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ABSTRACT: Industrial data are in general corrupted by noises and outliers, which
do not meet the application assumptions in feature extraction. Many existing feature
extraction algorithms are not robust, overly consider the less important features of the
data, and cannot capture the key features of the data. To this end, the two-level
feature extraction method (TFEM) based on 21-norm is proposed in this study.
Compared with single-projection feature extraction algorithms, TFEM consists of
two projections: the nonreduced and reduced dimensionality projections. The
nonreduced dimensionality projection can remove the parts of less important features
that are unrelated to the key features of the data. The reduced dimensionality
projection can reduce the dimensionality of the data and further extract the features
of the data. In addition, 21-norm is used to make the algorithm more robust. Finally, the convergence of the proposed algorithm is
analyzed. Extensive experiments have been conducted on the Tennessee Eastman and Penicillin Fermentation processes to
demonstrate that the proposed method is more effective than other state-of-the-art fault detection methods.

1. INTRODUCTION
Process monitoring, which is an important technique to
improve process safety and ensure product quality, has
attracted extensive attention from both academia and the
industry over the past 20 years.1−3 Data-based process
monitoring methods, especially multivariate statistical process
monitoring, have attracted considerable attention and
developed rapidly because they do not require rigorous system
models or prior knowledge about the process.
Data-based fault diagnosis methods often establish statistics

through feature extraction algorithms and then judge whether a
fault occurs according to the statistics. Many traditional feature
extraction algorithms have been improved to adapt to different
industrial scenarios. Jiang et al.4 proposed a parallel PCA-
KPCA (P-PCA-KPCA) modeling and monitoring scheme
combining randomized algorithm and genetic algorithm for
process monitoring of linearly correlated and nonlinearly
correlated variables. Tian et al.5 proposed a weighted copula-
correlation multi-block principal component analysis method,
which avoids the participation of noise variables and retains
important information. Zhang et al.6 proposed a process
monitoring method based on feature extraction, which is a
common subspace feature extraction method based on tensor
decomposition, considering both common scores and weights.
Ye et al.7 proposed an improved multilinear feature extraction
method and feature selection strategy. The method extracts
features and monitors multi-channel data in conjunction with
multivariate control charts. Zhang et al.8 proposed an
improved locality preserving projection based on the heat-

kernel cosine weight matrix, namely, heat-kernel and cosine
weights locality preserving projections (HC-LPP). Compared
with other related methods, the HC-LPP method has higher
diagnosis accuracy. However, the above situation may not hold
in the following two cases: (1) industrial data are generally
corrupted by noises and outliers; (2) there are many non-
obvious features in the data, that is, less important features,
which can affect the detection or classification performance.
Many studies have demonstrated that the 0-norm and 1

-norm can improve the robustness of the algorithm,9−11 and
many fault diagnosis methods based on 0-norm and 1-norm
have been proposed. Rahoma et al.12 proposed a fault
detection and diagnosis method based on sparse principal
component analysis (SPCA). The method selects the number
of non-zero loads (NNZLs) of SPCA according to the false
alarm rate and fault detection rate (FDR) and has certain
robustness. Xiao et al.13 proposed a dynamic process
monitoring method based on sparse representation. The
method reduces dimensionality in clean data space and is
robust to noise and outliers. Xu and Ding14 proposed an
efficient and robust process monitoring method based on
similar sparse cooperative embedding. The algorithm learns a
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sparse coefficient matrix as a sparse constraint for reconstruc-
tion errors through 1-norm regularization and is robust to data
contaminated by outliers. However, 0-norm optimization
involves a combinatorial optimization problem, which requires
searching and optimizing all possible solutions, and its solution
is an NP-hard problem.15,16 Moreover, the 1-norm does not
have rotation invariance. Therefore, the 21-norm-based PCA
algorithm was developed by Ding et al.17 and Nie et al.18 In
addition, studies have shown that the 21-norm can effectively
find outliers in data set compared with the 1-norm.

19 In
summary, 21-norm is more suitable for enhancing the
robustness of algorithms than other types of norms.
Another method to eliminate the influence of outliers is the

low-rank representation (LRR), which aims to capture the
lowest rank representation of the data. Pan et al.20 introduced
the traditional LRR into the principal component pursuit
(PCP) method, constructing a low-rank coefficient matrix to
represent explicit relationships between variables. Subse-
quently, Pan et al.21 proposed a new fault detection method,
robust PCP. Applying the proposed robust PCP method, low-
rank matrices and explicit variable relationships containing
important process information are obtained, as well as block
sparse matrices containing small faults. Fu et al.22 proposed a
low-rank joint embedding method. This method captures the
global structure of the raw data through low-rank joint
embeddings, alleviating the negative effects of outliers. At the
same time, the monitoring capability is enhanced by
introducing manifold regularization to preserve the local
geometry of the data. However, the rank function is a discrete
function, minimizing the rank is an NP-hard problem.
In this study, the two-level feature extraction method

(TFEM) based on 21-norm is proposed. The method mainly
includes the nonreduced and reduced dimensionality projec-
tions, which are used to capture the key features of the data.
To construct the statistics, the T2 statistics are used for both
the feature space and the residual space, and the T2 statistic
considers the correlation among variables. The main
contributions of this study are summarized as follows:

1. Two projections, namely, the nonreduced and reduced
dimensionality projections, are used simultaneously. The
nonreduced dimensionality projection removes less
important features that cannot reflect the features of
data. The reduced dimensionality projection is used to
reduce the dimension of data.

2. 21-norm is used to increase the robustness of the
algorithm. The biconvex optimization is used to
optimize the projection matrix that makes the
optimization solution simpler, and its convergence is
analyzed.

3. A large number of tests are performed on the TE and
Penicillin fermentation processes data set. Random noise
is added to several training data. The experiments
demonstrated that our algorithm can achieve higher
FDR.

The remainder of the paper is organized as follows: Section
2 explains the algorithm proposed in this study, and Section 3
applies the algorithm in the Tennessee Eastman (TE) process,
followed by comparing it with the other methods. Section 4
applies the algorithm in the Penicillin fermentation process.
Section 5 presents the conclusions and prospects of the
algorithm proposed in this study.

2. ALGORITHM
2.1. Brief Introduction to Standard Notations and

Terminology. Let us assume a matrix M = (mij), whose i-th
row and j-th column are represented as mij. The 21-norm of the
matrix is expressed as19
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where mi is the i-th row of matrix M.
2.2. Two-Level Feature Extraction Method. This

section mainly introduces the TFEM algorithm. The non-
reduced dimensionality projection is employed to maintain the
dimensionality of data, while simultaneously making the
projected data sparse. When the dimensionality of data is
too high, its visibility deteriorates; thus, a reduced dimension-
ality is added to the data. During the reduced dimensionality of
data, we need to highlight the features of data while
minimizing the loss function. 21-norm is used to improve
the robustness of the algorithm. Therefore, we described the
final model as follows
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where X ∈ Rm×n is a data set, Q ∈ Rm×m is the nonreduced
dimensionality projection matrix, m is the number of process
variables, and n is the total number of measurements for each
process variable. W ∈ Rm×l is the reduced dimensionality
projection matrix. λ is the trade-off parameter used to balance
the weight relationship between the first and second items. l is
the dimensionality of the feature space obtained through many
experiments. The first item is the process of projecting the
high-dimensional data onto low-dimensional data while
ensuring that the loss function is minimized. The second
item can reduce affected by less important that cannot reflect
the features of data.
Figure 1a shows 500 fault 0 data after the standardization of

the TE process data set. Figure 1b shows 800 fault 1 data after

the standardization of the TE process data set. The horizontal
axis and vertical axis represent the process variables and
measured values for each process variable, respectively. As
shown in Figure 1a, the fault 0 data after being standardized
fluctuate around 0 for most process variables. That is, if most
process variables are kept near 0, it can reflect the feature of

Figure 1. Data after standardization of the TE process data set. (a)
Fault 0. (b) Fault 1.
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fault 0 data efficiently. Generally, fluctuations near 0 are caused
by less important which cannot reflect the feature of the fault 0
data. Therefore, a nonreduced dimensionality projection
matrix Q is used to make most process variables of data as
sparse as possible without reducing the dimensionality of data.
As shown in Figure 1b, the fault 1 data after being standardized
usually fluctuates around 0 for some process variables. When
the nonreduced dimensionality projection matrix Q is used,
the difference between the fault 1 data and fault 0 data is more
obvious.
As shown in Figure 2, data set (a) is distributed along the X-

axis, and the features of data have a significant relationship with

the X direction of data; thus, the value of λ needs to be
increased. As shown in Figure 2, data set (b) is not distributed
along the X-axis or Y-axis; thus, each direction of data can
reflect the features of data, and the features of data have a great
relationship with any direction of data. In order to maintain the
features of data, the weight of the loss function needs to be
increased, and the value of λ needs to be reduced. After a lot of
experiments, we found that the experiment effect is best when
0 ≤ λ ≤ 1.

2.3. Algorithm Solving. Because both the terms are
nonsmooth, it is difficult to directly solve the equation for the
optimization problem. We simplify eq 2 as19
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Fix W, by simplifying eq 3, we get

tr

tr

WW X Q X D X Q X

Q XD X Q

arg min ( ( ) ( ) )

( )

Q W,

T T
1

T T

T
2

T+ (4)

The partial derivative of eq 4 with respect to Q is
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Due to the constraint WTW = I, we multiply both sides of eq
5 by W, we have
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From eq 7, we can see that Q does not have a trivial
solution; thus, there exists no constraint on Q in the objective
function.
Next, we fix Q and take derivatives of eq 3 with respect to

W. First, we construct the Lagrangian multiplier
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Remove the second item, we have
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where Wi is the i-th column of matrix W.
Take the partial derivative of eq 8 with respect to Wi, we

have
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. By eq 11, we

get the solution of W. The column vectors of the optimal
projection matrix W are composed of the eigenvectors of K
corresponding to the first l minimum eigenvalues. The column
vectors of residual projection matrix Wres are composed of the
eigenvectors of K corresponding to the later (m−l) minimum
eigenvalues.

3. FAULT DETECTION
3.1. Construction of Statistics. The data do not

necessarily obey the Gaussian distribution. Given that a linear
transformation does not change the distribution of random
variables. In addition, the feature space does not necessarily
exhibit a Gaussian distribution, and its covariance matrix is23

W Q X W Q X( )( )T T T T T= (12)

Similarly, the residual space does not necessarily obey the
Gaussian distribution, and its covariance matrix is

W Q X W Q X( )( )res res
T T

res
T T T= (13)

The following statistics can be constructed for fault
detection

Figure 2. Two data sets that require different λ. (a) Data need to
increase λ. (b) Data need to decrease λ.
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T n W Q X W Q X( ) ( )T T T 1 T T= × (14)
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res
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res
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where x is a column of matrix X, representing a sample in data
set X.
We use the kernel density estimation (KDE) method in ref

24 to calculate the control limits Jth, Jth,res of the T, and Tres,
respectively.

3.2. Process of the TFEM Fault Detection Method.
Requirements:
Training data set X;
Testing data set Xnew;
Dimensionality of the feature space l;
Trade-off parameter λ.

Offline training
Step 1 Initialize W ∈ Rm×l and Q ∈ Rm×m;
Step 2 from eq 7, we find Q. From eq 11, we find W;
Step 3 repeat Step 2 until converges, and we get W and Wres;
Step 4 Calculate T, Tres of training data set X according to

eqs 14 and 15;
Step 5 Set control limit Jth, Jth,res through the KDE method;
Online testing
Step 1 Calculate T, Tres of testing data set Xnew according to

eqs 14 and 15;
Step 2 Perform fault detection based on the following

detection logic:
T > Jth or Tres > Jth,res, fault;
T ≤ Jth and Tres ≤ Jth,res, normal;

Figure 3. Fault 5. (a) Variable XMEAS 22: fault 0 and fault 5. (b) Variable XMV 11: fault 0 and fault 5.

Figure 4. Detection results of fault 5. (a) Results for KICA. (b) Results for KPCA. (c) Results for R1-PCA. (d) Results for TFEM.
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3.3. TE Process Fault Detection. To evaluate the
performance of the proposed fault detection method, we
used it with the TE process data set and compared its
performance with the R1-PCA,17 KICA,25 and KPCA26

methods.
3.4. Data Preparation. 3.4.1. TE Process Data. TE

process proposed by Downs et al. is a chemical simulative
model based on the actual chemical production process, and it
has been widely used to test the performance of fault detection
and diagnosis. More details can be found in other works.27 The
TE process data set is composed of a training data set and a
testing data set. The data in the TE process data set
correspond to 22 different simulation operations. Each sample
in the TE process data set has 52 process variables. Samples
d00.dat to d21.dat constitute the training data set, while
samples d00_te.dat to d21_te.dat make up the testing data set.
Samples d00.dat and d00_te.dat are samples corresponding to
normal working conditions. The d00.dat training sample is
obtained from a 25 h simulation, and the total number of
observations is 500. The d00_te.dat testing sample is obtained
from a 48 h simulation, and the total number of observations is
960. d01.dat to d21.dat are training data set samples with
faults, while d01_te.dat to d21_te.dat are testing data set
samples with faults.
The testing data set samples with faults are obtained from a

48 h operations simulation, and the faults are introduced after
8 h. A total of 960 observed values are collected, of which the
first 160 observed values are normal.

4. RESULTS
4.1. Case Study 1: Case Study of Fault 5. Fault 5

includes a step change in the inlet temperature of the cooling
water in the condenser [(XMES(22)]. A significant effect of
this fault is that it causes a step change in the flow of the
cooling water in the condenser (see Figure 3a). When this fault
occurs, the flow rate from the condenser outlet to the vapor/
liquid separator [XMV(11)] also increases, resulting in an
increase in the temperature of the vapor/liquid separator as
well as that of the cooling water outlet of the separator (see
Figure 3b). The control loop can compensate for this change
and return the temperature in the separator to the set point. It
takes approximately 10 h to reach the stable state. As for the
remaining 52 monitored variables, 32 variables have a similar
transition process, reaching stability after approximately 10 h.
We evaluate the proposed algorithm on the fault detection

and compare it with KICA, KPCA, and R1-PCA. Moreover, we
set λ, l as 1, 16. Figure 4 shows the FDR for the TFEM, KPCA,
and KICA methods. The equation of FDR is shown as follows

FDR
num num

num
n f

t
= +

(16)

where numn is the number of successful detections in normal
data, numf is the number of successful detections in the fault
data, and numt is the number of all test data.
As can be seen from the Figure 4, the proposed TFEM

method is superior to R1-PCA, KICA, and KPCA in fault 5
detection. In general, the total FDR of TFEM is 98.85%, while
the KICA is 53.85%, the KPCA is 51.98%, and the R1-PCA is
69.27%. Moreover, the FDR of TFEM is 45% higher than that

Figure 5. Detection results of fault 5 with Gaussian noise. (a) Results for KICA. (b) Results for KPCA. (c) Results for R1-PCA. (d) Results for
TFEM.
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of KICA, 46.87% higher than that of KICA, and 29.58% higher
than that of R1-PCA. Thus, the fault detection performance of
TFEM is almost twice as high as KICA and KPCA. Because
most of the process variables in fault 5 have not changed, and a
few of the process variables have changed very slightly, KICA
and KPCA usually dilute the small changes arising during the
dimensionality reduction projection process, while TFEM
adopts the nonreduced dimensionality projection to highlight
the data features. When the data change slightly, the
nonreduced dimensionality projection will keep these small
changes in some particular sensors. As a result, the TFEM
method is able to detect small changes in fault 5. In addition,
for both the feature space and the residual space, the TFEM
method uses the T2 statistic, which reflects both the
relationship between process variables and the Euclidean
distance between data. Hence, the detection performance is
better.
It can be seen from Figure 4 that, after the fault leveled off,

the R1-PCA, KICA, and KPCA methods are unable to detect
it. This is because of the reason mentioned above. After the
fault curve becomes smooth, the fault data exhibit only small
changes. In this case, the R1-PCA, KICA, and KPCA methods
usually cannot track the small changes that occur during the
dimensionality reduction projection process. However, the
TFEM method can make the process variables unrelated to the
fault sparse in the process of nonreduced dimensionality
projection. Therefore, these small changes in some process
variables are more obvious. In the case of the R1-PCA, KICA,
and KPCA methods, the data pass through a single projection,
wherein the small changes are removed together. In contrast,
the TFEM method is more sensitive and is able to detect even
small changes. This is the reason the detection performance of
this method is better.
We selected 12 samples in the original TE data to add

Gaussian noise to verify the robustness of our algorithm.
Moreover, we set λ, l as 0.5, 35. The detection results are

shown in Figure 5, and the proposed algorithm has the highest
detection rate. The detection result of the R1-PCA algorithm is
slightly better than that of KICA and KPCA because R1-PCA
uses the 21-norm as a metric, which has a certain robustness.
The detection rate of R1-PCA is still not as high as that of
TFEM because TFEM uses two projections and can remove
interfering features in the raw data.
Case study 1 confirmed the effectiveness of the proposed

fault detection method based on TFEM and showed that the
method is more suitable for fault detection that the R1-PCA,
KICA, and KPCA methods investigated.

4.2. Case Study 2: Case Study of All Faults. In this case
study, all 21 TE process faults are used to further evaluate the
performances of the R1-PCA, KICA, KPCA, and TFEM
methods (see Table 1). We divided the experiments into two
groups, those with and without noise. We selected 12 samples
in the original TE data for the training data set to add Gaussian
noise to verify the robustness of our algorithm. As shown in
Table 1, a comparison of the FDR of the 21 faults for the R1-
PCA, KICA, KPCA, and TFEM methods confirmed that the
TFEM method has the higher FDR for most of the faults. For
example, in the case of fault 19, the FDR of the TFEM method
is 92.71%, while the KICA is 64.79%, KPCA is 65.10%, and
R1-PCA is 72.19%. Thus, the proposed TFEM method is
highly suited for fault detection.
It can also be seen from Table 1 that the FDR of the

proposed method for most faults are higher than 90%. Thus,
the stability of the TFEM method is higher owing to the
nonreduced dimensionality projection process, which retains
the small changes in date. The T2 statistics is used for the
residual space, which can simultaneously measure the
Euclidean distance between data and reflect the relationship
between process variables. Thus, the fact that the residual
space can be detected more accurately in the case of the 21
faults further highlights the superiority of the TFEM method in
fault detection. We find an interesting phenomenon that the

Table 1. FDR (%) for the TE Process

noise without noise with Gaussian noise

fault KICA (%) KPCA (%) R1-PCA (%) TFEM (%) KICA (%) KPCA (%) R1-PCA (%) TFEM (%)

1 98.44 98.33 97.29 99.27 97.6 98.85 99.17 99.79
2 96.88 97.92 97.60 98.44 97.29 97.29 98.33 98.96
3 25.52 38.13 33.33 27.50 21.56 18.23 16.67 16.88
4 97.81 97.92 97.81 98.85 24.27 17.81 31.77 100
5 53.85 51.98 69.27 98.85 43.33 32.4 35.42 100
6 99.17 99.48 99.38 99.79 99.48 99.69 100 100
7 95.1 99.48 99.48 99.69 95.52 45.31 100 100
8 94.48 97.92 96.98 97.5 93.54 86.25 97.29 98.13
9 45.94 34.06 31.67 23.54 29.79 18.33 16.67 17.08
10 81.15 81.56 81.04 92.08 61.67 26.77 28.02 88.54
11 86.46 85.83 86.46 81.56 39.06 19.17 38.85 76.15
12 95.1 96.35 97.50 98.85 86.56 78.54 95.1 99.79
13 96.15 95.94 95.94 96.04 94.38 93.75 94.69 96.04
14 94.48 98.54 98.02 99.06 29.69 17.81 77.81 100.00
15 50.21 42.92 37.92 34.79 34.58 17.92 16.67 21.15
16 76.77 76.67 83.85 92.4 35.21 20.1 58.54 90.42
17 92.6 96.04 95.94 96.56 24.58 18.85 48.02 96.25
18 92.50 92.29 91.98 92.19 89.79 88.02 90.21 91.88
19 64.79 65.10 72.19 92.71 24.58 16.88 16.67 89.27
20 82.60 82.29 76.67 92.40 30.31 18.02 42.08 91.77
21 60.42 65.42 65.21 69.48 40.63 18.96 41.67 61.88
average 80.02 80.67 81.32 84.84 56.83 45.19 59.22 82.57
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detection results of the TFME method with noise are better
than those without noise. We have done multiple experiments
and the results are still the same.

4.3. Penicillin Fermentation Process Fault Detection.
4.3.1. Data Preparation. The production process of penicillin
is a typical nonlinear, multi-modal production process. The
fermentation process can be divided into three stages: the stage
of rapid growth of the cells, the stage of cell synthesis of
penicillin, and the stage of cell autolysis. Based on the Pensim
simulation platform, this section verifies the effectiveness of the
fault detection method based on TFEM.
Pensim simulation platform has four controlled variables

that can control the changes of fermentation process
parameters, four manipulated variables, two inputs and
generated heat variables, and six outputs (state variables).
Twelve variables are selected. The selection of variables is
shown in Table 2. The data are generated using the Pensim

simulation platform, the simulation time is set to 400 h, and
the sampling time was set to 1 h. The training data set is
generated by adjusting the initial variable values under normal
conditions, and the data set includes 400 samples.
Pensim simulation platform can introduce a disturbance to

the first three variables (aeration rate, stirring power, and
substrate flow rate). There are two types of disturbances: step
and ramp. Moreover, the amplitude, introduction time, and
termination time of the two disturbances can be further set. In
order to test the effectiveness of the method, this chapter
produces three fault batches in the experiment, and the fault
types and amplitudes of the three fault batches are shown in
Table 2. We evaluate the proposed algorithm on the fault
detection and compare it with KICA, KPCA, and R1-PCA.
Also, we set λ, l as 1, 5 (Table 3).

5. RESULTS
From Figure 6, it can be seen that the proposed TFEM
method outperforms R1-PCA, KICA, and KPCA in the
detection of fault 2. Overall, the total FDR is 90.00% for
TFEM, 87.75% for KICA, 89.75% for KPCA, and 88.00% for

R1-PCA. The TFEM algorithm finds faults after about 150
samples, while KICA and R1-PCA both find faults later than
the TFEM method. Although the detection rate of KPCA is
relatively high, the detection rate of T2 in KPCA is very low.
The proposed algorithm uses two projections, which can
ensure that tiny changes in data can detect faults in time. In
addition, for both feature space and residual space, the TFEM
method uses the T2 statistic, which reflects both the
relationship between the process variables and the Euclidean
distance between the data.
It can also be seen from Table 4 that the proposed method

has the highest FDR for most faults. Therefore, the stability of
the TFEM method is higher. As mentioned above, this is due
to the nonreduced dimensionality projection process, which
preserves small changes in the data. The residual space uses the
T2 statistic, which can detect the residual space more
accurately.
To verify the robustness of the proposed algorithm, the

Gaussian noise is added to the train data set. The Gaussian
noise is added into the data with 1.1 density. Twelve samples
are randomly selected to add Gaussian noise to the training
data set. The compared algorithms are KICA, KPCA, and R1-
PCA. The experimental results are shown in Table 5.
As can be seen from Table 5, the comprehensive results of

the proposed algorithm are the best. The results of R1-PCA are
better than KPCA and KICA, which is because R1-PCA is a
robust algorithm. R1-PCA only uses a single projection and
cannot detect small changes in the data. Therefore, the
detection rate of the R1-PCA algorithm is lower than that of
TFEM. The detection result of KICA is the worst. We adjusted
the kernel parameters many times, but the result is still not
ideal. The results of KPCA are slightly better than KICA. The
kernel parameters of KPCA have also been adjusted many
times, and the result is still lower than the detection rate of the
robust method.
The above experiments show that the proposed algorithm

has a certain robustness, and can still have an ideal detection
effect in the absence of outliers.

6. CONCLUSIONS
In this paper, we propose and evaluate a TFEM, which uses
nonreduced dimensionality projection to make the process
variables unrelated to the fault sparse and the reduced
dimensionality projection to highlight the features of data. As
a result, 21-norm-based nonreduced dimensionality projection
ensures the small changes in some process variables are more
obvious, and 21-norm-based reduced dimensionality projection
enhances the robustness of the algorithm. The suitability of the
proposed method is verified by TE and Penicillin fermentation
processes data set. In order to further improve the fault
detection performance of data, the TFEM method can be
combined with kernel techniques. Moreover, the proposed
TFEM method can be extended to nonlinear processes. This is
something we plan to explore in future studies.

Table 2. Selection of Variables in the Penicillin
Fermentation Process

serial
number variable variable range variable type

1 acid flow rate (mL/h) 0−0.01 manipulated variable
2 cold water flow rate

(L/h)
0−150 manipulated variable

3 base flow rate(ml/h) 0−0.2 manipulated variable
4 aeration rate (L/h) 8.58−8.68 controlled variable
5 substrate feed rate

(L/h)
0−0.05 controlled variable

6 agitator power (W) 0−30.5 controlled variable
7 pH 4.9−5.4 inputs and generated

heat
8 temperature (K) 297.5−298.5 inputs and generated

heat
9 substrate conc (g/L) 0−15 outputs

(state variables)
10 culture vol (L) 95−105 outputs

(state variables)
11 Penicillin conc (g/L) 0−1.5 outputs

(state variables)
12 CO2 conc (mmole/L) 0−3 outputs

(state variables)

Table 3. Three Batch Faults Set During Penicillin
Fermentation

fault
batch variable

fault
type amplitude

introduction
time

termination
time

f1 1 step 0.3 101 400
f2 2 ramp 3 101 400
f3 3 ramp 2 101 400
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■ APPENDIX

6.1. Convergence Analysis

During the optimization of W and Q, in each iteration, the

value of the objective function decreases monotonically until it

converges to the optimal solution. Therefore, we have
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our goal is to prove that

Figure 6. Detection results of fault 2. (a) Results for KICA. (b) Results for KPCA. (c) Results for R1-PCA. (d) Results for TFEM.

Table 4. Simulation Results of the Penicillin Fermentation
Process

fault KICA (%) KPCA (%) R1-PCA (%) TFEM (%)

f1 62.75 98.00 97.25 99.00
f2 87.75 89.75 88.00 90.00
f3 92.75 96.50 94.75 96.50

Table 5. Simulation Results of Penicillin Fermentation
Process with Gaussian Noise

fault KICA (%) KPCA (%) R1-PCA (%) TFEM (%)

f1 25.00 21.25 95.25 97.50
f2 25.00 82.00 86.75 87.75
f3 90.50 87.00 96.75 95.50
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In order to get the above formula, we have to change the
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That is, we change aim to prove the following formula

p

p

p p

U
U

U

U
U

U
V

V

V
V

V

V

0

i

n

i
t

i

n
i
t

i
t

i

n

i
t

i

n
i
t

i
t

i

m

i
t

i

m
i
t

i
t

i

m

i
t

i

m
i
t

i
t

1

( 1)
2

1

( 1)
2

2

( )
2

1

( )
2

1

( )
2

2

( )
2 1

( 1)
2

1

( )
2

2

( )
2 1

( )
2

1

( 1)
2

2

( )
2

+ +

+

=

+

=

+

= = =

+

= = =

+

(23)

When p = 1/2, for any U U,i
t

i
t( 1)

2
( )

2
+ , we always have19

p

p

U
U

U
U

U

U

0

i

n

i
t

i

n
i
t

i
t

i

n

i
t

i

n
i
t

i
t

1

( 1)
2

1

( 1)
2

2

( )
2 1

( )
2

1

( )
2

2

( )
2

+

=

+

=

+

=

=

(24)

Similarly, we have
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By combining eqs 24 and 25, we can get formula eq 23, and
convergence is proved.
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