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ABSTRACT
Objectives The microscopic evaluation of slides has 
been gradually moving towards all digital in recent years, 
leading to the possibility for computer- aided diagnosis. It is 
worthwhile to know the similarities between deep learning 
models and pathologists before we put them into practical 
scenarios. The simple criteria of colorectal adenoma 
diagnosis make it to be a perfect testbed for this study.
Design The deep learning model was trained by 177 
accurately labelled training slides (156 with adenoma). 
The detailed labelling was performed on a self- developed 
annotation system based on iPad. We built the model 
based on DeepLab v2 with ResNet-34. The model 
performance was tested on 194 test slides and compared 
with five pathologists. Furthermore, the generalisation 
ability of the learning model was tested by extra 168 slides 
(111 with adenoma) collected from two other hospitals.
Results The deep learning model achieved an area 
under the curve of 0.92 and obtained a slide- level 
accuracy of over 90% on slides from two other hospitals. 
The performance was on par with the performance 
of experienced pathologists, exceeding the average 
pathologist. By investigating the feature maps and cases 
misdiagnosed by the model, we found the concordance of 
thinking process in diagnosis between the deep learning 
model and pathologists.
Conclusions The deep learning model for colorectal 
adenoma diagnosis is quite similar to pathologists. It is 
on- par with pathologists’ performance, makes similar 
mistakes and learns rational reasoning logics. Meanwhile, 
it obtains high accuracy on slides collected from different 
hospitals with significant staining configuration variations.

INTRODUCTION
Computer- aided pathological diagnosis is 
becoming possible with the microscopic eval-
uation of slides has been gradually moving 
towards all digital in recent years. In the 
past 10 years, researchers have proposed 
various medical diagnosis systems using deep 
learning.1–7 Deep learning has been widely 
studied in the field of object detection8–12 
and semantic segmentation.13 14 Different 

from traditional machine learning methods, 
deep convolutional neural networks (CNNs) 
can learn directly from raw medical images, 
avoiding the feature engineering procedure 
and learn key features during the model 
training process automatically.15

The ability to interpret and elaborate 
histological features is crucial for artificial 
intelligence- powered medical diagnosis 
systems. Before applying deep learning under 
practical scenarios, we need to address the 
following non- trivial issues to understand the 
similarities between models and pathologists. 
The first and foremost question is whether 
the deep learning model can perform as good 
as pathologists. Second, as different hospitals 
operate under various staining configura-
tions, the generalisation ability should be an 
important consideration when building the 

Strengths and limitations of this study

 ► To study the similarities between deep learning 
models and pathologists before, we put them into 
practical scenarios, we used colorectal adenoma 
diagnosis as a testbed and established a semantic 
segmentation model for colorectal adenomas diag-
nosis using a deep convolutional neural networks.

 ► The deep learning model had achieved an area 
under the curve of 0.92 and obtained a slide- level 
accuracy of over 90% on the slides from two other 
hospitals.

 ► The performance of the deep learning model was on 
par with experienced pathologists.

 ► By investigating the feature maps and cases misdi-
agnosed by the model, we found the concordance 
of thinking process in diagnosis between the deep 
learning model and the pathologists.

 ► The current model was not at clinical grade due to 
the limited size of the training dataset. We need to 
include more types of adenomas in the training pro-
cess and further improve the model performance.
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systems. Third, we want to know when the deep learning 
model would make mistakes and whether they would 
be similar to pathologists. Lastly, the parameters of the 
model should be visualisable to enable interrogation of 
its reasoning logics.

It is estimated that more than 50% of western people 
may suffer from colorectal adenoma during their life-
time, among which 5%–16% develop to colorectal cancer 
(CRC).16–18 The diagnosis and removal of these adenomas 
through colonoscopy lead to a reduction in the expected 
incidence of CRC, and individualised surveillance strategy 
for patients will be made according to the histological 
diagnosis of the resection specimen.19 20 Analysing H&E- 
staining slides of colorectal adenoma is easier compared 
with CRC, making it to be a perfect testbed to understand 
deep learning models.

In this research, we established a semantic segmenta-
tion model for diagnosis of colorectal adenomas using a 
deep CNN and achieved an area under the curve (AUC) 
of 0.92, which was on par with the performance of expe-
rienced pathologists. The deep learning model achieved 
a slide- level accuracy of over 90% on the slides from two 
other hospitals. By investigating the cases misdiagnosed 
and feature maps of the model, we found a concordant 
thinking process in diagnosis between the deep learning 
model and the pathologists.

METHODS
Data construction
With the popularity of colonoscopy, the number of 
colorectal pathological slides occupied a large work-
load in pathology departments. All the histological 
colorectal slides used in this study were obtained as a 
part of surveillance colonoscopy. To effectively train the 
proof- of- concept deep CNN, we had collected a total 
of 411 slides from Chinese People's Liberation Army 
(PLA) General Hospital (PLAGH), of which 232 were 
diagnosed as colorectal adenomas, and 179 were normal 
mucosa or chronic inflammation which were categorised 

as non- neoplasm. We selected 177 cases for the training 
set, 40 cases for validation and 194 cases as test samples. 
To further test the generalisation ability of the model, we 
had also collected 168 slides from two other hospitals, 
including China- Japan Friendship Hospital (CJFH) and 
Cancer Hospital, Chinese Academy of Medical Sciences 
(CH), composing the external test group. The detailed 
configuration of the datasets was shown in table 1. All 
slides were digitalised using KF- PRO-005 scanner (KFBio) 
with ×40 objective (eyepiece magnification fixed as ×10). 
Different from the traditional way of viewing slides on a 
microscope with fixed objectives, the whole slide images 
(WSIs) can be viewed at arbitrary levels via digital zooming.

The detailed labelling was prepared on 156 training 
and 20 validation slides containing adenomas using a self- 
developed annotation system based on iPad, by qualified 
pathologists. When adopting a rigorous definition that 
an adenomatous case contains one or more adenomatous 
glands, the diagnosis became remarkably subjective even 
between experienced pathologists. Therefore, a three- 
stage procedure was devised which included initial label-
ling, further verification, and the final expert check. Slides 
were first allocated to a pathologist, chosen randomly. 
When the labelling was finished, the slides along with 
annotations were then passed on to another randomly 
chosen pathologist for review. Finally, the senior pathol-
ogists spot- checked the slides that had passed the second 
reviewing stage. We were able to achieve a much better 
quality of training dataset using this elaborately designed 
labelling procedure.

When preparing training and validation sets, the back-
ground areas of the slide were filtered out using the 
Otsu’s method.21 Then the slides were split into tiles with 
a stride of half of the tile size to form the training and 
validation data. For different field of views (FoVs), the tile 
number ranged from 203 212 to 2 265 945. Specifically, for 
the best performing model trained with ×10 FOV, we used 
a total of 113 090 adenomatous tiles and 90 122 normal 
ones for training.

Table 1 Data distribution, where T, V, TV, H, L represent tubular, villous, tubulovillous, high grade, low grade, respectively

Subtype Grade PLAGH (train)
PLAGH 
(validation)

PLAGH
(test) CJFH CH

Adenoma T H 10 5 0 8 13

L 151 5 56 43 58

V H 11 5 0 5 11

L 28 5 2 3 46

TV H 10 0 0 5 11

L 24 0 2 3 45

Non- neoplasm – – 21 20 138 13 44

Total – – 177 40 194 63 105

The counter is incremented by one when the slide contains a certain component.
CH, Cancer Hospital, Chinese Academy of Medical Sciences; CJFH, China- Japan Friendship Hospital; PLAGH, Chinese People's Liberation 
Army General Hospital.
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Deep learning model
We built the model19 based on DeepLab v2 with ResNet-
34, which is illustrated in figure 1A, with improvements. 
We introduced a skip layer fusion approach, in which we 
combined the upsampled lower layers with the higher 
layers to retain finer details containing semantic informa-
tion. We also compared the performance of the improved 
DeepLab v2 against ResNet-50, DenseNet, Inception v3, 
U- Net, and DeepLab v3.

Since histological slides have no specific directions, we 
applied random rotating and mirroring to augment the 
training data. We used carefully designed data augmen-
tation instead of stain normalisation during a training. 
Since histopathological slides have no specific orienta-
tion, we applied random rotations by 90°, 180° and 270° 
and random flips (horizontal and vertical) to the training 
patches. To boost the model stability for WSIs collected 

from different hospitals, we also applied random scaling 
from ×1.0 to ×1.5, Gaussian and motion blurs and colour 
jittering in brightness (0.0–0.2), saturation (0.0–0.25), 
contrast (0.0–0.2) and hue (0.0–0.04).

All models were trained and tested with TensorFlow 
on an Ubuntu server with 4 Nvidia GTX1080Ti graphics 
processing units (GPUs). The Adam optimiser with a 
fixed learning rate of 0.0001 was used to train the models. 
The batch size was set to 80 (20 on each GPU) and the 
training process was stopped after 25 epochs.

Model test
A benefit from the fully CNN architecture is that the 
tile sizes during training and at inference need not be 
identical. In the inference stage, we cut the WSI into 
tiles with the size of 2000×2000 pixels. To further retain 
the environment information for the surrounding areas, 

Figure 1 (A) Deep neural network structure; (B) predictions of both classification and segmentation models.
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we adopted the overlap- patch approach22 by feeding a 
2200×2200 pixel tile into the model but only used the 
centred 2000×2000 pixel area for the final prediction.

We used the 15th largest pixel- level probability for slide- 
level prediction. The receiver operating characteristic 
(ROC) curve was derived by applying slide- level thresh-
olding to the probability.

Evaluation metrics
We chose three evaluation metrics to describe the model 
performance

 

accuracy = (TP + TN)/(TP + FN + FP + TN),

sensitivity = TP/(TP + FN),

specificity = TN/(TN + FP),   

where TP, FP, TN, FN stood for true positive, false posi-
tive, true negative and false negative, respectively. The 
accuracy represented the ratio of the number of correctly 
predicted slides to the total number of slides. The sensi-
tivity/specificity indicated the proportion of adenoma-
tous/normal slides that were correctly identified. The 
statistics were made using self- developed Python scripts 
and plotted by Matlab.

Model interpretability
Interpretability had been an issue to be considered in 
applying deep learning in medical practice. The deep 
CNNs were often described as black boxes, making it 
difficult to be applied for clinical use. This obstacle could 
be tackled by regarding the model either as a black box 
functional module or as a white box. From the black box 
perspective, we could study its input–output behaviour 
and compare it with expert pathologists. Meanwhile, we 
could also analyse the false predictions and compare them 
with mistakes made by pathologists. On the white box 
perspective, we could open the model and try to visualise 
what it has learnt. One of the most effective approaches 
of model visualisation is to output feature maps learnt by 
the CNN and infer what its reasoning logics look like. We 
visualised feature maps23 to understand how the input 
samples went through the CNN. We normalised all the 
visualisation results to the range (0.0–1.0) according to 
the maximum and minimum values of all the feature 
maps derived from the corresponding CNN layer.

RESULTS
Performance of different deep learning models
In table 2, we gave the performance of six models trained 
and validated with 320×320 pixel patches under ×20 FoV. 
The improved DeepLab v2 outperformed both classifica-
tion and segmentation models. Moreover, the segmen-
tation model reveals more interpretable predictions, 
as shown in figure 1B. In the following, we chose the 
improved DeepLab v2 as the research object.

Comparison of models trained with different FOVs
We trained six models using ×10, ×20 and ×40 FoV tiles 
with sizes of 640×640 and 320×320 pixels, as illustrated 
in figure 2A. It can be easily seen that ×10 FoV captured 
glandular structure and gland–stromal relationships 
better than other smaller FoVs. In addition, with the help 
of larger tile size, the model trained with ×10 FoV and 
640×640- pixel tile size outperformed others on the vali-
dation set, shown in figure 2B.

The computing speed was another important factor 
to be considered. It was worth investigating the predic-
tion time under different FoVs. Since our deep learning 
model was fully convolutional, it was possible to make 
predictions for arbitrary sizes of input images. In our 
research, we fixed the tile size in the prediction stage to 
2000×2000 pixels. The inference time of different FoVs 
was given in figure 2C, all numbers were normalised by 
the time taken at ×40. We could see that at ×10 we got 
both better accuracy and higher computing speed. The 
final diagnostic system developed with the trained deep 
learning model was demonstrated in the (online supple-
mental file 1).

Best model performance compared with pathologists
The slide- level ROC curve was given in figure 3, the AUC 
was 0.92. We had invited five pathologists to diagnosis the 
194 test slides. As shown in figure 3, five pathologists gave 
significant different diagnosis results, showing the subjec-
tiveness in the adenoma identification process. One could 
find the model performance was better than the average 
pathologist. In the following, the best model was chosen 
at the inverted triangle spotted in figure 3.

Some qualitative examples were shown in figure 4A. 
When we focused our attention on the regions with 
high probabilities (crimson), we could see the wedge- 
shaped adenomatous regions, which was consistent with a 
common observation from pathologists.

Generalisation test
To further test the generalisation ability of the model, 
we fed slides from the generation testing group into our 
system and compared the predictions given by the model 
against the histological reports. Results were shown in 
table 3. Without any fine- tuning on the original model, 
it found 155 out of 168 slides (adenoma: 111; normal: 
57) were correctly predicted, indicating the model still 

Table 2 Performance of different deep learning models

Model Accuracy, %

ResNet-50 89.8

DenseNet 87.7

Inception v3 90.3

U- Net 77.7

DeepLab v3 88.3

Improved DeepLab v2 90.4

https://dx.doi.org/10.1136/bmjopen-2019-036423
https://dx.doi.org/10.1136/bmjopen-2019-036423
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maintained high accuracy under different staining config-
urations. Figure 4B shows three examples.

System efficiency and scalability
Due to the large file size of histological slides, it was clear 
that building a system supporting multiple GPUs for the 
automatic diagnosis process was essential. The system 
completed the analysis of a slide with the size of 500 MB in 
30 s on a single GTX1080Ti GPU. As shown in figure 4C, 
the system performance increased near linearly with the 
hardware configuration (ie, number of GPUs).

False analysis and model visualisation
As shown in figure 5A, in (I) and (II), the adenomatous 
grade was low, though the model successfully spots these 
glands, the probability was too low to reach an affirma-
tive decision. The false positive predictions were closely 
related to tissue cauterisation and hyperplasia as shown 
in figure 5A- (III) and (IV), respectively.

We gave three representative examples in figure 5B to 
reveal the model inference process. Interestingly, as we 
looked carefully into the final probability map, we could 
infer where exactly the model put its attention on. The 
highlighted area matched with the area of adenomatous 
proliferation.

DISCUSSION
We found the FoV had a substantial impact on the diag-
nostic accuracy for both machines and pathologists. 
Specifically, in additional to targeted lesional cells, the 
histological environment around the cells was also crucial 
for the diagnosis process. We discovered that the model 
showed better performance with the ×10 FoV than with 
×20 or ×40 FoV. In the meantime, to further increase the 
FoV that can be perceived by the model, we enlarged the 
training tile size from the commonly adopted pixel size 
of 320×320 to 640×640. The best deep learning model 
reached an AUC of 0.92, showing comparable perfor-
mance to the pathologists, even better than the average 
pathologist.

This methodology could be applied to the detec-
tion of other symposiums from the histopathological 

Figure 2 (A) An example of tiles in ×10, ×20 and ×40 FoVs; (B) Tile- level classification accuracy on the validation set; (C) 
relative computing time of a WSI on different FoVs. FoVs, for different field of views.

Figure 3 Performance of the deep learning model and five 
pathologists. AUC, area under the curve.
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aspect. From the experience of pathologists, the FoV 
was specific to the disease type. For instance, for cancer 
detection, ×20 or ×40 FoV was necessary to make a 

confirmative diagnosis. Despite all this, increasing the 
tile size should always be effective with abundant GPU 
resources.

Figure 4 (A) Predicted examples in the test set; (B) some predictions for slides from other hospitals; (C) system performance 
against the hardware configuration.

Table 3 Model performance on three test datasets, where T, V, TV, H, L represent tubular, villous, tubulovillous, high- grade, 
low- grade adenomas, respectively

Dataset Adenoma, % T, % V, % TH, % TL, % VH, % VL, %
TVH, 
% TVL, %

PLAGH 89.3/79.0 89.3 100.0 – 89.3 – 100.0 – 100.0

CJFH 90.0/92.3 89.8 100.0 100.0 88.3 100.0 100.0 100.0

CH 93.4/93.2 96.6 95.7 92.3 96.6 90.9 95.7 97.78

The second column gives sensitivity/specificity and the last columns list the sensitivity.
CH, Cancer Hospital, Chinese Academy of Medical Sciences; CJFH, China- Japan Friendship Hospital; PLAGH, Chinese People's Liberation 
Army General Hospital.
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The model was required to have consistent and robust 
performance, that is, generalisation ability, in order to 
deal with the different staining configurations of histolog-
ical slides across different hospitals. We had collected 168 
additional slides from two other hospitals and achieved a 
slide- level accuracy of over 90%.

The false negative predictions were the cases which we 
need to be more cautious about. As shown in figure 5A, 
for false negative cases, when the adenomatous glands 
were small and hard to differentiate from regenerative 
changes at the base of crypts, the model tended to miss 
them. This behaviour was similar to that of junior pathol-
ogists who very often underdiagnose these ambiguous 
areas. False positive cases were related closely to tissue 
cauterisation and hyperplasia. Coincidentally, these tissue 
structures often confused the junior pathologists, some 

may overlook an inflammatory background and mistaken 
regenerative atypia as adenomas. It was necessary to intro-
duce quality assurance step to filter out low- quality slides, 
such as shredded and folded sections and marked cauteri-
sation, before feeding them into the segmentation model.

To make a decision on whether there were adenomas, 
the pathologists mainly focused on gland and cell 
morphologies. From model visualisation results shown in 
figure 5B, we could observe that the lower CNN layers 
extracted the edge and colour information from the raw 
image. As the network went deeper, some of the feature 
maps gradually revealed glands and cells, especially gland 
shapes, nucleus and cell forms. For cases with abnormal 
gland shape and cell morphology, the model made the 
final decision and determined they were adenomatous 
glands. Otherwise, the tile was considered normal. This 
reasoning path was very similar to that of an experienced 
pathologist.

To apply the methodology to more disease for various 
organs, it is necessary to recruit a large number of WSIs 
in the training phase covering diverse tumour subtypes. 
These WSI should be labelled with accurate pixel- level 
annotations by experienced pathologists. The augmented 
data should be generated from domain- specific features 
of histopathology to further improve the robustness and 
generatability under complicated scenarios.

CONCLUSION
It was necessary to know whether deep learning models 
were similar to pathologists. To answer this question, we 
established a semantic segmentation model for colorectal 
adenomas diagnosis using deep CNNs and achieved an 
AUC of 0.92, which is on par with the performance of 
experienced pathologists. By carefully studying the influ-
ence of FoV on the model performance, we found that a 
larger FoV brings better diagnostic accuracy, which was 
consistent with pathologists’ experience.

The model generalisation ability was proved by the 
multicenter test by slides collected from two other hospi-
tals. We had discovered that the model made similar 
mistakes on the samples as junior pathologists would do. 
Meanwhile, model visualisation showed the reasoning 
path of the deep CNN was very similar to that of experts. 
By increasing the number of the training samples to 
include more types of adenomas in the training process, 
we could further improve the model performance.
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