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Abstract

Background

The purpose of this study was to build a model of machine learning (ML) for the prediction of

mortality in patients with isolated moderate and severe traumatic brain injury (TBI).

Methods

Hospitalized adult patients registered in the Trauma Registry System between January

2009 and December 2015 were enrolled in this study. Only patients with an Abbreviated

Injury Scale (AIS) score� 3 points related to head injuries were included in this study. A

total of 1734 (1564 survival and 170 non-survival) and 325 (293 survival and 32 non-sur-

vival) patients were included in the training and test sets, respectively.

Results

Using demographics and injury characteristics, as well as patient laboratory data, predictive

tools (e.g., logistic regression [LR], support vector machine [SVM], decision tree [DT], naive

Bayes [NB], and artificial neural networks [ANN]) were used to determine the mortality of

individual patients. The predictive performance was evaluated by accuracy, sensitivity, and

specificity, as well as by area under the curve (AUC) measures of receiver operator charac-

teristic curves. In the training set, all five ML models had a specificity of more than 90% and

all ML models (except the NB) achieved an accuracy of more than 90%. Among them, the

ANN had the highest sensitivity (80.59%) in mortality prediction. Regarding performance,

the ANN had the highest AUC (0.968), followed by the LR (0.942), SVM (0.935), NB (0.908),

and DT (0.872). In the test set, the ANN had the highest sensitivity (84.38%) in mortality pre-

diction, followed by the SVM (65.63%), LR (59.38%), NB (59.38%), and DT (43.75%).
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Conclusions

The ANN model provided the best prediction of mortality for patients with isolated moderate

and severe TBI.

Background

Identifying patients with traumatic brain injury (TBI) with high risk of mortality is important

to maximize the resource for trauma care, and so that family members receive appropriate

counsel and treatment decisions [1, 2]. One widely applied predictor of mortality outcome is

the Trauma and Injury Severity Score (TRISS), which shows good discrimination in identify-

ing the patients with TBI at high risk of mortality [3]. However, the model was not specifically

designed for use in patients with TBI and is not always associated with high performance [4].

For patients with TBI, two prediction models (Corticosteroid Randomization after Significant

Head Injury [CRASH] and the International Mission for Prognosis and Analysis of Clinical

Trials in Traumatic Brain Injury [IMPACT]) based on large clinical trial datasets have shown

good discrimination and have enabled accurate outcome predictions [5–7]. However, these

two models lack the precision required for use on the individual patient level [8, 9].

Currently, machine learning (ML) has been successfully applied to aid in clinical diagnosis

and prognosis prediction [10, 11]. In some field-specific datasets, many ML techniques have

shown significantly better predictive power than more conventional alternatives [12]. Applied

ML techniques in the clinical setting include, but are not limited to, LR, support vector

machine (SVM), decision trees (DT), Bayes classification, and artificial neural networks

(ANN). This study aimed to construct an optimal model of ML for mortality prediction

among patients with moderate and severe TBI by using data from a population-based trauma

registry in a level I trauma center.

Methods

Subject and data preparation

This study was approved by the Institutional Review Board (IRB) of Chang Gung Memorial

Hospital with approval number 201700014B0. Informed consent was waived according to the

regulation of the IRB. Detailed patient information between January 2009 and December 2015

was retrieved from the Trauma Registry System of the hospital. The adult patient cohort

included those who were� 20 years of age and hospitalized for the treatment of moderate and

severe TBI, defined as an AIS score� 3 points in the head (moderate TBI, AIS 3–4; severe TBI,

AIS 5) [13, 14]. Polytrauma patients who had additional AIS scores� 3 points corresponding

to any other region of the body were excluded from this study [14]. Enrolled patients were

divided into a training set (a 6-year span between 2009 and 2014) for generation of a plausible

model under supervised classification, and a test set (a 1-year span in 2015) to test the perfor-

mance of the model. Patients with missing data were not included in the dataset for analysis.

The retrieved patient information included the following variables: age, sex, helmet-wearing

status, pre-existed co-morbidities, such as coronary artery disease (CAD), congestive heart fail-

ure (CHF), cerebral vascular accident (CVA), diabetes mellitus (DM), end-stage renal disease

(ESRD), and hypertension (HTN). Glasgow coma scale (GCS) score and vital signs, including

temperature, systolic blood pressure (SBP), heart rate (HR), and respiratory rate (RR) were col-

lected upon patient arrival at the emergency department. Blood-drawn laboratory data at the
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emergency room, including white blood cell count (WBC), red blood cell count (RBC), hemo-

globin (Hb), hematocrit (Hct), platelets, blood urine nitrogen (BUN), creatinine (Cr), alanine

aminotransferase (ALT), aspartate aminotransferase (AST), sodium, potassium, and glucose

was also collected. TBI-related diagnoses, such as epidural hematoma (EDH), subdural hema-

toma (SDH), subarachnoid hemorrhage (SAH), and intracerebral hematoma (ICH) were

assessed, as were ISS and the in-hospital mortality of patients during admission. The in-hospi-

tal mortality included those caused by the injury directly to the brain or by the associated com-

plication such as pneumonia or sepsis. Finally, a total of 1734 (1564 survival and 170 non-

survival) and 325 (293 survival and 32 non-survival) patients comprised the training and test

sets, respectively.

ML classifications

Logistic regression (LR). In this study, the LR classifier used glm function in the stats

package in R3.3.3 (R Foundation for Statistical Computing, Vienna, Austria). A stepwise LR

analysis was used to control the effects of confounding variables to identify independent risk

factors for mortality.

Support vector machine (SVM). The SVM classifier used the tune.svm & svm function

in the e1071 package in R with the radial basis function to handle non-linear interactions [15].

The optimal operating point was estimated using a grid search with a 10-fold cross-validation

varying the penalty parameter C, which determined the tradeoff between fitting error minimi-

zation and model complexity, and hyper-parameter γ, which defined the nonlinear feature

transformation onto a higher dimensional space and controlled the tradeoff between error due

to bias and variance in the model [15].

Decision tree (DT). In this study, the classification and regression trees (CART) of DT

were used based on the Gini impurity index to achieve the best overall split [16], with the rpart

function in the rpart package in R to enable better prediction through progressive binary splits

in a combined approach for both nonparametric and nonlinear variables.

Naïve bayes (NB). The NB classifier—deemed as the simplest of Bayes classifiers—makes

the assumption that input variables are conditionally independent of each other given the classi-

fication [17, 18]. Despite its simplicity, its performance is comparable to conventional or more

sophisticated methods [19, 20], and it has yielded good results in mortality-classification settings

[21]. In this study, the NB classifier used the naiveBaye function in the e1071 package in R.

Artificial neural networks (ANN). The ANN is constructed from a set of neurons that

exchange signals with each other via an interconnected network. Each connection has a

numeric weight that can be adjusted during training of the network, making the system adap-

tive to input patterns and capable of revealing previously unknown relationships between

given input and output variables [22–24]. In this study, the ANN classifier used a feed-forward

neural network with the nnet function in the nnet package in R. The tuning parameters

included the number of nodes in the hidden layer optimized between 1 and 20. For the train-

ing process, maximal iterations and decay were selected as 1000 and 0.001, respectively. To

avoid over-fitting, iterations occurred until the error did not significantly decrease.

Performance of the ML classifiers

Model predictive performance regarding accuracy, sensitivity, specificity and the area under

the curve (AUC) of the receiver operator characteristic curves (ROCs) corresponding to the

two different models was measured. A nonparametric approach to the analysis of the AUC

under correlated ROCs using the roc & roc.test function in the pROC package in R was pur-

sued [25]. The predicted probabilities against binary events was validated using the val.prob
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function in the rms package in R. Somers’ Dxy measured probability of concordance minus

the probability of discordance between predicted outcomes and observed outcomes and was

used to assess the predictive discrimination [26]. The coefficient of determination, R2, is a sta-

tistic that will give some information about the goodness of fit of a model [27]. An R2 of 1 indi-

cates that the regression line perfectly fits the data. The Brier score indicated an overall

measure of model performance by defining the mean squared error between the predicted

probabilities and the actual outcomes [28]. Brier scores vary between 0 and 1, a lower score

indicating higher accuracy.

Statistical analyses

All statistical analyses were performed using SPSS 20.0 (IBM Inc., Chicago, IL, USA) and R

3.3.3. For continuous variables, we used student t-tests to analyze normally distributed data,

while Kolmogorov-Smirnov or Mann-Whitney U tests were used to compare non-normally

distributed data. For categorical variables, we used Chi-square tests to determine the signifi-

cance of the association between variables. Results are presented as mean ± standard deviation,

and a p-value < 0.05 was considered statistically significant.

Results

Patient demographics and injury characteristics

As shown in Fig 1, there was no significant difference in sex, CAD, CHF, CVA, and DM

between patients that survived TBI and those that did not. In contrast, ESRD and HTN inci-

dences were higher in the fatality group than in the group of patients that survived. In addition,

fewer patients in the fatality group had worn a helmet when compared to patients in the sur-

vival group. A statistically significant difference in age, ISS, GCS, glucose, temperature, HR,

RBC, Hb, Hct, platelets, and K was also found between groups (S1 Fig). Because correlation

coefficients between Hb and Hct, BUN and Cr, and AST and ALT were similar, only one of

the three representative variables (i.e., Hct, BUN, and AST) was selected for further ML classi-

fication to prevent the inclusion of duplicate parameters. Therefore, 25 total variables were

used for ML classifier imputation.

Performance of ML classifiers in the training set

LR identified 12 predictors (age, helmet status, platelets, DM, SDH, Hct, temperature, ICH,

GCS, glucose, ISS, and ESRD) as independent risk factors for mortality (S2 Fig).

The SVM classifier was performed for the prediction of mortality, taking input with all 25

variables with two parameters (C, γ) being determined by a grid search of 2x, where x is an

integer between -20 and 4 for C and between -20 and -4 for γ. The values which gave the high-

est 10-fold cross-validation accuracy were C = 0.00003 and γ = 0.000977.

In the DT model (Fig 2), the GCS was identified as the initial split variable, with an optimal

cut-off value of> 4. Among patients having a GCS < 4, high glucose levels of� 216 mg/dL

indicated a fatal outcome. In patients with glucose levels < 216 mg/dL, the next best predictor

of mortality was age, with an optimal cut-off < 50 years. In patients� 50-years-old, existence

of SDH presented as a predictor of fatal outcome. In addition, among patients with GCS > 4,

an ISS� 25 and glucose levels� 222 mg/dL were selected as significant variables for the pre-

diction of a fatal outcome.

The constructed ANN model includes 25 inputs, one bias neuron in the input layer, eight

hidden neurons, one bias neuron in the hidden layer, and one output neuron (Fig 3). A single

output node indicated the probability of death.
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As shown in Table 1, all ML models, with the exception of the NB, achieved an accuracy of

more than 90%. As the high survival among investigated patients rate likely accounts for the

observed accuracy and specificity in mortality prediction, we further focused on the sensitivity

of different ML models. In the established model, ANN had the highest sensitivity (80.59%),

followed by the NB (73.53%), SVM (64.12%), DT (62.35%), and LR (53.89%). All five ML mod-

els had a specificity of more than 90%. In comparing AUCs of the ROCs among the five ML

models for the training set (Fig 4), the ANN had a significantly higher AUC (0.968) than the

other four ML models (S1 Table). Both LR (0.942) and SVM (0.935) had significantly higher

AUCs than the NB (0.908) or DT (0.872); however, there was no significant difference in AUC

between LR and the SVM. According to AUC comparisons, and in consideration of prediction

sensitivity, the ANN was determined to be the best algorithm to predict mortality. The calibra-

tion curves of these five predictions demonstrated that LR, DT, and ANN plotted a nonpara-

metric line close along the ideal diagonal line (Fig 5), while LR had the highest Dxy (0.884) and

ANN had the highest R2 (0.632) and lowest Brier score (0.036).

Performance of ML classifiers in the test set

For the test set, with the exception of the NB, all ML models achieved similar rates of accuracy

(~92% to 93.5%) in terms of their ability to predict mortality (Table 1). In addition, these mod-

els achieved specificity rates that were greater than 92%. The ANN still displayed the highest

Fig 1. Patient demographics and injury characteristics.

https://doi.org/10.1371/journal.pone.0207192.g001
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sensitivity (84.38%) in its ability to predict mortality, followed by the SVM (65.63%), LR and

NB (59.38%), and DT (43.75%).

Discussion

In this study, both LR and the SVM had significantly higher AUCs than the NB and DT. It has

been reported that the NB classifier operates under the assumption that independence is valid.

Fig 2. Illustration of the DT model for predicting mortality in patients with isolated moderate and severe TBI. Boxes denote the

percentage of patients analyzed with discriminating variables; survivors and non-survivors are indicated by green and red colors,

respectively.

https://doi.org/10.1371/journal.pone.0207192.g002

Fig 3. Architecture of the three-layered feed-forward ANN.

https://doi.org/10.1371/journal.pone.0207192.g003
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When two variables are related, however, the NB may place too much weight on them and too

little weight on other variables, resulting in classification bias [17, 18]. In addition, the DT may

lead to overestimation of the importance of included risk factors or may exclude other poten-

tial confounding factors that could influence actual risk [29]. On the other hand, the SVM

boundary is only minimally influenced by outliers [30] and the employment of kernels help

the model learn non-linear decision boundaries, allowing the classifier to solve more complex

data than linear analyses methods, such as the LR model [31]. However, this advantage could

not be identified in the current study, as there was no significant difference in AUC values

Table 1. Mortality prediction performance (i.e., accuracy, sensitivity, and specificity) for the LR, SVM, DT, NB, and ANN models on training and test sets.

Methods Train Test

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

LR 93.66% 53.89% 98.08% 93.54% 59.38% 93.54%

SVM 92.96% 64.12% 96.10% 92.50% 65.63% 95.22%

DT 94.69% 62.35% 98.21% 92.92% 43.75% 98.29%

NB 89.56% 73.53% 91.30% 86.15% 59.38% 89.08%

ANN 93.94% 80.59% 95.40% 92.00% 84.38% 92.83%

LR, logistic regression; SVM, support vector machine; DT, decision trees; NB, Naive Bayes; and ANN, artificial neural networks.

https://doi.org/10.1371/journal.pone.0207192.t001

Fig 4. ROC curves for the LR, SVM, DT, NB, and ANN models in predicting the mortality of patients with isolated moderate

and severe TBI.

https://doi.org/10.1371/journal.pone.0207192.g004
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between the LR and SVM. The exceptional performance of the LR model implies that most

patients that died following TBI could be explained by a relatively small set of independent

predictors that fit the logistic model assumptions well, such as old age [32], hyperglycemia

[33], GCS scores [32, 34], and the presence of SDH [35]. Therefore, to improve the predictive

performance of models than the LR, additional data or different approaches may be considered

for the prediction task.

One study that predicted 10 609 trauma patient outcomes, using 16 anatomic and physio-

logic predictor variables, revealed that the ANN exceeded the TRISS model in terms of its abil-

ity to predict mortality, with an AUC of 0.912 compared to 0.895 for the TRISS [36].

Furthermore, the ANN model has been shown to be more accurate and to have better overall

performance than LR model in predicting in-hospital mortality for patients receiving mechan-

ical ventilation [37] as well as for patients in critical care [38]. For patients with TBI, the

CRASH prognostic model shows good discrimination for 14-day mortality prediction, with an

AUC of 0.89, while the IMPACT prognostic model shows good discrimination for 6-month

mortality predictions, with an of AUC 0.80 [3]. In this study, we demonstrated that the ANN

had a significantly higher AUC than the other four ML models when predicting the mortality

of patients with isolated moderate and severe TBI. Moreover, the ANN retained the highest

sensitivity (84.38%) among the investigated algorithms. Notably, the LR model provides odds

ratio estimates for risk factors only under conditions with numbers of variables less than 20

[39]. A complex dataset with many predictors make LR model difficult to specify all possible

interactions [40]. In contrast, the computational power of the ANN is derived from the distrib-

uted nature of its connections. As such, the ANN can successfully manages complex datasets,

even when the sample size is small or the ratio between variables and records is unbalanced

Fig 5. Calibration curves by the LR, SVM, DT, NB, and ANN models in predicting the mortality of patients with isolated

moderate and severe TBI.

https://doi.org/10.1371/journal.pone.0207192.g005
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[41], making it a natural modeling tool to examine survival in diverse populations [42]. In this

study, we had included more variables such as preexisting comorbidities, helmet status, and

laboratory data to improve prediction performance. Furthermore, the lack of specific mortal-

ity-related information in the trauma registry, including imaging characteristics of computed

tomography scans [43], pupillary reactivity [7], and the existence of conscious deterioration,

may have rendered the prediction model a space for improvement.

One criticism of the ANN is that it is difficult to assess the relative contribution of each vari-

able to the final prediction put forth by the model [24]. Additionally, the ANN does not pro-

vide detailed information, such as the hazard ratio, which generally indicates the direction and

magnitude of influence each variable has on the outcome [44]. Some other limitations

included: First, patients declared dead on arrival at the hospital or at the scene of the accident

were not recorded in the registered database [45, 46] and may have resulted in potential sam-

ple bias. The unknown status of inter-facility transfer or resuscitation for prehospital cardiac

arrest may lead to a bias in the outcome measurement. Further, because the registered trauma

data only had the in-hospital mortality but there were no information regarding the mortalities

at 30 days, 3 months, or half a year data, there may exist some selection bias in the outcome

measurement. Second, the imputation of physiological and laboratory data collected from the

time of emergency department arrival does not reflect changes in hemodynamics and meta-

bolic variables of patients who were under possible resuscitation. Third, this study was unable

to assess the effects of any one particular treatment intervention, especially brain surgery. As

such, we relied on the assumption that the assessment and management of patients—especially

regarding operation quality—was uniform across the included population. Finally, the study

sample was limited to a single urban trauma center in southern Taiwan, which may not be rep-

resentative of other populations. However, because ANN generally could handle complex data

which have interactions better than LR. Since ANN could do a better performance in mortality

prediction than LR in this study according to the data from a single center, then we expect that

ANN may still performed better than LR in dealing with the data from multicentric or multi-

national source. However, such opinion requires a further validation in the future study.

Conclusion

We demonstrated that the ANN model provided better performance in predicting the mortal-

ity of patients with isolated moderate and severe TBI. The results of studies published so far

are encouraging and may provide the first steps towards the development of a prediction

model that can be integrated into trauma care systems to identify patients at high risk for

mortality.
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