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The intermediate filament protein nestin was identified in diverse populations of cells

implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells

constitutively express nestin and following an ischemic insult migrate to the infarct region

and participate in angiogenesis and neurogenesis. A modest number of normal adult

ventricular fibroblasts express nestin and the intermediate filament protein is upregulated

during the progression of reparative and reactive fibrosis. Nestin depletion attenuates

cell cycle re-entry suggesting that increased expression of the intermediate filament

protein in ventricular fibroblasts may represent an activated phenotype accelerating

the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult

rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament

protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes

bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were

identified in the infarcted human heart. The appearance of nestin(+)-ventricular

cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype

and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment

of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response

after an ischemic insult may represent a seminal event limiting the appearance of

nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry.

Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation

of the intermediate filament protein may directly contribute to vascular remodeling.

This review will highlight the biological role of nestin(+)-cells during physiological and

pathological remodeling of the heart and vasculature and discuss the phenotypic

advantage attributed to the intermediate filament protein.

Keywords: nestin, heart, embryogenesis, neural progenitor/stem cells, fibroblasts, cardiomyocytes, p38 MAPK,

vasculature

INTRODUCTION

Cardiovascular remodeling secondary to an ischemic insult or a chronic hemodynamic overload
involves the interplay of numerous biological events driven by diverse cell populations. A seminal
phenotype of several cell populations is the increased expression or de novo synthesis of the
intermediate filament protein nestin secondary to a pathological stress. The normal adult rodent
heart contains a resident population of neural progenitor/stem cells that constitutively express
nestin. A paucity of normal adult ventricular fibroblasts expresses nestin and the intermediate
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filament protein is upregulated during the progression of reactive
and reparative fibrosis. Nestin is absent in normal adult rodent
ventricular cardiomyocytes but following ischemic damage the
intermediate filament protein is induced de novo in a modest
population identified predominantly at the peri-infarct/infarct
region. These findings are translatable to the clinical setting
as interstitial and scar-residing nestin(+)-cells and a population
of nestin(+)-cardiomyocytes were identified in the heart of
post-myocardial infarcted patients. Nestin upregulation also
represents an important feature of vascular remodeling and the
intermediate filament protein was further identified in human
endothelial and vascular smooth muscle cells (VSMCs). The
present review will highlight the biological role of nestin(+)-cells
during physiological and pathological cardiovascular remodeling
and discuss the biological impact of the intermediate filament
protein.

REPARATIVE FIBROSIS AND
ANGIOGENESIS; SCAR FORMATION AND
HEALING OF THE ISCHEMICALLY
DAMAGED ADULT MAMMALIAN HEART

Ischemic injury of the adult mammalian heart leads to an
overt inflammatory response characterized by the recruitment of
neutrophils and monocyte-derived macrophages to the damaged
region leading to the phagocytosis of necrotic tissue (Chen and
Frangogiannis, 2013; Prabhu and Frangogiannis, 2016). As repair
proceeds, cytokines (e.g., tumor necrosis factor-α, interleukin-
1β, and transforming growth factor-β) released by invading
pro-inflammatory cells initiates the recruitment of ventricular
fibroblasts from the non-infarcted left ventricle (NILV) to
the ischemic area and concomitantly induces differentiation
to a myofibroblast phenotype (Chen and Frangogiannis, 2013;
Prabhu and Frangogiannis, 2016). In contrast to normal adult
ventricular fibroblasts, myofibroblasts are characterized by
smooth muscle α-actin expression and secrete greater amounts
of the extracellular matrix protein collagen to rapidly heal
the ischemically damaged heart (Chen and Frangogiannis,
2013; Prabhu and Frangogiannis, 2016). The process of scar
formation/healing denoted as reparative fibrosis represents
an essential physiological event repairing the ischemically
damaged heart in the absence of ventricular regeneration.
Physiologically, the scar provides needed structural support
limiting left ventricular dilatation of the ischemically damaged
heart (Figure 1; Ahmad et al., 2014; Richardson and Holmes,
2015; Iyer et al., 2016). A compromised proliferative response
and/or diminished recruitment of myofibroblasts associated with
a concomitant reduction of collagen deposition leads to infarct
thinning exacerbating left ventricular dilation and in some
rare cases could result in cardiac rupture and death (Figure 1;
Trueblood et al., 2001; Dai et al., 2005; Shimazaki et al., 2008;
Sun et al., 2011; Van Aelst et al., 2015). Clinically, left ventricular
dilatation was identified as a negative prognostic factor in
heart failure patients associated with an increased incidence
of ventricular arrhythmias and development of pulmonary
hypertension (Figure 1; Jasmin et al., 2003; Weintraub et al.,
2017).

The de novo appearance of blood vessels in the peri-
infarct/infarct region during scar formation/healing of the
ischemically damaged adult mammalian heart is defined as
reparative angiogenesis. A robust reparative angiogenic response
is associated with a smaller scar region attributed in part
to a reduction in the apoptotic loss of cardiomyocytes and
a concomitant thicker infarct secondary to the increased
deposition of collagen by resident myofibroblasts (Figure 1)
(Barandon et al., 2003; Fazel et al., 2006; Cochain et al., 2013).
Moreover, myofibroblasts synthesize vascular endothelial growth
factor-A (VEGF-A) and acting via a paracrine fashion may
further potentiate the de novo appearance of blood vessels during
reparative fibrosis (Chintalgattu et al., 2007; El-Helou et al., 2012;
Lin et al., 2012). Thus, in the absence of ventricular regeneration,
reparative angiogenesis restricts infarct expansion, and promotes
scar thickening thereby limiting left ventricular dilatation
(Figure 1). The apparent interaction between angiogenesis and
fibrosis is not exclusive to the heart as the appearance of de novo
blood vessels in damaged skin is essential for the ensuing
fibrotic response initiated by invading myofibroblasts leading to
hypertrophic scarring (Eming et al., 2014).

DISTINCT INTRONS OF THE NESTIN GENE
DRIVE EXPRESSION IN CELL SPECIFIC
MANNER

The 240-kDa protein nestin is a member of the class VI family of
intermediate filament proteins and in contrast to other classes, is
unable to self-assemble and form homodimers because of a short
N-terminus (Frederiksen et al., 1988; Lendahl et al., 1990; Wiese
et al., 2004; Neradil and Veselska, 2015). Thus, depending on the
cell type, nestin will form heterodimers with other intermediate
filament proteins including vimentin, α-internexin, and desmin
(Wiese et al., 2004; Neradil and Veselska, 2015). The human
and rat nestin gene possess three conserved intron regions that
drive expression of the intermediate filament protein in a cell
specific manner (Lothian et al., 1999; Wiese et al., 2004; Neradil
and Veselska, 2015). Nestin expression in neural stem cells of
the central nervous system (CNS) is independently regulated by
two distinct enhancer elements identified in the second intron of
the gene (Lendahl et al., 1990; Zimmerman et al., 1994; Lothian
et al., 1999; Yaworsky and Kappen, 1999;Mignone et al., 2004). By
contrast, intron 1 of the nestin gene selectively drives expression
of the intermediate filament protein in endothelial cells and
skeletal muscle (Zimmerman et al., 1994; Aihara et al., 2004;
Zhong et al., 2008).

NEURAL CREST-DERIVED NEURAL
PROGENITOR/STEM CELLS THAT
EXPRESS NESTIN IDENTIFIED IN THE
ADULT RODENT HEART; BIOLOGICAL
ROLE DURING REPARATIVE
ANGIOGENESIS

Stem cells derived from the neural crest migrate throughout
the developing embryo and differentiate to diverse cell types
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FIGURE 1 | Cardiac remodeling following myocardial infarction. A compromised angiogenic response and/or reduced deposition of collagen type I secondary to a

diminished recruitment and/or proliferation of myofibroblasts leads to inadequate scar formation characterized by infarct thinning. Inadequate scar formation

exacerbates left ventricular dilatation characterized by chamber enlargement. In some rare cases, significant scar thinning could lead to cardiac rupture and death.

Furthermore, left ventricular dilatation is as a negative prognostic factor in heart failure patients associated with an increased incidence of ventricular arrhythmias and

development of pulmonary hypertension. By contrast, robust reparative fibrotic, and angiogenic responses leads to scar thickening thereby limiting chamber

enlargement post-myocardial infarction and concomitantly reduces the risks associated with left ventricular dilatation.

including sympathetic neurons, glial cells, chondrocytes,
epithelium, and VSMCs (Sieber-Blum and Grim, 2004; Dupin
and Le Douarin, 2014; Plein et al., 2015). During cardiogenesis,
neural crest stem cells participate in the septation of the cardiac
outflow tract into the pulmonary artery and aorta (Dupin
and Le Douarin, 2014; Plein et al., 2015). Following postnatal
development, several studies have reported that a residual
population of neural crest-derived stem cells persist in the heart
and skin (Fernandes et al., 2004, 2008; Drapeau et al., 2005;
Tomita et al., 2005; El-Helou et al., 2008). Work from our lab
and Fukuda’s group independently identified a resident neural
crest-derived population of cells in the adult rodent heart that
express the intermediate filament protein nestin and exhibit
a neural progenitor/stem cell phenotype (Table 1; Figure 2)
(Drapeau et al., 2005; El-Helou et al., 2005, 2008; Tomita et al.,
2005). The labs of Freda Miller and Robert Hoffman likewise
reported that hair follicles of the adult rodent represent a niche of
neural crest-derived cells that express nestin and display a neural
progenitor/stem cell phenotype (Toma et al., 2001; Amoh et al.,
2004; Fernandes et al., 2004, 2008). Moreover, hair follicle- and
cardiac-resident neural progenitor/stem cells retain expression
of several neural crest related transcriptional factors including
sox9 and nestin expression is driven by intron 2 of the gene (Li
et al., 2003; Tomita et al., 2005; El-Helou et al., 2008; Fernandes
et al., 2008; Table 1). Following isolation, neural progenitor/stem

cells (regardless the tissue) grow as floating spheres in vitro in
the presence of epidermal growth factor/basic fibroblast growth
factor (EGF/bFGF) and differentiate to a neuronal/glial cell in
the presence of defined stimuli (Tomita et al., 2005; Fernandes
et al., 2008; El-Helou et al., 2009). In the normal adult rodent
heart, neural crest-derived nestin(+)-neural progenitor/stem
cells are intercalated between cardiomyocytes and following
myocardial infarction (MI) migrate to the scar region (El-Helou
et al., 2005, 2008; Tamura et al., 2011). Nestin(+)-cells were
also identified in the non-infarcted myocardium and scar
region of the ischemically damaged adult human heart, albeit it
remains presently unknown if a subpopulation represent neural
progenitor/stem cells (El-Helou et al., 2008).

In 2004, Wurmser et al. revealed that a subpopulation of
CNS-resident neural stem cells co-cultured with endothelial
cells in matrigel acquire an endothelial cell phenotype and
reorganize into vascular structures (Wurmser et al., 2004).
An analogous response was observed after the transplantation
of neural stem cells in the telencephalon of embryonic mice
(Wurmser et al., 2004). However, the percentage of transplanted
neural progenitor/stem cells that differentiated to an endothelial
cell leading to a vascular structure was significantly lower than
that observed in vitro (Wurmser et al., 2004). An important
angiogenic response may be prevalent during pathological
remodeling as vascularisation of glioblastomas was reported
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TABLE 1 | Nestin(+)-cells implicated in cardiovascular remodeling.

Cell type Nestin Intron Stimulus Biological role

Cardiac resident neural

progenitor/Stem cells

Constitutive Intron 2 Myocardial infarction Reparative fibrosis

(angiogenesis and neurogenesis)

(Tomita et al., 2005; El-Helou et al., 2008,

2013; Béguin et al., 2011; Chabot et al., 2013)

Pre-existing adult

cardiomyocytes

Induced de novo Intron 1 or 3 Myocardial infarction Ventricular regeneration?

(cell cycle re-entry)

(Meus et al., 2017; Hertig et al., 2018)

Adult ventricular

fibroblasts

Constitutive and upregulated Intron 1 or 3 Myocardial infarction and hypertension Reparative and reactive fibrosis

(proliferation)

(Béguin et al., 2012; Hertig et al., 2017)

Endothelial cells Constitutive and upregulated Intron 1 Myocardial infarction and hypertension Angiogenesis

(proliferation and migration)

(Mokrý et al., 2004, 2008; Liang et al., 2015)

Displaced endothelial cells

(interstitial)

Unknown Intron 1? Hypertension Reactive fibrosis? (Hertig et al., 2017)

Perivascular Nestin(+)-cells

(lack SMA and collagen)

Unknown Unknown Hypertension Perivascular fibrosis?

(Hertig et al., 2017)

Vascular smooth muscle

cells

Constitutive and upregulated Unknown Hypertension Vessel remodeling

(proliferation)

(Oikawa et al., 2010; Tardif et al., 2014, 2015)

Table summarizes the diverse populations of nestin(+)-cells identified in the adult mammalian heart and vasculature, highlights whether nestin is constitutively expressed and subsequently

upregulated or induced de novo, identifies the intron region and the stimuli influencing expression of the intermediate filament protein in the heart or vasculature and biological role during

tissue remodeling. In displaced endothelial cells, intron 1 may regulate nestin expression but definitive data is lacking. Furthermore, the biological role of displaced nestin/collagen type

I(+)-endothelial cells during reactive fibrosis remains to be elucidated. The cellular source and functional role of nestin(+)-cells (lack smooth muscle α-actin and collagen expression)

bordering the perivascular fibrotic region of predominantly large caliber coronary blood vessels of the pressure-overloaded rat heart remain undefined. The references cited represent

the seminal papers identifying the presence and/or biological role of the various populations of nestin(+)-cells implicated in cardiovascular remodeling.

to occur in part via the differentiation of cancer-like neural
stem cells to an endothelial cell phenotype (Ricci-Vitiani
et al., 2010). Consistent with the vascular plasticity of CNS-
resident neural stem cells, skin-derived neural progenitor/stem
cells located within the bulge region of the hair follicle
form capillary networks after wound healing (Aki et al.,
2010). These observations provided the impetus to examine
whether cardiac resident neural progenitor/stem cells represent
a novel cellular substrate of reparative angiogenesis during scar
formation/healing of the infarcted adult rodent heart. Cardiac
resident neural progenitor/stem cells were isolated from the
scar of 1 week post-MI rats, grown as spheres in the presence
of EGF/bFGF and subsequently labeled with a chromophore
to track migration and differentiation after transplantation in
the NILV of the infarcted rat heart (El-Helou et al., 2008).
Transplanted cardiac neural progenitor/stem cells migrated to
the scar and a subpopulation preferentially differentiated to an
endothelial cell co-expressing endothelial nitric oxide synthase
(eNOS) and nestin leading to the de novo appearance of
predominantly small caliber blood vessels (Table 1; Figure 2)
(El-Helou et al., 2008). A modest number of transplanted
neural progenitor/stem cells identified in newly formed vascular
structures differentiated a VSMC phenotype (Table 1; Figure 2)
(El-Helou et al., 2008). In support of the latter finding, CNS-
derived embryonic neural stem cells cultured in the presence of
the appropriate stimulus likewise acquired a VSMC phenotype
in vitro (Oishi et al., 2002). To reaffirm the angiogenic potential
of cardiac resident neural progenitor/stem cells, the heart

of adult transgenic mice expressing the reporter enhanced
green fluorescent protein (EGFP) driven by intron 2 of the
nestin gene was subjected to complete occlusion of the left
anterior descending coronary artery. In the heart of normal
adult transgenic mice not subjected coronary artery occlusion,
EGFP was co-expressed in nestin(+)-neural progenitor/stem
cells detected intercalated between cardiomyocytes (El-Helou
et al., 2013). Native blood vessels identified in the normal left
ventricle lacked EGFP immunoreactivity albeit nestin staining
was detected in endothelial cells (El-Helou et al., 2013). The
latter data is consistent with the observation that intron 1
rather than intron 2 of the nestin gene drives expression of the
intermediate filament protein in endothelial cells (Aihara et al.,
2004). Consistent with the findings of our previous study (El-
Helou et al., 2008), endothelial cells identified predominantly
in small caliber blood vessels of the scar region were derived
in part from differentiated resident neural progenitor/stem cells
characterized by the co-expression of nestin, CD31, and the
reporter EGFP (Table 1; Figure 2) (El-Helou et al., 2013; Meus
et al., 2017). In addition, a modest number of scar-residing
blood vessels were delineated by EGFP staining of smooth
muscle α-actin(+)-VSMCs (Table 1; Figure 2) (Meus et al.,
2017). Nestin-immunoreactive endothelial cells lacking EGFP
staining were also identified in the infarct region suggesting
that expression of the intermediate filament protein apparently
represents a conserved phenotype of de novo blood vessel
formation, regardless the cellular source (Mokrý et al., 2004;
El-Helou et al., 2013; Meus et al., 2017). Collectively, these
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FIGURE 2 | Nestin(+)-cells and cardiac remodeling following myocardial

infarction. Ischemic injury to the adult rodent heart leads to the migration of

cardiac resident nestin(+)-neural progenitor/stem cells from the non-infarcted

left ventricle (NILV) to the scar region and subsequent differentiation to a

vascular cell leading to de novo blood vessel formation. A subpopulation of

cardiac resident nestin(+)-neural progenitor/stem cells also participate in the

neurogenic response during scar formation (not depicted in figure).

Recapitulation of the intermediate filament protein in scar-residing

myofibroblasts may represent an activated phenotype to rapidly heal the

infarct region during reparative fibrosis. The increased appearance of

nestin(+)-fibroblasts was also reported in the fibrotic heart secondary to

pressure-overload, in fibrotic lungs secondary to hypobaric hypoxia and the

fibrotic kidney following unilateral ureteral obstruction. In this regard, the

increased denisty of nestin(+)-fibroblasts may play a seminal role driving the

reactive fibrotic response, regardless the tissue. Lastly, nestin was

re-expressed in pre-existing adult cardiomyocytes detected predominantly at

the peri-infarct/infarct region of the ischemically damaged heart. In vitro data

revealed that nestin expression drives the cell cycle re-entry of neonatal rat

ventricular cardiomyocytes. Collectively these data suggest that the

appearance of nestin(+)-cardiomyocytes in the adult mammalian infarcted

heart may represent an inherent paradigm of ventricular regeneration. Previous

studies have reported that p38 MAPK inhibits the cell cycle re-entry and

subsequent cytokinesis of ventricular cardiomyocytes. Based on the latter

data, the modest appearance of nestin(+)-cardiomyocytes and concomitant

inhibition of cell cycle re-entry may be likewise attributed in part to a

suppressive action of p38 MAPK recruited by the overt inflammatory response

post-myocardial infarction.

data reveal that cardiac resident neural progenitor/stem cells
represent a novel cellular substrate of reparative angiogenesis
during the progression of scar formation/healing following
MI. Moreover, based on the importance of the reparative
angiogenic response, a compromised neural progenitor/stem
cell population could lead to maladaptive infarct remodeling
exacerbating left ventricular dilatation. In type I and II diabetes,
nestin protein levels were significantly diminished in cardiac
resident neural progenitor/stem cells (El-Helou et al., 2009).
The loss of nestin would have a profound biological impact
as the intermediate filament protein directly facilitates the
proliferation and migration of neural progenitor/stem cells
(Xue and Yuan, 2010; Yan et al., 2016). A compromised

proliferative and migratory phenotype of neural progenitor/stem
cells secondary to loss of nestin may have contributed in part
to the impaired angiogenic response documented after ischemic
injury to the heart and damage to the skin predisposed to a
diabetic environment (Ikeda et al., 2012; Wang et al., 2015;
Okonkwo and DiPietro, 2017).

The conserved angiogenic plasticity of neural progenitor/stem
cells provided the impetus to test the hypothesis that
transplantation of isogenic skin-derived neural progenitor/stem
cells into the infarcted adult heart would lead to a smaller scar
secondary to the increased availability of cellular substrate for
de novo blood vessel formation (El-Helou et al., 2013). Skin-
derived neural progenitor/stem cells isolated from embryonic
Sprague-Dawley rats expressed the intermediate filament protein
nestin, the neural crest-related transcriptional factors sox2
and sox9, and grew as spheres in the presence of EGF/bFGF
(El-Helou et al., 2013). Following transplantation of the
NILV of 3-day post-MI Sprague-Dawley rats, chromophore
labeled skin-derived neural progenitor/stem cells were detected
engrafted in the peri-infarct/infarct region. Despite migration
and engraftment, skin-derived neural progenitor/stem cells
failed to differentiate to a vascular phenotype (El-Helou
et al., 2013). Nonetheless, a significant reduction of scar size
and concomitant improvement of left ventricular function
were observed in the infarcted heart transplanted with skin-
derived neural progenitor/stem cells (El-Helou et al., 2013).
The smaller infarct region was attributed to the increased
density of predominantly small caliber blood vessels in the
peri-infarct/infarct region facilitated in part by the paracrine
action of a panel of pro-angiogenic peptide growth factors (e.g.,
VEGF-A, nerve growth factor, stromal cell-derived factor-1α)
released by engrafted skin-derived neural progenitor/stem cells
(El-Helou et al., 2013). Thus, despite important phenotypic
similarities (e.g., nestin, sox9, growth as spheres) and inherent
angiogenic plasticity of skin- and cardiac-derived neural
progenitor/stem cells, the scar region of the infarcted adult
heart did not represent a favorable environment of engrafted
skin-derived neural progenitor/stem cells to differentiate to
a vascular cell. A similar paradigm was observed following
the engraftment of brain-derived neural progenitor/stem
cells in the scar of a myocardial infarcted adult mouse, as
differentiation to a vascular cell and subsequent de novo
blood vessel formation was modest (Ii et al., 2009). These
observations suggest that the environment of the damaged
tissue rather than the inherent plasticity may represent the
primary variable limiting and/or suppressing the differentiation
of neural progenitor/stem cells to a vascular phenotype following
transplantation.

NEURAL PROGENITOR/STEM CELLS AND
THE NEUROGENIC RESPONSE DURING
REPARATIVE FIBROSIS

Sympathetic hyperinnervation characterized by an increased
density of growth associated protein 43 (GAP43)-,
neurofilament-M, and tyrosine hydroxylase(+)-fibers represents
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an established phenotypic event of the ischemically damaged
adult mammalian heart providing inotropic support and
initiating cardiomyocyte hypertrophy (Zhou et al., 2004;
Hasan et al., 2006; Woodcock et al., 2008; Triposkiadis et al.,
2009; Kreipke and Birren, 2015). However, sympathetic
hyperinnervation post-MI also leads to maladaptive remodeling
including the genesis of arrhythmias, infarct expansion,
and reactive fibrosis (Cao et al., 2000; Colucci et al., 2000;
Colombo et al., 2003; Li et al., 2015). Sympathetic remodeling
of the ischemically damaged heart provided the impetus
to examine whether a subpopulation of cardiac resident
neural progenitor/stem cells contributes to the neurogenic
response. Indeed, a subpopulation of neurofilament-M(+)-fibers
innervating the peri-infarct/infarct region of the ischemically
damaged adult rat heart were physically associated with
nestin(+)-processes derived from cardiac resident neural
progenitor/stem cells (Table 1; El-Helou et al., 2008; Béguin
et al., 2011). By contrast, a physical association of nestin(+)-
processes and neurofilament-M(+)-fibers was not observed
in the normal adult rat heart or NILV of the infarcted rat
heart (El-Helou et al., 2005, 2008). Unequivocal evidence
of a neurogenic role of neural progenitor/stem cells was
delineated in a rat model of cardiac transplantation (Béguin
et al., 2011). Complete denervation characterized by the
absence of innervating neurofilament-M(+)-fibers was achieved
following isogenic heterotopic transplantation of an adult rat
heart into the abdomen of a recipient rat (Béguin et al., 2011).
Ischemic injury to the beating transplanted rat heart led to
the de novo synthesis of neurofilament-M(+)-fibers physically
associated with nestin(+)-processes emanating from neural
progenitor/stem cells (Béguin et al., 2011). The neurogenic
response of cardiac resident neural progenitor/stem cells post-
MI is characterized by the initial expression of GAP43(+)-fibers
physically associated with nestin(+)-processes and subsequently
replaced by neurofilament-M(+)-fibers (Chabot et al., 2013). The
temporal neurogenic response is consistent with previous studies
revealing that GAP43 expression represents an early event of
neurogenesis during learning and following regeneration of
injured peripheral nerves (Leu et al., 2010; Grasselli et al., 2011).
To delineate the stimuli implicated, normal adult rats were
implanted with an osmotic pump containing nerve growth factor
as the local production of the neurotrophin by cardiomyocytes,
myofibroblasts, and invading macrophages was reported to
play a seminal role driving sympathetic hyperinnervation
post-MI (Zhou et al., 2004; Hasan et al., 2006). Osmotic
pump delivery of nerve growth factor increased the density of
neurofilament-M fibers innervating the heart, albeit a physical
association with nestin(+) processes was not observed (Béguin
et al., 2011). Thus, the appearance and physical association of
GAP43(+)- and neurofilament(+)-fibers with nestin(+)-processes
emanating from a subpopulation of neural progenitor/stem
cells was prevalent in the adult heart only after an ischemic
insult. The identity of the stimulus locally synthesized/released
in the scar mediating the neurogenic response of cardiac
resident neural progenitor/stem cells is presently unknown
and the biological impact on infarct remodeling remains to be
elucidated.

REPARATIVE/REACTIVE FIBROSIS AND
NESTIN EXPRESSION IN VENTRICULAR
FIBROBLASTS

It was originally assumed that nestin represents a selectivemarker

of neural crest-derived cells that exhibit a neural progenitor/stem

cell phenotype. However, numerous studies have reported that

the intermediate filament protein is expressed in a wide variety

of normal and tumorigenic cells (Oikawa et al., 2010; Ishiwata

et al., 2011; Béguin et al., 2012; Liang et al., 2015; Neradil
and Veselska, 2015). Among the various populations of cells

expressing nestin, the intermediate filament protein was detected

in ventricular fibroblasts and dynamically regulated during

postnatal development and in the fibrotic heart secondary to

an ischemic insult or pressure-overload (Béguin et al., 2012;

Hertig et al., 2017). Nestin is ubiquitously expressed in neonatal
rat ventricular fibroblasts and postnatal development led to a

significant downregulation of the intermediate filament protein

in adult rat ventricular fibroblasts (Béguin et al., 2012). Moreover,

neonatal rat ventricular fibroblasts were associated with a

higher basal rate of DNA synthesis and greater expression of

the extracellular matrix protein collagen type I and the pro-
fibrotic peptide growth factor transforming growth factor-β3 as

compared to normal adult ventricular fibroblasts (Béguin et al.,

2012; El-Helou et al., 2012). Following MI of the adult rat
heart, nestin was upregulated in scar-residing myofibroblasts as

a greater percentage expressed the intermediate filament protein

as compared to normal adult ventricular fibroblasts (Figure 2)

(Béguin et al., 2012; El-Helou et al., 2012). Consistent with these
data, Scobioala et al. (2008) reported that nearly 50% of discoidin
domain receptor 2-(+)-ventricular fibroblasts identified in the
peri-infarct/infarct region were nestin immunoreactive and the
percentage was significantly greater than that observed in the
non-infarcted myocardium. Employing adult transgenic mice in
which intron 2 of the nestin gene drives EGFP expression, the
reporter was not detected in nestin/smooth muscle α-actin(+)-
myofibroblasts identified in the peri-infarct/infarct region (Meus
et al., 2017). Thus, in contrast to neural progenitor/stem cells,
intron 1 and/or intron 3 of the nestin gene drives expression of
the intermediate filament protein in scar-residing myofibroblasts
(Table 1). Furthermore, the higher percentage of nestin(+)-
myofibroblasts reported in the peri-infarct/infarct region was
associated with a greater basal rate of DNA synthesis and
expression of collagen type I and transforming growth factor-β3
as compared to normal adult ventricular fibroblasts (Béguin et al.,
2012; El-Helou et al., 2012). Collectively, these data provided the
impetus to examine whether the apparent dissimilar basal rate
of DNA synthesis between neonatal fibroblasts, adult fibroblasts,
and myofibroblasts was attributed in part to the disparate
level of nestin expression. Indeed, the selective depletion of
the intermediate filament protein following the infection of
neonatal rat ventricular fibroblasts with a lentivirus containing a
shRNA directed against nestin significantly reduced basal DNA
synthesis (Béguin et al., 2012). Thus, postnatal development
of rat ventricular fibroblasts is characterized by a significant
downregulation of nestin protein levels and re-expression of
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the intermediate filament protein in myofibroblasts recapitulates
an embryonic/neonatal phenotype. The enhanced proliferative
response of nestin(+)-myofibroblasts may represent an activated
pro-fibrotic phenotype to accelerate scar formation and healing
(Scobioala et al., 2008; Béguin et al., 2012).

In contrast to the established physiological role of
reparative fibrosis post-MI, reactive or interstitial fibrosis
represents a pathophysiological response characterized by
the uncontrolled synthesis/deposition of collagen type I by
resident ventricular fibroblasts in the hypertrophied heart
secondary to a chronic pressure-overload (e.g., hypertension)
or in the hypertrophied NILV following ischemic damage
(Figure 2) (Chen and Frangogiannis, 2013; Prabhu and
Frangogiannis, 2016). In contrast to reparative fibrosis, reactive
fibrosis reduces ventricular compliance thereby exacerbating
systolic/diastolic dysfunction (Creemers and Pinto, 2011; Chen
and Frangogiannis, 2013; Prabhu and Frangogiannis, 2016).
An additional pathological feature of the pressure-overloaded
heart is perivascular fibrosis characterized by the deposition
of collagen type I within the adventitial region of the coronary
vasculature leading to vascular stiffness (Dong et al., 2017). In the
hypertrophied/fibrotic left ventricle of the rat heart secondary
to pressure-overload, nestin protein levels were upregulated
and attributed in part to the increased density of collagen
type I-immunoreactive mesenchymal cells co-expressing the
intermediate filament protein (Hertig et al., 2017). The increased
density of nestin/collagen(+)-mesenchymal cells in the pressure-
overloaded heart may be secondary to the upregulation of
the intermediate filament protein in normal adult ventricular
fibroblasts following exposure to the pro-fibrotic peptide
growth factors angiotensin II, transforming growth factor-β1,
and EGF (Hertig et al., 2017). An analogous paradigm was
identified in the lungs secondary to hypobaric hypoxia as the
reactive fibrotic response was associated with an increased
density of collagen type 1-immunoreactive mesenchymal cells
co-expressing nestin (Chabot et al., 2016). Consistent with the
aforementioned studies, the overt accumulation of collagen
in the fibrotic kidney following unilateral ureteral obstruction
positively correlated with the density of nestin(+)-mesenchymal
cells (Sakairi et al., 2007). Lastly, epithelial-to-mesenchymal
transition was identified as a seminal event of reactive fibrosis
in the lungs and a recent study revealed that lung epithelial
cell transition to a mesenchymal phenotype was characterized
by the loss of E-cadherin and concomitant upregulation of
collagen type I and nestin (Kage and Borok, 2012; Chabot
et al., 2016). Thus, akin to the paradigm identified during
reparative fibrosis, the increased density of nestin/collagen
type 1(+)-ventricular fibroblasts may represent a seminal
event driving the reactive fibrotic response of the pressure-
overloaded rat heart (Figure 2) (Table 1). These findings further
reveal that the underlying nature of the insult to the adult
mammalian heart rather than the conserved upregulation of
nestin ultimately determines whether activated ventricular
fibroblasts contribute to pathological (e.g., reactive fibrosis
secondary to hypertension or in the NILV) or physiological
(e.g., reparative fibrosis; scar formation) remodeling (Table 1).
Lastly, a population of nestin(+)-cells lacking collagen type I

expression was preferentially detected bordering the perivascular
fibrotic region of predominantly large caliber coronary blood
vessels of the pressure-overloaded rat heart (Hertig et al.,
2017). The cellular source and potential contribution of
this specific population of perivascular nestin(+)-cells in the
progression of vascular fibrosis remains presently unresolved
(Table 1).

NESTIN AND VASCULAR REMODELING

In contrast to neural progenitor/stem cells, intron 1 of the
nestin gene drives expression of the intermediate filament protein
in endothelial cells and upregulation and/or induction of the
intermediate filament protein identifies an angiogenic response
during physiological and pathological remodeling (Table 1)
(Aihara et al., 2004). Nestin was detected in endothelial cells
lining ventricular trabeculae of the embryonic mouse heart,
in newly formed blood vessels in the scar of the infarcted
rodent and human heart and in the vasculature of fibrotic
lungs secondary to hypobaric hypoxia (Mokrý et al., 2004,
2008; Wagner et al., 2006; El-Helou et al., 2009; Chabot
et al., 2016; Hertig et al., 2018). Akin to that observed in
ventricular and lung fibroblasts, transforming growth factor-
β1 and EGF stimulation of rat microvascular endothelial cells
induced nestin expression (Hertig et al., 2017). The exposure of
human umbilical vein endothelial cells to a hypoxic environment
promoted nestin expression and the intermediate filament
protein directly facilitated VEGF-A mediated proliferation
and migration during the formation of capillary-like tubules
when plated in matrigel (Table 1; Liang et al., 2015). In the
hypertrophied/fibrotic rat heart secondary to pressure-overload,
displaced endothelial cells characterized by CD31 staining
were unexpectedly detected in the interstitial milieu and co-
expressed nestin and collagen type I (Table 1) (Hertig et al.,
2017). By contrast, collagen type I staining was undetected
in CD31/nestin(+)-endothelial cells identified in the coronary
vasculature of the pressure-overloaded heart (Hertig et al., 2017).
In vitro experiments reaffirmed the mesenchymal phenotype of
displaced endothelial cells as CD31/eNOS(+)-rat microvascular
endothelial cells expressed prolyl 4-hydroxylase A3 and collagen
type I and secretion of the extracellular matrix protein led
to the formation of a fibrillary network (Hertig et al., 2017).
A mesenchymal phenotype was also identified in endothelial
cells isolated from the cornea and fibrotic liver and work
from our lab reported that CD31/eNOS(+)-human coronary
artery endothelial cells express collagen type I and filamentous
nestin (Howard et al., 1976; Maher and McGuire, 1990; Hertig
et al., 2017). These data collectively suggest that interstitial
nestin/CD31(+)-endothelial cells identified in the pressure-
overloaded rat heart do not undergo endothelial-mesenchymal
transformation but rather displacement from the vasculature
unmasks a mesenchymal phenotype. Despite these findings, the
contribution of displaced interstitial nestin/CD31/collagen type
1(+)-endothelial cells to the reactive fibrotic response of the
pressure-overloaded adult rat heart remains presently unresolved
(Table 1).
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Oikawa et al. (2010) reported that nestin was expressed in
VSMCs of the normal adult rat aorta and the density of nestin(+)-
VSMCs in the aortic arch was significantly greater as compared
to the thoracic and abdominal regions (Table 1). Data from our
lab reaffirmed the latter paradigm and further demonstrated
that a subpopulation of nestin(+)-VSMCs of the adult rat
aorta were in G2-M phase as depicted by phosphohistone-
3 staining (Tardif et al., 2014, 2015). Nestin(+)-VSMCs co-
expressing phosphohistone-3 were also detected in the adult
rat carotid artery and the intermediate filament protein was
further identified in endothelial cells lining the aorta and
carotid artery (Tardif et al., 2014, 2015). Consistent with the
in vivo data, VSMCs isolated from the rat carotid artery and
aorta characterized by the smooth muscle α-actin, smooth
muscle-22α, and caldesmon immunoreactivity co-expressed
filamentous nestin (Tardif et al., 2015). Likewise, filamentous
nestin was detected in human aortic-derived caldesmon/smooth
muscle-22α(+)-vascular smooth muscle cells and VSMCs of the
pulmonary vasculature of heart failure patients (Chabot et al.,
2015; Tardif et al., 2015). Exposure of adult rat carotid artery-
and aortic-vascular smooth muscle cells to a panel of peptide
growth factors upregulated nestin protein levels (Tardif et al.,
2015). Nestin protein depletion of rat carotid artery VSMCs via
a lentiviral-shRNA approach significantly attenuated angiotensin
II and EGF mediated DNA synthesis, whereas no change in
protein synthesis was observed (Table 1) (Tardif et al., 2015).
These findings provided the impetus to determine whether vessel
remodeling secondary to a hypertensive state would lead to
upregulation of nestin in VSMCs. Indeed, secondary to pressure-
overload (e.g., suprarenal abdominal aorta constriction), adult rat
carotid artery and aorta vessel remodeling (↑ wall thickness and
media area) was associated with a significant increase in nestin
protein levels (Tardif et al., 2015). Moreover, nestin expression
in the carotid artery of hypertensive rats positively correlated
with the rise of mean arterial pressure and left ventricular systolic
pressure and attributed in part to a greater density of nestin(+)-
vascular smooth muscle cells as compared to the carotid artery of
normal rats (Tardif et al., 2015). These data collectively suggest
that the greater density of nestin(+)-vascular smooth muscle cells
may represent an adaptive proliferative phenotype facilitating
in part vessel remodeling secondary to hypertension (Table 1).
Consistent with a role in vessel remodeling, nestin was expressed
in vascular cells of the neointima following balloon injury of the
rat carotid artery and in VSMCs identified in human coronary
atherosclerotic lesions (Suguta et al., 2007; Oikawa et al., 2010).

NESTIN IS INDUCED IN PRE-EXISTING
VENTRICULAR CARDIOMYOCYTES OF
THE INFARCTED ADULT RODENT HEART

Work from our lab originally identified a modest population
of cardiomyocytes at the peri-infarct/infarct region of the
ischemically damaged rat heart that expressed nestin in the
cytoplasm and/or was partially striated (Table 1; Figure 2) (El-
Helou et al., 2005). These findings were independently confirmed
and we and others have further reported the appearance of

nestin(+)-cardiomyocytes in the infarcted human heart (El-
Helou et al., 2008; Mokrý et al., 2008; Scobioala et al., 2008;
Tamura et al., 2011). Nestin(+)-cardiomyocytes detected at the
peri-infarct/infarct region co-express desmin, cardiac troponin-
T, retain β1-adrenergic receptor immunoreactivity, and exhibit
a disorganized pattern of connexin-43 expression (Béguin
et al., 2009; Meus et al., 2017). The appearance of nestin(+)-
cardiomyocytes was not a transient response as a population
persisted in the heart of 9 month post-myocardial infarcted
rats (Béguin et al., 2009). By contrast, nestin immunoreactivity
was not identified in ventricular cardiomyocytes of the normal
adult heart or non-infarcted region of the ischemically damaged
rodent heart (Béguin et al., 2009; El-Helou et al., 2009).
Nestin(+)-cardiomyocytes were also detected in the adult mouse
heart of a genetic model of muscular dystrophy lacking the
structural proteins dystrophin and utrophin (Berry et al., 2013).
Interestingly, in a pig model of muscular dystrophy, nestin
protein levels were robustly increased (33-fold) in skeletal muscle
and the intermediate filament protein was re-expressed in
regenerating skeletal tissue of mice muscle following denervation
(Carlsson et al., 1999; Vaittinen et al., 1999; Fröhlich et al.,
2016). Based on the established proliferative role of nestin,
recapitulation of the intermediate filament protein in damaged
skeletal muscle was considered a phenotypic event of tissue
regeneration. In this regard, the appearance of nestin(+)-
cardiomyocytes in the ischemically damaged heart may likewise
represent a regenerative paradigm, albeit the documentedmodest
response precludes a significant impact on infarct size (Meus
et al., 2017).

Scobioala et al. (2008) identified morphological small
nestin(+)-cells co-expressing a panel of putative stem cells
markers (e.g., c-Kit, stem cell antigen-1, multiple drug resistance
1, Abcg2) in the infarcted mouse heart. Based on these data, the
authors proposed the thesis that the appearance of nestin(+)-
cardiomyocytes was secondary to the differentiation of resident
cardiac stem cells. In the study by Tamura et al. (2011),
lineage tracing of neural crest derived cells that displayed
a neural progenitor/stem cell phenotype was identified by
EGFP staining and a subpopulation apparently differentiated
to a cardiomyocyte. A small number of neural crest-derived
EGFP(+)-cardiomyocytes were detected in the neonatal heart,
persisted in the adult myocardium, and identified in the border
zone region of the scar following ischemic damage (Tamura
et al., 2011). To further explore the aforementioned paradigm, the
heart of transgenic mice in which the reporter EGFP was driven
by intron 2 of the nestin gene underwent complete coronary
artery ligation (Meus et al., 2017). Following ischemic damage,
nestin(+)-neural progenitor/stem cells that co-expressed EGFP
were identified intercalated between cardiomyocytes of the non-
infarcted myocardium and detected in the peri-infarct/infarct
region (El-Helou et al., 2013; Meus et al., 2017). EGFP
staining was absent in nestin(+)-cardiomyocytes identified in the
infarcted mouse heart demonstrating that cardiac resident neural
progenitor/stem cells that express nestin driven by intron 2 of the
gene were not the cellular source (El-Helou et al., 2013; Meus
et al., 2017). By contrast, cardiomyocyte-specific expression of
mCherry directed by α-myosin heavy chain promoter revealed
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that the de novo synthesis of nestin was prevalent in pre-existing
mCherry/troponin-T(+)-ventricular cardiomyocytes identified at
the peri-infarct/infarct region of the ischemically damaged adult
mouse heart (Meus et al., 2017) (Table 1). The underlying
reason(s) for the discordant findings regarding the cellular source
of nestin(+)-cardiomyocytes reported by our lab and Tamura
et al. (2011) remains presently unresolved.

NESTIN EXPRESSION IN PRE-EXISTING
CARDIOMYOCYTES RECAPITULATES AN
EMBRYONIC PHENOTYPE

Lower vertebrates possess the inherent ability to regenerate
cardiac tissue following injury (Jopling et al., 2012; Bloomekatz
et al., 2016). The adult heart of amphibians and fish contain
predominantly small mononucleated cardiomyocytes that
contain less myofibrils than adult mammalian cardiomyocytes
and retain a proliferative phenotype (Jopling et al., 2012;
Bloomekatz et al., 2016). Following cardiac injury, the ventricular
regenerative response of lower vertebrates is mediated by the
proliferation of pre-existing cardiomyocytes (Jopling et al.,
2012; Bloomekatz et al., 2016). Akin to lower vertebrates,
growth of the embryonic mammalian heart is mediated by
proliferating mononucleated cardiomyocytes (Soonpaa et al.,
1996; Brade et al., 2013). The embryonic phenotype of pre-
existing mammalian cardiomyocytes is retained for a brief
period after birth as exposure of neonatal rodent ventricular
cardiomyocytes to a variety of stimuli promote cell cycle re-entry
and cytokinesis (Engel et al., 2005; Zebrowski et al., 2016; Meus
et al., 2017). Moreover, a cardiac regenerative response was
observed following ventricular apex resection of the neonatal
mouse heart (Porrello et al., 2011). However, several recent
studies have reported that the ventricular regenerative response
of the neonatal mouse heart was incomplete or absent (Andersen
et al., 2014; Zebrowski et al., 2017). During postnatal (neonatal
to adult) growth of the mammalian heart, the embryonic
phenotype was lost and the increase in cardiac mass occurred
primarily via hypertrophy of binucleated cardiomyocytes
derived from mononucleated cardiomyocytes that failed to
undergo cytokinesis (Soonpaa et al., 1996; Ahuja et al., 2007).
However, it has been suggested that postnatal growth of the
rodent and human heart during preadolescence/adolescence
may occur in part via the proliferation of a modest population
pre-existing cardiomyocytes that retain an embryonic phenotype
(Bergmann et al., 2009; Mollova et al., 2013; Senyo et al.,
2013; Naqvi et al., 2014). The study by Senyo et al. (2013)
reported that throughout the lifespan of a mouse, a very low
rate of division of pre-existing cardiomyocytes gives rise to
new diploid mononucleated cardiomyocytes. Furthermore,
following ischemic damage to the adult mouse heart, the rate
of division of pre-existing mononucleated cardiomyocytes
was significantly increased leading to the appearance of new
cardiomyocytes preferentially at the peri-infarct/infarct region,
albeit a ventricular regenerative response was not observed
(Senyo et al., 2013). Collectively, these data provided the impetus
to assess whether nestin expression in a modest population of

pre-existing cardiomyocytes selectively detected at the peri-
infarct/infarct region of the adult rodent heart recapitulates
an embryonic phenotype. The work by Kachinsky et al.
(1995) initially demonstrated that nestin mRNA and protein
were expressed in the mouse heart during mid-embryonic
development (E9.0–E11) and embryonic cardiomyocytes were
nestin immunoreactive. Work from our lab extended the latter
findings and further revealed that nestin was detected in atrial
and ventricular cardiomyocytes of E9.5 day mice, expression
gradually diminished with ongoing cardiac development and
was absent at E17.5 days (Meus et al., 2017; Hertig et al., 2018).
Nestin was detected in cycling embryonic cardiomyocytes
as depicted by Ki67 staining and a subpopulation may have
originated from the first heart field characterized by nuclear
TBX5 immunoreactivity (Hertig et al., 2018). Filamentous nestin
was also identified in H9c2 rat embryonic cardiomyoblasts and
lentiviral-short hairpin RNA (shRNA) mediated depletion of the
intermediate filament protein significantly inhibited cell cycle
re-entry (Meus et al., 2017). Thus, nestin expression recapitulates
an embryonic proliferative state and may further provide
the requisite phenotype for a subpopulation of pre-existing
ventricular cardiomyocytes to potentially re-enter the cell cycle
post-MI.

P38 MAPK SUPPRESSES NESTIN
EXPRESSION AND CELL CYCLE
RE-ENTRY OF PRE-EXISTING
VENTRICULAR CARDIOMYOCYTES

Despite the appearance of nestin(+)-ventricular cardiomyocytes
in the infarcted adult rodent heart, the response was modest and
cell cycle re-entry was not detected (Béguin et al., 2009; Meus
et al., 2017). However, the inherent ability of a subpopulation
of pre-existing cardiomyocytes to recapitulate an embryonic
phenotype post-MI as reflected by the de novo synthesis of nestin
would suggest that the modest response and failure to re-enter
the cell cycle could be primarily attributed to a suppressive
action of one or more biological cues associated with reparative
fibrosis. Indeed, the inflammatory response post-MI may play a
seminal role inhibiting the cell cycle re-entry of adult ventricular
cardiomyocytes in part via activation of the serine/threonine
kinase p38 mitogen activated protein kinase (MAPK) (Engel
et al., 2005, 2006). Four p38 MAPK isoforms [α, β, γ, and δ]
were identified and activation requires the dual phosphorylation
of the threonine180 (Thr180) and tyrosine182 (Tyr182) residues
located in the Thr-Gly-Tyr motif by putative upstream MAPK
kinases MKK3 and MKK6 (Arabacilar and Marber, 2015). Adult
ventricular cardiomyocytes express p38α/p38β and p38α is the
predominant isoform implicated in a variety of biological actions
(Arabacilar and Marber, 2015). Two seminal studies by Engel
and colleagues revealed that p38α MAPK-dependent pathways
inhibit the cell cycle re-entry of embryonic, neonatal and adult
cardiomyocytes (Engel et al., 2005, 2006). Furthermore, the co-
administration of fibroblast growth factor 1 and the p38 MAPK
inhibitor SB203580 to mice subjected to MI led to a smaller scar
attributed in part to the cell cycle re-entry and cytokinesis of
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adult ventricular cardiomyocytes (Engel et al., 2006). Consistent
with the latter paradigm, Jopling and colleagues demonstrated
that overexpression of p38α MAPK attenuated the regenerative
response of the injured zebrafish heart (Jopling et al., 2012).
These findings provided the impetus to test the thesis that p38
MAPK may play a seminal role suppressing nestin expression
and inhibiting cell cycle re-entry of ventricular cardiomyocytes
following ischemic damage to the adult mammalian heart. To
examine the latter issue in an in vitro setting, neonatal rat
ventricular cardiomyocytes (NRVCMs) were employed. In an
attempt to mimic cardiac remodeling post-MI, NRVCMs were
treated with the protein kinase C (PKC) activator phorbol
12,13 dibutyrate (PDBu). Previous studies have reported that
the biological actions of G-protein coupled receptors and
cytokines occur in part via the coordinated recruitment PKC-
and p38 MAPK-dependent pathways (Bogoyevitch et al., 1994;
Schuette and LaPointe, 2000; Pan et al., 2005). Moreover,
phorbol ester mediated activation of diacylglycerol-dependent
PKC isoforms in ventricular cardiomyocytes and H9c2 rat
embryonic cardiomyoblasts led to p38 MAPK phosphorylation
(Clerk et al., 1998; Nagarkatti and Sha’afi, 1998). A paucity of
NRVCMs isolated from the heart of 1-day neonatal rat pups
expressed nestin and exposure to PDBu for 24 h promoted
hypertrophy but failed to induce expression of the intermediate
filament protein or promote cell cycle re-entry (Meus et al., 2017).
An analogous paradigm was observed in the rat heart secondary
to hypobaric hypoxia as nestin expression was not upregulated
in the hypertrophied right ventricle (Chabot et al., 2016). PDBu
treatment of NRVCMs led to p38 MAPK phosphorylation and
phosphorylation of the serine82 residue of the downstream
target heat shock protein 27 (HSP27) (Meus et al., 2017).
Inhibition of p38 MAPK activity with the pharmacological
agent SB203580 suppressed PDBu-mediated phosphorylation of
the serine82 residue of HSP27 (Meus et al., 2017). The 24 h
treatment of NRVCMs with PDBu and SB203580 induced nestin
expression and promoted cell cycle re-entry and the response was
potentiated following a 72 h exposure (Table 1) (Meus et al., 2017;
Hertig et al., 2018). By contrast, SB203580 did not inhibit the
hypertrophic response of NRVCMs in response to PDBu (Meus
et al., 2017; Hertig et al., 2018). Lastly, nestin depletion with
an AAV9 containing a shRNA directed against the intermediate
filament protein significantly attenuated the number of NRVCMs
that expressed nestin and re-entered the cell cycle (Table 1)
(Hertig et al., 2018). Collectively, these data reveal that nestin-
driven cell cycle re-entry of pre-existing cardiomyocytes may
represent a physiological response during reparative fibrosis
potentially highlighting an inherent paradigm of ventricular
regeneration. Indeed, the smaller infarct reported in the rat
heart secondary to isoflurane preconditioning as compared to
the non-preconditioned infarcted heart was associated with a
significant increase in the appearance of nestin(+)-ventricular
cardiomyocytes (Agnić et al., 2015). However, in the infarcted
adult mammalian heart, recruitment of p38 MAPK secondary
to the overt inflammatory response may represent a seminal
event limiting the appearance of nestin(+)-cardiomyocytes and
the concomitantly inhibiting cell cycle re-entry.

NESTIN EXPRESSION AND CELL CYCLE
RE-ENTRY OF NEONATAL VENTRICULAR
CARDIOMYOCYTES REQUIRES THE
RECRUITMENT OF YAP-1 AND PKB

HIPPO-regulated transcriptional coactivator yes associated
protein-1 (Yap-1) plays a seminal in cardiac embryogenesis
as dephosphorylation promotes cardiomyocyte proliferation
leading to a thickened compact myocardium and expanded
trabecular layer (Xin et al., 2013). Furthermore, dysregulation
of the HIPPO pathway secondary to the depletion of the
scaffold protein Salavador led to the nuclear accumulation of
dephosphorylated Yap-1 in adult cardiomyocytes initiating
cell cycle re-entry and ventricular regeneration following an
ischemic insult (Heallen et al., 2013). Consistent with the latter
premise, the absence of nestin expression and cell cycle re-entry
of NRVCMs following PDBu treatment alone was associated
with Yap-1 inactivation following phosphorylation of the
serine127 residue (Hertig et al., 2018). Thus, at least in response
to PDBu, Yap-1 was dispensable in the hypertrophic response
of NRVCMs (Hertig et al., 2018). Yap-1 does not represent a
direct target of p38 MAPK suggesting that phosphorylation of
the transcriptional coactivator may have occurred at least in part
via recruitment of upstream kinases Mammalian sterile 20-like
kinase 1 (Mst1) and/or large tumor suppressor 1/2 (Lats1/2)
(Lee and Yonehara, 2012). PDBu/SB203580 co-treatment
of NRVCMs led to the dephosphorylation of the serine127

residue of Yap-1 and verteporfin inhibition of dephosphorylated
Yap-1 signaling suppressed nestin expression and cell cycle
re-entry (Hertig et al., 2018). A recent study revealed that
Yap-1 facilitated cardiomyocyte proliferation via recruitment of
phosphatidylinositol-3 kinase/phosphatidylinositol-3 kinase
dependent kinase/protein kinase B (PI3-K/PDK/PKB)-
dependent pathway (Lin et al., 2015). Nestin mediated cell
cycle re-entry of normal and tumorigenic cells and growth of the
embryonic heart following overexpression of the intermediate
filament protein occurred via a PI3-K/PDK/PKB-dependent
pathway (Xue and Yuan, 2010; Chen et al., 2014; Liu et al., 2015).
Moreover, PKB was identified as a key downstream signaling
event facilitating phosphatidylinositol-3 kinase mediated
cell cycle re-entry of embryonic and adult cardiomyocytes
(Evans-Anderson et al., 2008; Beigi et al., 2013; Lin et al.,
2015). These observations suggest that nestin may drive Yap-1
mediated cell cycle re-entry of NRVCMs via recruitment of
phosphatidylinositol-3 kinase dependent signaling events.
To address the latter premise, NRVCMs were treated with
the pharmacological agent triciribine reported to prevent
phosphorylation/activation of PKB by inhibiting binding to
the pleckstrin homology domain of PDK (Berndt et al., 2010).
Triciribine administration to PDBu/SB203580-treated NRVCMs
inhibited BrdU incorporation but concomitantly increased the
number of NRVCMs that expressed nestin (Hertig et al., 2018).
Thus, at least in response to PDBu/SB203580, Yap-1 signaling
selectively induces nestin expression, and the intermediate
filament protein acting via recruitment of PKB promotes cell
cycle re-entry of NRVCMs. Moreover, the increase in the number
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of nestin(+)-NRVCMs following PDBu/SB203580 and tricirbine
co-treatment is consistent with previous studies demonstrating
that PKB directly phosphorylates/inactivates Yap-1 (Basu et al.,
2003; Zhang et al., 2012).

CONCLUSION

Cardiac resident nestin(+)-neural progenitor/stem cells identified
in the normal adult rodent heart represent a cellular substrate of
de novo blood vessel formation during reparative fibrosis.
However, the relative contribution of nestin(+)-neural
progenitor/stem cells to the reparative angiogenic response
during scar formation and healing remains presently undefined.
The biological impact attributed to the increased density of
nestin/collagen type I(+)-fibroblasts is dependent on whether
the underlying context involves reparative or reactive fibrosis.
Thus, at least in the absence of ischemic damage, targeting
nestin expression in ventricular fibroblasts of the pressure-
overloaded heart and other fibrotic tissue (e.g., lungs, kidney)
may represent a potential therapeutic approach to attenuate
reactive fibrosis. Recapitulation of an embryonic phenotype and
seminal role of the intermediate filament protein driving the cell
cycle re-entry of neonatal cardiomyocytes and cardiomyoblasts
suggests that the appearance of a modest number of pre-
existing nestin(+)-adult ventricular cardiomyocytes post-MI
may represent an inherent paradigm of ventricular regeneration.
However, the limited appearance of nestin(+)-ventricular
cardiomyocytes and concomitant inability to re-enter the
cell cycle may be attributed in part to the recruitment of
p38 MAPK secondary to the overt inflammatory response
post-MI. Pharmacologically targeting p38 MAPK or identifying
downstream targets of the serine/threonine kinase that selectively
suppress expression of the intermediate filament protein may

represent a therapeutic approach to initiate a partial cardiac
regenerative response post-MI secondary to the increased
appearance of cycling nestin(+)-ventricular cardiomyocytes.
Lastly, vascular remodeling secondary to hypertension was
attributed in part to the increased density of nestin(+)-vascular
smooth muscle cells the re-entered the cell cycle. Nestin
upregulation in VSMCs may represent an adaptive proliferative
response driving in part remodeling of the vasculature secondary
to a chronic hemodynamic overload (Briet and Schiffrin, 2013).
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