The authors reported 

significant reductions in total cholesterol, non-HDL cho-

lesterol, LDL cholesterol, and HDL cholesterol (89).

The mechanism of action by which dietary fibers pro-

tect against cardiovascular disease has not been fully elu-

cidated. Many hypotheses have been proposed as to how 

dietary fiber reduces the risk of cardiovascular diseases. 

Examples of the potential mechanism of action include 

the interaction with and fermentation of fiber by gut bac-

teria (90,91), delayed gastric emptying (92), increased 

muscle glucose transporter type 4 expression and glucose 

uptake (93), decreased absorption of dietary fats (94), 

and increased excretion of fecal cholesterol (95). Unfor-

tunately, there is some inconsistency in the published 

data regarding the effects of soluble fiber. For example, 

guar gum was reported to decrease cholesterol absorp-

tion in some studies (96,97), but not in others (98,99). 

Similarly, pectin was shown to inhibit cholesterol ab-

sorption in some studies (83,96), while others found no 

effect of pectin on absorption (100,101). The amount of 

soluble fiber consumed, chemical and physical modifica-

tion of the fibers, and the composition of the background 

diet are variables that can affect the research outcomes. 

Despite the variable outcomes reported in the litera-

ture, viscous soluble fibers consistently showed improve-

ments in cardiovascular disease outcomes. Viscous fibers 

were shown to increase the thickness of the unstirred 

water-layer in humans (102,103), as well as reduce the 

amount of cholesterol appearing in the lymph of cannu-

lated rats (46,96). While others have reported increased 

bile acid output in hamsters fed psyllium and suggest 

that increased viscosity of the gastrointestinal contents 

may have disrupted micelle formation and promoted bile 

acid excretion (104,105). While the precise mechanism 

of action of soluble fibers has not been elucidated yet, 

the most prominent mechanism of action is likely due to 

the ability of soluble fibers to form a viscous matrix 

within the gastrointestinal tract that impedes cholesterol 

uptake in the enterocyte.

PHOSPHOLIPIDS

Phospholipids are a group of amphipathic molecules in 

which long acyl chains form a hydrophobic region, while 

a hydrophilic region is formed by a phosphate-contain-

ing “head” group. The acyl chains can be highly variable; 

phospholipids from animals tend to be more saturated 

than those of plant origin. Molecules that comprise the 

polar head group are typically choline, ethanolamine, se-

rine, or inositol, although choline is mostly frequently 

found in both plant and animal phospholipids. Because 

of their unique chemical structure, phospholipids spon-

taneously form lipid bilayers and are therefore the pri-

mary structural components of cell membranes. In addi-

tion to their role in cell membranes, phospholipids are a 

major component of bile and participate in micelle for-

mation and cholesterol solubilization. Phosphotidylcho-

line (PC) is the primary biliary phospholipid and, when 

secreted into the intestine, can exceed dietary phospho-

lipid amounts by as much as 5 to 1 (106). Food sources 

naturally rich in PC include egg yolks, muscle foods, 

peanuts and soybeans. Naturally occurring soybean PC 

contains 10∼20% saturated fatty acids, whereas native 

egg yolk PC contains 40∼50% saturated fatty acids. Food 

manufacturers frequently use purified PC (also called lec-

ithin) as a food ingredient because of its excellent emul-

sifying properties. 

Sphingomyelin (SM) is another phosphoslipid found 

mostly in animal tissues; therefore, good food sources of 

SM include egg yolks, muscle foods, and milk and dairy 

products. SM is similar to PC to the extent they share the 

same phosphate-choline head group and have long chain, 

hydrophobic acyl moieties, but SM differs in several ways 

from naturally occurring PC. Whereas the backbone of 

PC is a glycerol base, the backbone of SM is a sphingoid 

base, which increases the polarity of SM and allows for 

stronger intra- and inter-molecular hydrogen bonding 

(107). The main acyl chain of SM is usually longer than 

the fatty acyl chains of PC and is frequently saturated. 

These characteristics contribute to a stronger interaction 

between cholesterol and SM in cell membranes compared 

to other phospholipids (108,109).
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The ability of PC to inhibit cholesterol absorption was 

first demonstrated in experimental animals (110,111) 

and later in humans given intraduodenal PC infusion 

(112). Kesaniemi and Grundy (113) also found a small 

but significant reduction in cholesterol absorption in hy-

perlipidemic patients fed soy PC. Koo and colleagues 

(114,115) have shown that egg PC inhibits cholesterol 

absorption in lymph duct cannulated rats, and that egg 

PC is more effective at reducing absorption than soy PC. 

In fact, soy PC did not interfere with cholesterol absorp-

tion but rather produced a slight increase in absorption 

relative to no-PC controls. These researchers suggested 

that the higher degree of fatty acid saturation in egg PC 

compared to soy PC may have caused greater disruption 

of micellar solubilization of cholesterol. This hypothesis 

was further supported in rats that had lower rates of 

cholesterol absorption when fed hydrogenated (i.e., fully 

saturated) PC compared to native PC, whether from soy 

(116) or egg (115). 

SM also inhibits cholesterol absorption in experimental 

animals, and this effect has been shown to be dose-de-

pendent (106,116,117). Noh and Koo (118) further re-

ported that milk SM was a more potent inhibitor than 

egg SM, suggesting that a higher degree of saturated and 

long chain length of milk SM may be important factors. 

Eckhardt et al. (106) indicated that milk SM compared 

to egg PC was more effective in reducing cholesterol sol-

ubility in micelles and in limiting cholesterol uptake in 

Caco-2 cells. They also observed that milk SM signifi-

cantly reduced cholesterol absorption in mice, whereas 

egg PC had no effect. On an equal molar basis, it appears 

that SM is a more effective inhibitor of cholesterol ab-

sorption than PC. Despite considerably more dietary and 

biliary PC compared to SM in the intestine under normal 

conditions, the addition of SM to the diets of experimen-

tal animals was still able to reduce cholesterol absorption 

in the presence of endogenous PC, indicating a higher 

potency of SM relative to PC (106,116). Feeding mice 

SM (119) or a mixture of sphingolipids (120) resulted in 

lower cholesterol absorption and an added benefit of pro-

tecting against liver steatosis (non- alcoholic fatty liver 

disease). Human studies, however, are limited and the 

efficacy of dietary SM is still uncertain (121,122). 

There appears to be multiple mechanisms by which di-

etary phospholipids inhibit cholesterol absorption. In vi-

tro studies have suggested that intact (undigested) PC 

disrupts micelle formation by interfering with enzymatic 

hydrolysis of dietary lipids. Studies have indicated that 

the presence of PC on the surface of lipid emulsions hin-

ders the hydrolysis of triglycerides (123,124), which also 

inhibits cholesterol uptake into IEC-6 intestinal cells 

(125). The addition of phospholipase A2 in vitro was able 

to overcome the inhibitory action of PC, resulting in in-

creased absorption of cholesterol into Caco-2 cells (126). 

Because PC is rapidly hydrolyzed by digestive enzymes 

under normal conditions, relatively large amounts of di-

etary PC are likely needed to inhibit cholesterol absorp-

tion. By comparison, dietary SM is digested slowly and 

may affect cholesterol in two ways. First, SM binding to 

cholesterol in the intestinal lumen may prevent choles-

terol from incorporating into micelles. The preferential 

affinity of cholesterol for SM is well-documented (127- 

129), and lack of micellarization results in increased fe-

cal cholesterol excretion. Second, the strong association 

between cholesterol and SM in the enterocyte mem-

brane may prevent cholesterol from interacting with its 

key transport protein, NPC1L1, as reported in intestinal 

cell lines (130) and animal studies (131).

STEARIC ACID

Stearic acid is an 18-carbon saturated fatty acid present 

in virtually all edible fats and oils, primarily as a con-

stituent of triacylglycerol molecules. Common fats/oils 

in Western diets having the highest percentage of stearic 

acid are beef fat (20%) and cocoa butter (33%). Several 

tree nuts and seeds indigenous to West Africa, India, 

and Southeast Asia contain relatively high percentages 

of stearic acid, including dhupa, illipe, kokum, mango 

kernel, sal, and shea (132). The use of sheanut oil (shea 

butter) and sal oil has expanded into Europe and Japan 

as cocoa butter substitutes in chocolate making. These 

stearic acid-rich oils are also used in cosmetics, candles, 

and other industrial products worldwide. Sheanut oil 

contains about 38% stearic acid and sal oil contains 

about 34% stearic acid. 

It is generally accepted worldwide that consumption of 

saturated fatty acids (SFA) raises LDL cholesterol con-

centration and increases the risk of atherosclerotic di-

seases. The World Health Organization, the European 

Food Safety Authority, the Dietary Guidelines for Amer-

icans, and many other organizations recommend limit-

ing intake of SFA. However, stearic acid is unique among 

dietary SFA because it does not raise plasma cholesterol 

levels, as originally observed in the 1960s by Keys et al. 

(133) and Hegsted et al. (134). When replacing trans fat-

ty acids or other saturated fatty acids in the diet, stearic 

acid lowers LDL cholesterol (135). The neutral or cho-

lesterol lowering effect of dietary stearic acid has been 

observed repeatedly in animal and human studies (135- 

137). Despite these observations, the American Heart 

Association acknowledges that there is no simple way to 

incorporate specific information about stearic acid into 

dietary guidelines because stearic acid is generally found 

with other saturated fatty acids in foods and because the 

content of specific fatty acids is not provided to consum-

ers (138).
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Animal studies have demonstrated that the cholester-

ol-lowering effect of stearic acid is mediated by reducing 

cholesterol absorption. Feldman et al. (139,140) were the 

first to demonstrate a reduction in cholesterol absorption 

using three different methods to quantify cholesterol ab-

sorption (i.e., plasma isotope ratio method, fecal dual iso-

tope method, and lymph duct cannulation), and in each 

case absorption was significantly decreased by stearic 

acid. Other studies using lymph duct cannulated rats fed 

stearic acid-enriched diets showed significant reductions 

in cholesterol absorption (141,142). Schneider et al. (143) 

used a more realistic dietary approach by feeding ham-

sters the NIH-07 cereal-based diet specifically enriched 

in single fatty acids (stearic, palmitic, oleic, linoleic, or 

trans fatty acids); cholesterol absorption was significant-

ly reduced in hamsters fed stearic acid compared to the 

other fatty acids. As a result of lower cholesterol absorp-

tion, fecal cholesterol excretion was increased in rats and 

hamsters fed stearic acid diets (143-145).

Schmidt and Gallaher (146) reported that cholesterol 

solubilization was decreased within the intestinal con-

tents of rats fed stearic acid-enriched diets. One possible 

mechanism of action of stearic acid is its ability to inter-

fere with micelle formation through its incorporation in-

to phospholipids. Unlike most of the other food compo-

nents that inhibit cholesterol absorption, stearic acid is 

relatively well absorbed into the bloodstream and body 

tissues. Wang and Koo (147,148) reported that, after ab-

sorption, stearic acid was preferentially incorporated in-

to hepatic and biliary phospholipids compared to other 

dietary fatty acids. Cohen and Carey (149) demonstrated 

that micelle stability and cholesterol solubility were im-

paired when micellar phospholipids contained stearic ac-

id compared to unsaturated fatty acids. Another possible 

mode of action may involve alterations in the bile acid 

species present in the enterohepatic circulation. We have 

shown that dietary stearic acid decreased the proportion 

of secondary bile acids in the gallbladder compared to 

primary bile acids, thus decreasing the overall hydropho-

bicity index (150). Similarly, Hassel et al. (151) reported 

significantly lower proportions of secondary bile acids in 

feces of hamsters fed stearic acid. Secondary bile acids 

are more hydrophobic than primary bile acids and their 

diminished presence in the enterohepatic circulation can 

decrease the efficiency by which micelles solubilize cho-

lesterol (40). It is also possible the stearic acid exerts 

some regulatory effect on cholesterol transport into (or 

within) the enterocyte, although this has not been re-

ported. Nevertheless, dietary stearic acid most likely in-

hibits cholesterol absorption through systemic mecha-

nisms rather than disrupting micelle formation through 

physical interactions within the intestinal lumen.

OTHER CHOLESTEROL-LOWERING FOOD 

COMPOUNDS

Several other compounds in the food supply have been 

identified as having cholesterol-lowering properties. Their 

mechanisms of action are poorly understood and may not 

be directly involve reduced cholesterol absorption. Nev-

ertheless, we felt these compounds should be mentioned 

in this review. 

Alkylresorcinols

Wheat alkylresorcinols were recently found to increase 

cholesterol excretion by 39.6% and decrease blood cho-

lesterol concentration by 30.4% in mice fed a high fat and 

high sucrose diet designed to induce obesity and glucose 

intolerance (152). The same group completed a follow- 

up to that study with the aim of identifying the possible 

mechanism of action wheat alkylresorcinols have on in-

creasing fecal cholesterol excretion. The follow-up study 

confirmed wheat alkylresorcinols effects on increasing 

cholesterol excretion and in vitro studies revealed a dose 

dependent decrease in micellar cholesterol solubility in 

model bile (153).

Policosanols

Consuming policosanols was a promising therapy for 

dyslipidemia. An early clinical trial examining the effi-

cacy and tolerability of 10 mg/d policosanol in elderly 

patients (154) and a follow up clinical trial by the same 

group in patients with non-insulin-dependent diabetes 

mellitus and elevated serum total and LDL cholesterol 

(155) found serum total cholesterol was reduced by 16.4 

and 17.5%, respectively, and serum LDL cholesterol was 

reduced by 17.5 and 21.8%, respectively. Since these ear-

ly studies, there has been limited evidence to support pol-

icosanols effectiveness in treating dyslipidemia and trials 

delivering twice the dose (20 mg/d) found no effect on 

reducing serum cholesterol concentration (156).

Guggulsterone

Guggulsterone (also known as guggul) has been used in 

Ayurvedic medicine and is classified as a plant steroid. A 

variety of in vitro and in vivo studies has been performed 

using guggul with consistent mechanistic and clinical re-

sults. A recent clinical trial registered with the Clinical 

Trial Registry of India found consumption of fresh gug-

gul found significant reductions in serum total choles-

terol, triglyceride and very LDL cholesterol (157). The 

mechanism of action for guggul’s lipid lowering efficacy 

has largely been isolated to agonistic effects on the far-

nesoid X receptor (FXR). Wild type and FXR null mice 

were fed a high cholesterol diet supplemented with gug-

gul, while the wild type mice saw significantly lower ac-

cumulation of hepatic cholesterol; the FXR null mice re-
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alized no effect of guggul consumption (158). This led 

the investigators to hypothesize that the mechanism of 

action is the agonistic behavior of guggul on FXR.

Cyclodextrins

Cyclodextrins are reported to have beneficial effects on a 

variety of health outcome measures from body weight 

control to allergy suppression. A recent mechanistic study 

examining the effects of α-cyclodextrin on micelle forma-

tion in fed-state simulated intestinal fluid found precip-

itation of cyclodextrin bound lecithin (159). The results 

suggest that α-cyclodextrin disrupts cholesterol absorp-

tion by precipitating lecithin from bile salt micelles with-

in the intestinal lumen. Mice fed a high cholesterol diet 

treated with β-cyclodextrin exhibited a reduction in ath-

erosclerotic plaque size and cholesterol crystal deposi-

tion in the sub-endothelial space, which promoted pla-

que regression (160). Further study is needed to deter-

mine the efficacy of cyclodextrin in managing atheroscle-

rosis in humans. 

Probiotics

Probiotics are microorganisms that, when consumed, 

promote a beneficial health effect such as Bifidobacterium 

animalis and Lactobacillus acidophilus. A meta-analysis of 

randomized controlled trials examining the effects of 

probiotics on their lipid lowering effects published be-

tween 2000 and 2014 included 15 studies and 788 total 

subjects (161). The meta-analysis revealed significant 

reductions in serum total and LDL cholesterol when 

consuming probiotics as fermented milk or yogurt when 

compared to consuming probiotics in a capsule. The 

mechanism for these effects can be attributed, at least 

partially, to the decrease in intestinal cholesterol absorp-

tion through the co-precipitation of cholesterol with de-

conjugated bile salts, intestinal conversion of cholesterol 

to coprostanol, and the inhibition of the expression of 

the intestinal sterol transporter NPC1L1 (162).

Saponins

Saponins are found mainly in plants but are also present 

in lower marine animals and some bacteria. Saponins 

possess a wide range of biological activities and some 

are known to be toxic. However, the human diet contains 

appreciable amounts of saponins, particularly in legumes 

and alfalfa sprouts. Dietary saponins are poorly absorbed, 

thus suggesting their cholesterol-lowering action occurs 

in the intestine. One possible mechanism of action is the 

ability of saponins to form insoluble complexes with cho-

lesterol in the intestinal lumen (163,164). Another pos-

sibility is direct binding of saponins to bile acids, which 

would disrupt micelle formation and, consequently, cho-

lesterol absorption. However, Harwood et al. (165) re-

ported no change in bile acid absorption or interruption 

of the enterohepatic circulation of bile acids in hamsters 

fed saponins, despite significant reduction in cholesterol 

absorption.

CONCLUSION

Many cholesterol-lowering compounds are naturally pres-

ent in the human food supply. Each of these compounds 

can be isolated, purified, and subsequently used as addi-

tives in food products and dietary supplements designed 

specifically for reducing plasma LDL cholesterol concen-

tration. This review focused on compounds that lower 

plasma cholesterol by inhibiting cholesterol absorption 

in the small intestine, including phytosterols, soluble fi-

bers, phospholipids, and stearic acid. All of these com-

pounds appear to exert their effects by interfering with 

micellar solubilization of cholesterol within the intesti-

nal lumen. This can be the result of displacing cholester-

ol from the micelle, binding or precipitating cholesterol, 

impeding the movement of cholesterol by forming a vis-

cous matrix, inhibiting digestive enzymes, binding bile 

acids, and decreasing their participation in micelle for-

mation, or downregulating cholesterol transporters with-

in the enterocyte. Stearic acid also appears to work sys-

temically by incorporating into hepatic and biliary phos-

pholipids, which destabilizes micelles and reduces cho-

lesterol solubility. These compounds are attractive to 

food and nutraceutical companies because, in most cases, 

they are regulated as foods and not drugs. Most of the 

compounds work entirely within the intestine and are 

poorly absorbed, if at all, thus significantly reducing (or 

eliminating) the risk of toxicity. Some also contribute 

important functional properties when added to foods, 

such as emulsification, improved texture, calorie reduc-

tion, and in the case of soluble fibers, provide prebiotic 

action. In view of these desirable characteristics, manu-

facturers are likely to develop a greater diversity of food 

and nutraceutical products in the coming years giving 

consumers more choices to manage their plasma choles-

terol levels through nonpharmacological means. 
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