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Abstract Isogenic cells growing in identical environments show cell-to-cell variations because of the stochasticity in gene
expression. High levels of variation or noise can disrupt robust gene expression and result in tremendous consequences for
cell behaviors. In this work, we showed evidence from single-cell RNA sequencing data analysis that microRNAs
(miRNAs) can reduce gene expression noise at the mRNA level in mouse cells. We identified that the miRNA expression
level, number of targets, target pool abundance, and miRNA–target interaction strength are the key features contributing to
noise repression. miRNAs tend to work together in cooperative subnetworks to repress target noise synergistically in a cell
type-specific manner. By building a physical model of post-transcriptional regulation and observing in synthetic gene
circuits, we demonstrated that accelerated degradation with elevated transcriptional activation of the miRNA target
provides resistance to extrinsic fluctuations. Together, through the integrated analysis of single-cell RNA and miRNA
expression profiles, we demonstrated that miRNAs are important post-transcriptional regulators for reducing gene ex-
pression noise and conferring robustness to biological processes.

KEYWORDS MicroRNA regulation;Gene expression noise; Competing RNA;microRNA regulation network; Single-
cell RNA sequencing

Introduction

Variations in gene expression are usually caused by genetic
or environmental variability [1]. However, even genetically
identical cells growing in the same environment may display
diverse phenotypes. Gene expression noise, both intrinsic
and extrinsic, has been suggested as a major factor in cell-to-
cell variations [1,2]. Gene expression noise is widespread in
cell development and population evolution [1,3]. Such
variability can increase overall fitness in evolution by

expanding the range of phenotypes [4,5]. However, noise
can result in nonreproducible coordinating cellular functions
during tissue morphogenesis and homeostasis [6,7]. Main-
taining precise and robust gene expression in fluctuating
environments is necessary for cells to function physiologi-
cally. Interestingly, although stochasticity is inevitable in the
process of gene expression, most genes in mammalian cells
show inapparent randomness in response to cellular state
changes and environmental fluctuations [8], which raises the
important question of how cells and organisms can avoid the
amplification of noise in multistep processes and maintain
the fidelity of gene expression.

As an indispensable element of post-transcriptional
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regu-lation, microRNAs (miRNAs) have been considered as
important regulators in fundamental cellular pathways and
organismal development processes [9]. Each type of miRNA
is predicted to regulate tens or hundreds of targets in mam-
malian cells, but only a small portion of these targets is
moderately repressed (rarely exceeding 2-fold) in genetic
studies [10]. That is, in most cases, miRNAs do not function
as strong repressors under physiological conditions. Why are
there so many evolutionarily conserved miRNAs and po-
tential targets if miRNAs are inefficient regulators? One
proposal is that miRNAs modulate the variability of gene
expression and confer robustness to cell population pheno-
types [9,11–13]. Several recent studies have investigated the
effect of miRNA regulation on gene expression noise at the
protein level using synthetic gene circuits [11,12,14,15] and
suggested that miRNAs could reduce intrinsic noise in pro-
tein expression, but with the potential cost of introducing
extra noise of miRNA itself (i.e., miRNA pool noise, the
fluctuation caused by the changes in miRNA expression level
[11]). However, it is unclear if these conclusions from syn-
thetic gene experiments apply to endogenous genes. Fur-
thermore, gene expression noise at the protein level is
significantly different from that at the mRNA level because
of translational bursting and the coupling between tran-
scription and translation procedures [16–18]. The study of
miRNA regulation on genome-wide mRNA expression noise
is still lacking, and the key features of miRNAs contributing
to noise regulation have not yet been fully characterized.

It is difficult to accurately quantify the effect of miRNA
regulation on mRNA expression noise. There are dozens or
even hundreds of types of miRNAs expressed in a single
mammalian cell, and each miRNA can regulate hundreds of
target genes, creating a complex regulatory network [19,20].
It is difficult to characterize such direct or indirect interac-
tions between targets in large, interconnected networks by
studying single miRNA–target pairs in isolation. As an al-
ternative, high-throughput quantitative measurements of
gene expression at the single-cell level have been developed
over the past decade. Both single molecule fluorescence in
situ hybridization (smFISH) and fluorescent reporter pro-
teins have been widely used to study gene expression noise
[3,21]. However, these approaches are limi-ted by the
number of genes that can be studied simultaneously and thus
are not sufficient to provide an understanding of the global
scope of miRNA-mediated noise reduction.

Currently, the emerging development of single-cell RNA
sequencing (scRNA-seq) has made it possible to evaluate
mRNA expression noise across cells genome-wide. To
better understand the influence of miRNAs on mRNA noise
in mammalian cells, we combined scRNA-seq data with
miRNA expression data to reveal pivotal features of
miRNAs that impact miRNA-mediated noise reduction but
could not be observed by bulk measurements. The results

showed that noise reduction by miRNAs is a common
property of various types of mouse cells. We found that the
miRNA expression level, number of targets, target pool
abundance (the sum of target transcript counts), and
miRNA–target interaction strength are positively correlated
with the strength of noise reduction, and miRNAs usually
work together as coregulating de-noising subnetworks to
repress target noise synergistically in a cell type-specific
manner. Furthermore, a kinetic model was built to interpret
the mechanism of miRNA-mediated expression noise re-
duction, which demonstrated that accelerated degradation
rates and elevated transcription rates of miRNA targets
could contribute to the resistance of extrinsic fluctuations
and that the large competing target pool of miRNAs could
buffer miRNA pool noise. We measured the gene expres-
sion noise in a synthetic gene circuit and proved that en-
dogenous miRNAs could reduce the noise of gene
expression. Our results suggest that miRNAs are crucial for
mRNA expression noise reduction and provide a new per-
spective in understanding the physiological functions of
miRNAs and their synergistic networks.

Results

miRNAs can suppress genome-wide gene expression noise

Accurate characterization of the gene expression level is the
precondition for studying expression noise. scRNA-seq
provides high-throughput measurements for gene expres-
sion heterogeneity across cells [22,23]. However, current
scRNA-seq measurements suffer from nonnegligible tech-
nical noise from stochastic mRNA loss, nonlinear amplifi-
cation, and other variations in library preparation and
sequencing [24–26]. Therefore, unique molecular identi-
fiers (UMIs) and spike-ins are recommended to control the
level of technical variations [22,27]. Three scRNA-seq
datasets using both external RNA spike-ins and UMIs from
different mouse cell types were used in this analysis (see
Materials and methods for details). We established a sys-
tematic data processing pipeline (Figure S1) to eliminate
technical variations and revealed the influence of miRNAs
on gene expression noise. First, the true biological varia-
tions of UMI-based counts were separated from the high
level of technical variations with the help of spike-ins [24].
Second, gene expression noise was quantified by the coef-
ficient of variation (CV). The dependency of CV magnitude
on the gene expression level was removed by calculating
local CV ranks in a sliding window of genes with similar
expression levels. Then, we tested whether the gene set
targeted by miRNA had significantly lower expression
noise than non-target genes. The disparity between miRNA
targets and non-targets was measured by the effect size of
the Mann–Whitney U test [28]. Finally, the effect size was
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corrected, and this adjusted effect size (AES) score was
used thereafter to eliminate the influence of sample size
(number of targets) and to allow a comparison of the effect
levels of different miRNAs on noise reduction (see Mate-
rials and methods for details; Figures S2 and S3). An AES
score greater than 0 means that miRNA target sets have
lower expression noise than non-targets, whereas a negative
score means the opposite.

We found that miRNA target genes tended to have lower
expression noise than non-target genes in terms of the local
rank of mRNA CV (Figure 1A). We identified target sets of
149, 108, and 30 miRNAs with significant positive AES
scores in mouse embryonic stem cells (mESCs), intestinal
stem cells (ISCs), and dendritic cells (DCs), respectively
(Figure 1B), but none had significant negative AES scores
in any dataset (Figure 1C). Such disparities were not found
when using control samples generated by random sampling

(Figure 1D). Moreover, we replaced the background gene
set with non-miRNA target genes with longer sequences
and lower GC content, which are similar to miRNA targets
and cannot introduce background bias. The results are
comparable, as shown in Figure S4. Together, the afore-
mentioned results indicated that our noise analysis proce-
dure could reveal true biological differences associated with
miRNA regulation but not with random technical variations
in scRNA-seq. These observations suggested that miRNA-
mediated expression noise reduction is a shared feature
across different cell types.

miRNAs with a large target pool suppress noise better

Although miRNA target genes tended to be less noisy than
non-target genes, there were still considerable differences
in the noise levels among different miRNA targets

Figure 1 Gene set noise analysis reveals that miRNAs can suppress gene expression noise
A. Box-violin plots quantifying the relative noise disparity of mmu-miR-184 target genes and its non-target genes. The middle line in the box is the
median, and the density represents the distribution of the local rank of noise. The P value is 1.9 × 10−5, and the AES score is 2.73 for the Mann–Whitney U
test. An AES score of mmu-miR-184 larger than 0 indicates that the expression noise of its target genes is lower than that of non-target genes. B. Venn
diagram showing the number of overlapping and specific de-nosing miRNAs after multiple test correction (AES score > 0, FDR < 10%) among the three
different cell type datasets. C. Noise disparity between the target and non-target genes for shared de-noising miRNAs of three different cell types. Different
colors indicate different cell types. D. Noise disparity is absent for randomly chosen gene sets. Points and error bars indicate the mean and standard
deviation, respectively, over 100 samplings. miRNA, microRNA; mmu,Mus musculus; AES, adjusted effect size; FDR, false discovery rate; mESC, mouse
embryonic stem cell; ISC, intestinal stem cell; DC, dendritic cell.
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(Figure 1C), which raised questions about which properties
of miRNAs might influence target mRNA expression noise.
Therefore, we tried to explore the major influencing factors
related to miRNA-mediated noise reduction. We examined
all 317 miRNAs expressed in mESCs [29], and found a
significant positive correlation (adjusted R2 = 0.322, P <
2.2 × 10−16) between the number of miRNA target genes and
its effect on reducing gene expression noise (Figure 2A). A
positive correlation between the abundance of the target
pool (the sum of target transcript counts) and AES score
was also observed (adjusted R2 = 0.363, P < 2.2 × 10−16)
(Figure 2B). A more intuitive statistical measure of the re-
lationship between the high abundance of the target pool
and noise reduction efficiency can be obtained by dividing
the miRNAs into quadrants by the AES score and target
pool abundance (Figure 2B). Strikingly, the fraction of
miRNAs with low AES scores in the group of miRNAs with
low target pool abundance was 6 times larger than that in the
group of miRNAs with high target pool abundance
(165/271 = 60.9%, 4/46 = 8.7%; odds ratio = 16.22, Fisher’s
exact test P value = 8.9 × 10−12; Figure 2B). A similar
correlation can also be found in the relationship between the
high number of targets and the high effect of noise reduction
(odds ratio = 4.37, Fisher’s exact test P value = 3.1 × 10−6;
Figure 2A). These observations were also consistent in ISCs
(Figure S5) and DCs (Figure S6). In summary, miRNAs
with large target pools tend to suppress target gene ex-
pression noise better.

miRNA–target interaction strength influences the noise
reduction effect

miRNAs can bind to miRNA response elements (MREs) in

their target mRNAs [30]. The binding strength between a
miRNA and its target mRNA can be quantified using RNA
hybridization free energy in thermodynamics, which is
correlated with the ability of miRNA to repress gene ex-
pression [31]. To study the relationship between noise re-
duction and miRNA–target interaction strength, we
collected free energy information from miRmap [32] for
possible miRNA–mRNA pairs in the mouse. To compare
their relative binding energy strength across different
miRNA–mRNA pairs, all miRNA–mRNA pairs were
ranked in ascending order according to their binding ener-
gies [32] and further divided into three sets based on
quantiles. The top 40% of pairs (low free energy) represent
strong interactions between miRNA and mRNA, while the
bottom 40% of pairs (high free energy) represent weak in-
teractions (Figure 3A). The effects of noise reduction for
these two sets were compared, and the results showed that
strong interactions enhance the effect of noise reduction in
terms of the AES score (Figure 3B for mESCs; Figure S7A
for ISCs; Figure S7B for DCs), which is concordant with the
previous finding that miRNA reduces the intrinsic noise of
gene expression at the protein level by miRNA-mediated
fold repression [11].

Previous studies have suggested that the crosstalk among
targets regulated by the same miRNA could enhance the
stability of gene expression [15,33]. We further explored the
contribution of the different miRNA–target interaction
strengths to the noise reduction effect (Figure 3C and D). As
strong interactions between miRNAs and mRNAs may be
more likely to modulate gene expression level and noise,
here we calculated the AES score by all strong targets of a
miRNA and investigated the relationship between the AES
score and the competing RNA pools with different

Figure 2 miRNAs with a large target pool are associated with better noise suppression
A. AES score of the Mann–Whitney U test versus the number of targets across all detected miRNAs in mESCs. Curves were fitted to a + blog10(x + c),
where a, b, and c were determined by least-squares approximation. The fitted parameters are shown in Table S1. The cut-off for the AES score is 2.0, and
the cut-off for the number of targets is 700 in Fisher’s exact test. B. Similar points and fitting curve to those shown in (A) for target pool abundance. The
cut-off for the AES score is 2.0, and the cut-off for the target pool abundance is 16,000.
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interaction strengths. Although the abundances of both the
strong and weak competing target pools were positively
correlated with the AES score, the predictive power of the
weak competing target pool abundance (adjusted R2 =
0.851) was much higher than that of the strong competing
target pool abundance (adjusted R2 = 0.521). These ob-
servations were consistent with our previous theoretical
research on miRNA-mediated noise regulation [34], which
showed that an abundant weak competing target mRNA
pool has the capacity to buffer gene expression noise. In
summary, a gene strongly bound by miRNAs that also has a
large weak competing target pool tends to have lower
mRNA expression noise.

Gene expression noise is repressed by miRNA core-
gulation subnetworks

Intuitively, we expected that the miRNA expression level

would influence noise reduction. However, we did not find
a strong correlation between the miRNA expression level
and the AES score (Figure 4A). One possible reason is that
each miRNA species can regulate multiple target genes, and
each gene can be controlled by multiple miRNAs, which
constitute a complex regulatory network. The shared targets
of different miRNAs could induce indirect miRNA–miRNA
crosstalk [35], which may mask the actual interactions of
miRNAwith its targets and lead to false-positive and false-
negative results in AES score calculations. Moreover,
miRNAs seldom regulate cellular processes independently
but often form functional miRNA–miRNA cooperation
networks by coregulating functional modules [36,37]. To
study miRNA cooperative regulation and analyze the
function of miRNA in noise reduction at the subnetwork
level, we predicted the miRNA–miRNA cooperation net-
work through their shared target genes. Each miRNA spe-
cies was regarded as a node in the network, and the weights

Figure 3 miRNA–target interaction strength influences the noise reduction effect
A. The binding energy of all miRNA–mRNA pairs is ranked in ascending order. The endogenous miRNA target pool is indicated by wavy lines illustrating
the affinity of the targets (red for high affinity, green for low affinity) and their relative abundances. B. Noise disparity between the target and non-target
genes of the top 15 abundant miRNAs for strong (red) and weak (purple) interaction strength in mESCs. C. and D. AES score versus weak target pool
abundance (C) and strong target pool abundance (D) across all miRNAs expressed in mESCs with strong miRNA–target interactions. Curves were fitted to
a + blog10(x + c), where a, b, and c were determined by least-squares approximation. The fitted parameters are shown in Table S1.
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of the edges between the nodes were calculated by the si-
milarity of their target gene sets. The walktrap clustering
algorithm [38], which is suitable for the subnetwork divi-
sion problem of complex networks, was performed on the
317 expressed miRNAs in mESCs and identified 59 sub-
networks (Figure 4B). The AES score of noise reduction
was calculated for each subnetwork by taking the targets of
the miRNAs in the subnetwork as a union. As shown in
Figure 4C–E, the AES scores of the miRNA subnetworks
were highly correlated with the miRNA expression level,
number of targets, and target pool abundance. Similar re-
sults were also obtained in ISCs (Figure S8) and DCs
(Figure S9). Importantly, the strong positive correlations
were much higher than those measured at the level of in-
dividual miRNAs or miRNA families defined by miRNA
5′ end 2–8 nt ‘seed’ similarity (Figure 4F). To reduce the
impact of false-positive entries of TargetScan on clustering,
we replaced the binary connection between the miRNA and
its targets with the weights defined by the miRNA–target
ranks retrieved from TargetScan. As shown in Figure S10,

the correlation between the AES scores and miRNA ex-
pression calculated by the miRNA-weighted clusters was
stronger than that calculated by binary clustering. Together,
these observations using clustering analysis successfully
revealed a biologically significant noise reduction by
miRNA subnetworks, as well as a strong correlation be-
tween noise reduction and the number of targets, the
abundance of the target pool, and the miRNA expression
level measured at the subnetwork level.

miRNA coregulation subnetworks show cell type spe-
cificity

Next, we compared de-noising miRNA subnetworks in
different cell types. In total, 37 significant de-noising
miRNA subnetworks were identified in three cell types (16
in mESCs, 11 in ISCs, and 10 in DCs). For any two given
significant de-noising miRNA subnetworks, we first ob-
tained their target gene sets A and B, and then calculated the
subnetwork similarity using the Jaccard similarity

Figure 4 Gene expression noise is repressed by the miRNA coregulation subnetwork
A. AES score versus miRNA expression for miRNA individuals. B. Two examples of significant de-noising miRNA subnetworks for mESCs. Each node
represents a miRNA species, and edges indicate the connection of miRNAs. Other significant de-noising miRNA subnetworks are shown in Table S2. C.
AES score versus miRNA expression for miRNA subnetworks. D. AES score after subnetwork clustering versus the number of targets across all cluster
miRNAs in mESCs. E. Similar points and fitting curve to those shown in (C) for target pool abundance. F. Pearson correlation coefficients between
miRNA features (log10 transformed) and AES scores for non-clustering, clustering by miRNA family, and clustering by network. Colors indicate different
cell types. Curves in (A and C–E) were fitted to a b x+ log ( )10

where a and b were determined by least-squares approximation. The fitted parameters are
shown in Table S3.
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coefficient [39] of their target genes (defined as the inter-
section size divided by the union size of two target gene
sets), and finally constructed a similarity matrix for all
miRNA subnetworks from three cell types. These subnet-
works were divided into constitutive subnetworks and cell
type-specific subnetworks by hierarchical clustering of the
similarity matrix (Figure S11). The constitutive subnet-
works regulate shared target genes across three cell types,
and the cell type-specific subnetworks tend to target specific
genes in a given cell type. To further investigate the roles of
these two types of subnetworks, Gene Ontology (GO)
analysis was performed (Figure 5; see Materials and
methods for details). The target genes of constitutive de-
noising miRNA subnetworks were enriched in GO terms
related to essential cellular functions such as “cytoplasmic
mRNA processing body assembly”, “ribonucleoprotein
complex assembly” and “ribonucleoprotein complex sub-
unit organization”. In contrast, cell type-specific de-noising
miRNA subnetworks appeared to regulate more specific
biological processes, such as “body morphogenesis” in
mESCs, “glycoprotein metabolic process” in mESCs and
DCs, “epidermal growth factor receptor signaling pathway”
in DCs and ISCs, and “cell cycle phase transition” in ISCs,
which implies that cell type-specific de-nosing miRNA
subnetworks may contribute to cell state maintenance by
repressing cell type-specific gene expression noise. Overall,
these observations suggested that de-noising miRNA sub-
networks, which correspond to cell types and cell functions,
play important roles in gene expression noise reduction.

Accelerated degradation of miRNA targets provides
resistance to extrinsic noise

The half-life of an mRNA is known to influence gene

expression noise [40,41]. Due to the integral effect on
transcriptional bursts, longer-lived mRNAs generally ex-
hibit lower intrinsic noise. By combining the mRNA de-
gradation rate data [42] with scRNA-seq data, we observed
that mRNA half-life was negatively correlated with mRNA
expression noise (Figure 6A for mESCs, Figure S12A for
ISCs, Figure S12B for DCs). However, miRNAs usually
repress gene expression by accelerating target mRNA de-
gradation [11]. The half-life and gene noise of mRNAs
targeted by miRNAs exhibited a counterintuitive positive
correlation (Figure 6A, Figure S12A and B). Interestingly,
the target genes of de-noising miRNAs have a significantly
shorter half-life than the targets of non-de-noising miRNAs
(Figure 6B for mESCs, Figure S13A for ISCs, Figure S13B
for DCs).

To better understand the mechanism of miRNA-media-
ted expression noise reduction, we established a coarse-
grained physical model in which mRNA expression noise
was decomposed into intrinsic noise and extrinsic noise.
This model described the main steps of gene expression,
including post-transcriptional regulation by miRNA and
competing target regulation by miRNA (Figure S14), which
was inspired by our previous studies on stochastic gene
expression and post-transcriptional regulation by miRNA
[11,43]. The noise in gene expression comes from two
major sources: 1) intrinsic noise, which is generated by
random biochemical reactions such as production and decay
of mRNAs and miRNAs [2], and association and dis-
sociation of free mRNAs with miRNAs, and 2) extrinsic
noise, which is modeled as the fluctuation in the reaction
kinetic rates generated by variable external environmental
factors in cellular components such as the number of RNA
polymerases or ribosomes [2,3,44]. We defined the
strengths of extrinsic noise as Fano factors of reaction ki-
netic rates introduced in previous studies [44] and extended
the chemical Langevin equation to include both intrinsic
and extrinsic noises (see File S1). Without loss of generali-
ty, we assumed that the extrinsic noise has the same effect
on all parameters; that is, all reaction kinetic rates share an
equivalent Fano factor.

Model simulation suggested that miRNA could reduce
mRNA expression noise in the low expression zone but
introduce extra miRNA pool noise in the high level of
mRNA expression compared to an unregulated gene at
equal mRNA expression levels (Figure 6C, blue line versus
red line), which is similar to previous experimental results
at the protein level [11]. If keeping the level of miRNA
repression to the target gene, the introduction of a large
competing target pool with weak binding affinity could
significantly buffer the noise introduced by the miRNA
pool (Figure 6C, orange line versus blue line). To explore
the influence of accelerated degradation on noise, the ac-
celerated degradation ratio was defined as the ratio of the

Figure 5 De-noising miRNA subnetworks correspond to cell types
and cell functions
Top 5 enriched GO terms with their respective P values (ClusterProfiler)
for target genes in the constitutive de-noising miRNA subnetworks and
cell type-specific de-noising miRNA subnetworks in mESCs, ISCs, and
DCs. GO, Gene Ontology.
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Figure 6 miRNAs accelerate target degradation to resist environmental disturbances
A. Scatterplot of AES scores of gene expression noise versus AES scores of mRNA half-life for random gene sets (gray) and real miRNA target gene sets
(color) in mESCs. Random gene sets are constructed with varying sample sizes (100–2000) by weighted sampling of mRNAs according to half-life. The
AES score is defined as the adjusted statistic for the Mann–Whitney U test, where a value of 0 corresponds to no difference between the gene sets and the
background, while a value larger than 0 corresponds to lower noise and lower half-life of the gene sets than those of the background. The Spearman
correlation coefficient between AES scores of half-life and noise for the random sample was −0.698 but was 0.562 for real miRNA target gene sets in
mESCs. The similar results obtained in ISC and DC datasets are shown in Figure S12A and B. B. Targets of de-noising miRNAs have a significantly
shorter half-life than those targets of non-de-noising miRNAs in mESCs. C. Total noise (intrinsic and extrinsic noises) of an mRNA as a function of mean
mRNA total expression (sum abundance of free mRNA and mRNA–miRNA complex). The shadows indicate 100 repeated simulation trials. D. The
extrinsic noise of miRNA-regulated genes decreases as the accelerated degradation increases. The error bars indicate the standard deviation of 100 repeated
simulation trials. E. Schematic diagram of the synthetic gene circuits used for observing expression noise modulated by miRNA. F. EYFP intensities of
synthetic gene circuits without the regulation of miRNA and with the regulation of hsa-miR-21. Cells were binned by log10 TagBFP in sliding windows
with bin width equal to 0.2, and then cells in the bin with mean intensity of EYFP (log10 transformed) nearest to 1 × 10

3.5 AU were shown. G. Noise levels
of synthetic gene circuits with or without the regulation of miRNAs under different mean intensities of EYFP (log10 transformed). Cells were selected by
the same method described in (F). Three biological replicates were performed. H. Summary scheme showing accelerated degradation with compensatory
elevated transcriptional activation of miRNA targets provides resistance to extrinsic fluctuations. In addition, the large competing target pool with weak
binding affinity could buffer miRNA pool noise. Therefore, the miRNA target gene (blue) has lower noise than the non-target gene (green) at equal mRNA
expression levels globally. AU, arbitrary unit.
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miRNA-induced mRNA degradation rate to the mRNA
degradation rate (see File S1). Under the condition of an
equal level of mRNA expression, the model predicted that
miRNA targets have reduced extrinsic noise when ac-
celerated degradation increases (Figure 6D).

To validate that miRNAs can provide resistance to gene
expression noise, we carried out a series of synthetic gene
circuits to measure the expression noise with or without the
regulation of endogenous miRNAs. As shown in Figure 6E,
the synthetic gene circuit, based on a previous study that
employed endogenous miRNAs to classify different cell
types [45], was composed of two kinds of plasmids. Plasmid
A encoded two constitutively expressed proteins, a tran-
scription activator Gal4VP16 and a fluorescent protein
TagBFP. Plasmid B encoded another fluorescent protein
EYFP, the expression of which was controlled by a pro-
moter that could be activated by Gal4VP16 in the presence
of doxycycline. When co-transfecting the two plasmids into
cells, the intensity of TagBFP can be used to indicate the
mean activation level of the EYFP’s promoter as well as the
mean copy number of these plasmids. However, due to
randomness during transfection, the copy number of plas-
mid B was varied in the cell population, which therefore
dominated the extrinsic noise that influenced the tran-
scription of EYFP.

We built a mathematical model to demonstrate the con-
sistency between the noise in EYFP mRNA and protein
levels under the influence of extrinsic fluctuation (see File
S1), and then used the scRNA-seq [46] and miRNA-seq
datasets of HeLa cells to identify de-noising miRNAs. As a
result, 49 significant de-noising miRNAs were found
among the top 50 expressed miRNAs (Figure S15). Next,
we chose the top 8 expressed miRNAs in HeLa cells and
constructed their targets in the 3′ UTR of EYFP in the gene
circuit. We transfected these circuits into HeLa cells and
observed the expression noise level of EYFP by flow cy-
tometry (see Materials and methods). We binned cells ac-
cording to the logarithmic expression level of TagBFP and
then calculated the mean value and CVof EYFP expression
of cells within each bin. For instance, as shown in Figure 6F,
when the mean EYFP expression levels were the same,
EYFP regulated by hsa-miR-21 exhibited lower CV than
that without miRNA regulation. The vast majority of other
top 8 expressed miRNAs in HeLa cells also showed similar
results under different EYFP expression levels (Figure 6G).
The results support our notion that many endogenous
miRNAs may function to significantly reduce the noise of
gene expression.

In conclusion, these observations indicated that ac-
celerated target mRNA degradation with an elevated tran-
scription rate may contribute to the resistance to extrinsic
fluctuations, and a large competing target pool with weak
binding affinity could buffer miRNA pool noise (Figure 6H).

Discussion

In this work, we revealed the effect of miRNA regulation on
the noise in targeted mRNAs via scRNA-seq data in mice.
We showed that reducing the expression noise of their tar-
gets is an essential feature of miRNAs in various mouse
cells. We identified miRNA characteristics that contribute
to noise repression, including the number of targets, target
pool abundance, miRNA expression level, and miRNA–
target interaction strength. Furthermore, we showed that
miRNA coregulation subnetworks are significantly corre-
lated with noise reduction, which is helpful to understand
the function of the miRNA coregulation network in vivo.

We found that the targets of de-noising miRNAs have a
significantly shorter half-life than those targets of non-de-
noising miRNAs. Based on these observations, we proposed
that miRNAs, as noise suppressors, resist extrinsic fluc-
tuations by increasing target degradation rates with com-
pensatory elevated transcription rates (Figure 6H). In
addition, we showed that the buffering role of miRNAs
becomes evident with the increase in target degradation
rates through a kinetic model. Interestingly, Schmiedel et al.
[47] found that the half-lives of miRNA targets decreased
with an increase in the number of miRNA binding sites, but
the transcription rates of targets increased with an increase
in the number of miRNA binding sites. These results sup-
port our hypothesis. Furthermore, several pieces of evi-
dence suggest that miRNAs can buffer gene expression
noise against extrinsic environmental perturbations. For
instance, Xin et al. [48] found that miR-7 is essential in
buffering developmental programs against variations and
imparts robustness to diverse regulatory networks, which
are strongly functionally conserved from annelids to
humans. Mehta et al. [49] showed that miRNAs in the he-
matopoietic system could modulate the balance between
self-renewal and differentiation and ensure the appropriate
output of immune cells, which confers robustness to im-
mune cell development, especially under conditions of en-
vironmental perturbations. Kasper et al. [50] found that
miRNA mutant embryos of zebrafish showed greater sen-
sitivity to environmental perturbations and that the loss of
miRNAs increased the variance in developing vascular
traits. This evidence, consistent with our results, highlights
the potential importance of miRNAs in stabilizing gene
expression variability and preventing susceptibility to en-
vironmental disruptions.

Previous studies have mainly focused on the roles of
individual miRNAs but neglected miRNA-mediated cross-
talk among competing targets. Recent studies have found
that crosstalk among competing targets could enhance the
stability of gene expression [15,33,51]. Here, we observed a
positive correlation between the abundance of the target
pool and noise reduction (Figures 2 and 4). Interestingly, we
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found that weak target pools have a much greater capacity
to buffer miRNA pool noise than strong target pools.
miRNAs are ubiquitous but mysterious regulators; the
majority of mRNAs are predicted to be targets for one or
more miRNA species, but only a small portion of those
targets could be moderately repressed [52]. Most miRNA–
target interactions are too weak to have strong phenotypic
consequences when knocking down or knocking out the
corresponding miRNA. The function of the pervasive and
evolutionarily conserved miRNA–target weak interaction
pairs is still unclear. Interestingly, a combined analysis with
the age of miRNA families [53] reveals a trend in which
older miRNA families show a stronger noise reduction ef-
fect than younger miRNA families (Figure S16). This result
might support the theory that miRNAs have evolved as
noise suppressors. Our results provide possible directions to
explain the weak repression effects exerted by the majority
of known miRNAs. In general, introducing higher level of
miRNAs and compensating weak co-regulated targets could
enhance the suppression of gene expression noise over a
wider range.

This study focused on the integrative analysis of scRNA-
seq data and bulk miRNA-seq data in various cell types. We
selected the bulk miRNA-seq data corresponding to the cell
type of scRNA-seq data from the public Gene Expression
Omnibus (GEO) database and performed quality control to
exclude the poor-quality miRNAs across different datasets.
However, extensive variations in miRNA sequence and
expression exist between different cells [54,55]. Precisely
understanding endogenous miRNA functions requires ap-
proaches to simultaneously profile miRNAs and their targets
with single-cell resolution. Although some new approaches
that enable high-throughput sequencing of single-cell
miRNAs have been proposed very recently [56,57], paired
high-quality data of miRNAs and their targets in the same
single cell are still lacking, thus preventing the discovery of
associations between transcriptional and miRNA profile
variations. These questions may be further addressed by
multi-omics profiling of single cells in the future.

In summary, this work presented genome-wide evidence
that miRNAs function as repressors of gene expression
noise and that miRNAs function as networks to stabilize
mRNA levels and maintain cellular functions.

Conclusion

By combining scRNA-seq data with bulk miRNA-seq data,
we found consistent evidence of a role for miRNAs as noise
repressors in multiple mouse cell types. We systematically
analyzed the key properties of miRNAs associated with
noise reduction from individual miRNAs to miRNA core-
gulation subnetworks. Specifically, we proposed a kinetic

model, which revealed that increasing the degradation rate
to resist extrinsic fluctuations is the mechanism by which
miRNAs decrease mRNA expression noise. Gene expres-
sion processes are inherently stochastic under complex and
volatile environmental conditions. Our results provide new
insights to explain the role of miRNAs in cell responses to
environmental disturbances.

Materials and methods

Expression quantification and normalization for
scRNA-seq data

To systematically study the influence of miRNA regulation
on gene expression noise in mammalian cells, we collected
three scRNA-seq datasets employing external RNA spikeins
and UMIs from different cell types in mice, which consist of
41 cells from mESCs (GEO: GSE46980) [58], 90 cells from
DCs (GEO: GSE54006) [59], and 100 cells from ISCs
(GEO: GSE62270) [60] after removing cells with low se-
quencing quality. We also collected bulk miRNA-seq data
for the corresponding cell types (GEO: GSE45882 for
mESCs, GSE76825 for DCs, and GSE75482 for ISCs)
[29,61,62]. UMIs are composed of tens of thousands of
short DNA sequences incorporated in mRNAs before li-
brary amplification to account for stochastic RNA loss and
nonlinear amplification bias for diversely expressed genes
[22]. Spike-ins are extrinsic molecules that are expected to
be similar across all single-cell libraries that can be used to
estimate technical variations in sequencing [24]. We col-
lected scRNA-seq datasets that were sequenced using UMIs
and spike-ins to reduce technical noise and determine the
actual biological signals for use in downstream analysis.
These features are very important in removing the strong
technical noise of scRNA-seq data to unveil subtle gene
expression variations regulated by miRNAs.

To compare expression noise between genes with dif-
ferent expression levels and transcript lengths, the raw
scRNA-seq data were processed according to previous
work [24]. First, to restore the true biological signals from
the high level of technical noise coupling in the sequencing
process of scRNA-seq, we estimated the mean value of
gene expression and biological variance by accounting for
technical noise with the help of spike-ins (Figures S17–
S19). The scRNA-seq data analysis procedure based on
UMIs and spike-ins provides a reliable estimate of gene
expression variation. This step controls various technical
variations, such as mRNA stochastic loss, amplification
bias, sequencing efficiency variation, sampling variation,
and experimental batch effects, before downstream quan-
titative analyses. Second, we checked whether the cell
cycle-related genes contribute substantially to the hetero-
geneity of gene expression. If so, the cell cycle cofactors
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would need to be removed to ensure that they do not in-
troduce spurious correlations or inflate the variances
[60,63]. As shown in Figures S20–S22, by comparing the
variance distribution of cell cycle-related genes and other
genes, we found that cell cycle-related genes do not show
increased variability and are thus unlikely to lead to false
results in the noise analysis.

Gene expression noise quantification

We quantified gene expression noise by CV (standard de-
viation divided by the mean abundance of mRNA) (Figures
S17–S19) as in previous analyses [64,65]. As the CV is
strongly anti-correlated with the expression level of genes
(Figures S17B, S18B, and S19B), the local ranks of CV in a
sliding window of 100 similarly expressed genes were
calculated to remove the dependency of CV on the
gene expression level (Figure S1). The local rank of
CV is a reliable and robust measurement to compare the
relative noise level for gene sets with different expression
levels [28].

The definition and selection of miRNA targets

Firstly, the miRNA expression profiles used in this analysis
were annotated with miRBase [66]. To reduce the possible
false-positive entries of this repository, we mapped miR-
Base annotations to MirGeneDB annotations [67] and de-
leted the miRNAs that did not match MirGeneDB
annotations. Most of the miRNAs in the datasets can be
mapped successfully as indicated in Table S4. Secondly, the
target genes of miRNAs were retrieved from the TargetScan
predictions [68,69]. We defined the conserved miRNA
target genes across most mammals as the miRNA target
genes, and their site types including 7mer-A1, 7mer-m8,
and 8mer. According to the website of TargetScan, it is
better to choose cumulative weighted context++ score
(CWCS) thresholds rather than thresholds for sites [69]. A
target with a larger CWCS means a higher degree of con-
fidence. Therefore, we examined the influence of target
definition criteria on the noise analysis, and the results
showed that the de-noising score of miRNA (AES score) is
generally not very sensitive to the confidence of the miRNA
target (Figures S23–S25). However, the number of sig-
nificant de-noising miRNAs is slightly increased when only
considering a highly confident target set.

Noise disparity analysis

Referring to previous work [28], we calculated the effect
size to compare differences in noise level between miRNA
targets and non-targets. First, we retrieved the miRNA ex-
pression level from miRNA-seq datasets. Then, we divided

all genes into miRNA target genes and non-target genes and
compared the local ranks of CV between the sets of miRNA
target genes and non-target genes. The significance of each
test is determined using a Mann–Whitney U test, which is a
nonparametric test that can be used in place of an unpaired t-
test [70]. For each test, the null hypothesis is that the CV
local ranks of two gene sets come from the same population.
In this context, we use the area under the ROC curve (AUC)
statistic to measure the effect size of the test [71] (Figure
S1). The AUC is equivalent to the Mann–Whitney U sta-
tistic in mathematics [72]. An effect size greater than 0.5
corresponds to higher expression noise of miRNA target
genes than non-target genes, while an effect size less than
0.5 indicates lower expression noise of miRNA target genes
than non-target genes.

The effect size magnitude of the Mann–Whitney U test is
correlated with the sample size (Figure S2A). As different
miRNAs have different numbers of targets, we need to
correct the influence of sample size on the effect size to
make them comparable between different miRNAs. Mathe-
matically, the effect size can be approximated as a normal
distribution for a large sample size, whose expectation μ is
0.5 and variance σ2 is (Ntest + Nbg + 1)/(12NtestNbg), where
Ntest and Nbg represent the sample sizes of the test and
background, respectively [72]. To remove the effect of
sample size, the AES was calculated: AES = (μ – effect
size)/σ. Figure S2B shows the AES score for different test
sample sizes. An AES score of less than 0 corresponds to a
larger local rank CVof miRNA target genes than non-target
genes, and an AES score larger than 0 indicates that the
local rank CV of miRNA target genes is smaller than non-
targets. Moreover, a larger AES score means better noise
reduction for miRNAs.

Gene Ontology analysis

To investigate the roles of constitutive and cell type-specific
miRNA subnetworks, we performed GO analysis by geno-
me-wide annotation database org.Mm.eg.db and gene
functional annotation clustering tool ClusterProfiler with
default settings [73]. We chose the top 5 GO terms of
constitutive miRNA subnetworks and cell type-specific
miRNA subnetworks for mESCs, ISCs, and DCs, and
provided 19 terms in total (Figure 5; the Benjamini-corre-
cted P values of these terms are less than 0.05).

Model to describe how miRNAs de-noise gene expres-
sion

A detailed description of the theoretical analysis used in this
study is available in File S1. Briefly, we built a physical
model to investigate the mechanism of miRNA-mediated
gene expression noise reduction at the mRNA level. The

404 Genomics Proteomics Bioinformatics 19 (2021) 394–407

https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019
https://www.sciengine.com/doi/10.1016/j.gpb.2021.12.019


parameters are shown in Table S5.

Experimental validations on HeLa cells

We analyzed the miRNA profile of HeLa cells (GSE164080
from GEO) [74] and designed a perfect complementary
MRE for each of the top 8 most highly expressed miRNAs.
We inserted these MREs into the 3′ UTR of EYFP on
plasmid B without MRE (pB0) separately and named them
pBn (n = 1–8).

HeLa cells (Catalog No. CCL-2, originally obtained from
ATCC, Manassas, VA) were grown in DMEM (Catalog No.
11965092, Gibco, Grand Island, NY) with 10% fetal calf
serum (Catalog No. 10270106, Gibco) at 37 °C and 5%
CO2. About 1.6 × 105 HeLa cells were seeded in 12-well
plates. One day after, we co-transfected plasmid A (pA),
pBn (n = 0–8), and pDT7004 (a plasmid without protein-
coding sequences) into HeLa cells with Lipofectamine LTX
(Catalog No. 15338100, ThermoFisher Scientific, Waltham,
MA) according to the manufacturer’s protocol. For a well
on the plate, each plasmid was transfected with the amount
of 100 ng. We also added doxycycline (Catalog No. 631311,
Clontech, San Jose, CA) with the final concertation of
1 μg/ml to induce the expression of EYFP.

Cells were collected 48 h after transfection for flow cy-
tometry (LSRFortessa Cell Analyzer, BD Biosciences,
Franklin Lakes, NJ), and intensities of TagBFP and EYFP
of each cell were recorded. Cells were binned by log10
TagBFP in sliding windows with bin width equal to 0.2. In
each bin, cells with EYFP intensity between the 5% and
95% quantiles were selected. We calculated the mean in-
tensity of EYFP in all bins, and chose the bin whose mean
intensity of EYFP (log10 transformed) was nearest to
1 × 103, 1 × 103.5, or 1 × 104 arbitrary unit (AU) for further
analysis. CV was then calculated as the expression noise of
EYFP.

Code availability

Our analysis is based on R version 3.4.2. The codes used to
perform the data process and analyses are available at
https://gitlab.com/ecart18/noise-analysis.
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