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Abstract This paper discusses power and sample-size com-
putation for likelihood ratio and Wald testing of the signif-
icance of covariate effects in latent class models. For both
tests, asymptotic distributions can be used; that is, the test
statistic can be assumed to follow a central Chi-square under
the null hypothesis and a non-central Chi-square under the
alternative hypothesis. Power or sample-size computation
using these asymptotic distributions requires specification
of the non-centrality parameter, which in practice is rarely
known. We show how to calculate this non-centrality param-
eter using a large simulated data set from the model under
the alternative hypothesis. A simulation study is conducted
evaluating the adequacy of the proposed power analysis
methods, determining the key study design factor affect-
ing the power level, and comparing the performance of the
likelihood ratio and Wald test. The proposed power analy-
sis methods turn out to perform very well for a broad range
of conditions. Moreover, apart from effect size and sample
size, an important factor affecting the power is the class sep-
aration, implying that when class separation is low, rather
large sample sizes are needed to achieve a reasonable power
level.
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Introduction

In recent years, latent class (LC) analysis has become
part of the standard statistical toolbox of researchers in
the social, behavioral, and health sciences. A considerable
amount of articles have been published in which LC mod-
els are used (a) to identify subgroups of subjects with
similar behaviors, attitudes, or preferences, and (b) to inves-
tigate whether the respondents’ class memberships can be
explained by variables such as age, gender, educational sta-
tus, and type of treatment. This latter type of use is often
referred to as LC analysis with covariates or concomitant
variables. Example applications include the assessment of
the effect of maternal education on latent classes differing
in health behavior (Collins & Lanza, 2010), of education
and age on latent classes with different political orientations
(Hagenaars & McCutcheon, 2002), of age on latent classes
of crime delinquencies (Van der Heijden et al., 1996),
and of paternal occupation on latent classes with differ-
ent gender-role attitudes (Yamaguchi, 2000). Though most
methodological aspects of the LC analysis with covariates
are well addressed among others by Bandeen-Roche et al.
(1997), Dayton and Macready (1988), Formann (1992), and
Vermunt (1996), it is unclear how to perform power analysis
when one plans to apply these models. This is a great omis-
sion since a study using an under-powered design may lead
to an enormous waste of resources.

As in standard logistic regression analysis, hypotheses
about the effects of covariates on the individuals’ latent
class memberships can be tested using either likelihood ratio
(LR), Wald, or score (Lagrange multiplier) tests (Agresti,
2007). Under certain regularity conditions, these three test
statistics are asymptotically equivalent, each following a
central Chi-square distribution under the null hypothesis
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and a non-central Chi-square under the alternative hypothe-
sis. In the manuscript, we focus on the Wald and LR tests.
Researchers using such tests often ask questions such as:
“What sample size do I need to detect a covariate effect of
a certain size?” , “If I want to test the effect of a covariate,
should I worry about the number and/or quality of the indi-
cators used the LC model?” , and “Should I use a LR or a
Wald test?” These questions can be answered by assessing
the statistical power of the planned tests; that is, by investi-
gating the probability of correctly rejecting a null hypothesis
when the alternative is true. The aim of the current paper is
to present power analysis methods for the LR and the Wald
test in LC models with covariates, as well as to assess the
data requirements for achieving an acceptable power level
(say of .8 or larger). We also compare the power of the
LR and the Wald test for a range of design and population
characteristics.

Recently, power and sample size determination in LC and
related models have received increased attention in the liter-
ature. Gudicha et al. (2016) studied the power of the Wald
test for hypotheses on the association between the latent
classes and the observed indicator variable(s), and showed
that power is strongly dependent on class separation. Tein
et al. (2013) and Dziak et al. (2014) studied the statistical
power of tests used for determining the number of latent
classes in latent profile and LC analysis, respectively. To
the best of our knowledge, no previous study has yet inves-
tigated power analysis for LC analysis with covariates, nor
compared the power of the LR and the Wald test in LC
analysis in general.

Hypotheses concerning covariate effects on latent classes
may be tested using either LR or Wald tests, but it is
unknown which of these two types of tests is superior in
this context. While the LR test is generally considered to be
superior (see, for example, Agresti (2007) and Williamson
et al. (2007)), the computational cost of the LR test will
typically be larger because it requires fitting both the null
hypothesis and the alternative hypothesis model, while the
Wald test requires fitting only the alternative hypothesis
model. Note that when using LR tests, a null hypothesis
model should be estimated for each of the covariates, which
can become rather time consuming given the iterative nature
of the parameter estimation in LC models and the need to
use multiple sets of starting values to prevent local maxima.
A question of interest though is whether the superiority of
the LR test is substantial enough to outweigh the compu-
tational advantages of the Wald test in the context of LC
modeling with covariates.

For standard logistic regression analysis, various stud-
ies are available on power and sample-size determination
for LR and Wald tests (Demidenko, 2007; Faul et al.,
2009; Hsieh et al., 1998; Schoenfeld and Borenstein, 2005;
Whittemore, 1981; Williamson et al., 2007). Here, we not

only build upon these studies but also investigate design
aspects requiring special consideration when applying these
tests in the context of LC analysis. A logistic regression pre-
dicting latent classes differs from a standard logistic regres-
sion in that the outcome variable, the individual’s class
membership, is unobserved, but instead determined indi-
rectly using the responses on a set of the indicator variables.
This implies that factors affecting the uncertainty about the
class memberships, such as the number of indicators, the
quality of indicators, and the number of latent classes, will
also affect the power and/or the required sample size.

In the next section, we introduce the LC model with
covariates and discuss the LR and Wald statistics for testing
hypotheses about the logit parameters of interest, present
power computation methods for the LR and the Wald tests,
and provide a numerical study illustrating the proposed
power analysis methods. The paper ends with a discussion
and conclusions.

The LC model with covariates

Let X be the latent class variable, C the number of latent
classes, and c = 1, 2, 3, ..., C the class labels. We denote the
vector of P indicator variables by Y = (Y1, Y2, Y3, ..., YP ),
and the response of subject i (for i = 1, 2, 3, ..., n) to a
particular indicator variable by yij and to all the P indicator
variables by yi . Denoting the value of subject i for covariate
Zk (for k = 1, 2, 3, ..., K) by zik , we define the LC model
with covariate as follows:

P(yi |zi ) =
C∑

c=1

P(X = c|Z = zi )

P∏

j=1

P(Yj = yij |X = c)

(1)

where zi is the vector containing the scores of subject i on
the K covariates. The term P(X = c|Z = zi ) represents the
probability of belonging to class x given the covariate values
zi , and P(Yj = yij |X = c) is the conditional probability
of choosing response yij given membership of class x. The
response variables Y in equation (1) could represent a set
of symptoms related to certain types of psychological dis-
orders, for example. In that case, the latent classes X would
represent the disorder types. The covariates Zk related to the
prevalence of the latent classes or disorder types could be
age and gender.

The LC model defined in equation (1) is based on the
following assumptions. Firstly, we assume that the latent
classes are mutually exclusive and exhaustive; that is, each
individual is a member of one and only one of the C

latent classes. The second assumption is the local indepen-
dence assumption, which specifies that the responses to the
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indicator variables are independent given the class mem-
bership. For simplicity, we also assume that given the class
membership, the covariates have no effect on the indicator
variables.

The term P(X = c|Z = zi ) in equation (1) is typi-
cally modeled by a multinomial logistic regression equation
(Magidson & Vermunt, 2004). Using the first class as the
reference category, we obtain:

P(X = c|Z = zi ) = exp (γ0c + ∑K
k=1 γkczik)

1 + ∑C
s=2 exp (γ0s + ∑K

k=1 γkszik)
,

where γ0c represents an intercept parameter and γkc a
covariate effect. For each covariate, we have C − 1 effect
parameters. Assuming that the responses Yj are binary, the
logistic model for P(Yj = 1|X = c) may take on the
following form:

P(Yj = 1|X = c) = exp(βjc)

1 + exp(βjc)
.

The γ parameters are sometimes referred to as the struc-
tural parameters, and the β parameters as the measurement
parameters. We denote the full set of model parameters
by �, which with binary responses is a column vector
containing (K+1)(C−1)+C ·P non-redundant parameters.

The parameters of the LC model with covariates are typ-
ically estimated by means of maximum likelihood (ML)
estimation, in which the log-likelihood function

l(�) =
n∑

i=1

log P(yi |zi ) (2)

is maximized using, for instance, the expectation maximiza-
tion (EM) algorithm. Inference concerning the � parame-
ters is based on the ML estimates �̂, which can be used for
hypotheses testing or confidence interval estimation. In the
current work, we focus on testing hypotheses about the γ

parameters, the most common of which is testing the statis-
tical significance for the effect of covariate k on the latent
class memberships. The corresponding null hypothesis can
be formulated as

H0 : γ k = 0,

which specifies that the γkc values in γ
′
k =

(γk2, γk3, γk4, ...γk(C)) are simultaneously zero.1 Using
either the LR or the Wald test, the null significance of this
hypothesis is tested against the alternative hypothesis:

H1 : γ k �= 0.

1For parameter identification, the logit parameter associated with the
reference category is set to zero, resulting in C − 1 non-redundant
γ parameters. Note also that γ

′
denotes the transpose of a column

vector γ .

Following Buse (1982) and Agresti (2007), we define the
LR and the Wald statistic for this test as follows:

LR = 2l(�̂1) − 2l(�̂0)

W = γ̂
′
kV(γ̂ k)

−1γ̂ k,
(3)

where l(.) is the log-likelihood function as defined in Eq. 2,
�̂1 and �̂0 are the ML estimates of � under the uncon-
strained alternative and constrained null model, respec-
tively, γ̂ k are the ML estimates for the logit coefficients of
covariate Zk , and V(γ̂ k) is the C − 1 by C − 1 covariance
matrix of γ̂ k .

As we see from Eq. 3, the LR test for a covariate effect
on the latent classes involves estimating two models: the H0

model with the covariate excluded and the H1 model with
covariate included. The LR value is obtained as the differ-
ence in minus twice the log-likelihood values of these two
models. The Wald test is a multivariate generalization of
the z-test that makes the parameters comparable by dividing
each element of a parameter by its standard deviation, which
is equivalent to a one degree of freedom Chi-square test for
z2 (i.e., parameter squared divided by its variance). As can
be seen, in the Wald formula we do the same but using the
vector of parameters (which is squared) and the covariance
matrix (by which we divide).

When multiple covariates are included in the logistic
regression, quantities required to compute the power and
sample size of the LR test is obtained by estimating the H0

model with all the covariates except the one we wanted to
be tested included and the H1 model with all the covari-
ates included. Whereas for the Wald test, we compute the
expected information matrix from the H1 model with all the
covariates included, and then correct the standard errors for
correlation between covariates as suggested by Hsieh et al.
(1998).

Large sample probability theory suggests that, under cer-
tain regularity conditions, if the null hypothesis holds, both
the LR and W statistics asymptotically follow a central
Chi-square distribution with C − 1 degrees of freedom
(see for example Agresti (2007), Buse (1982), and Wald
(1943)). From this theoretical distribution, the p value can
be obtained, and the null hypothesis should be rejected if
this p value is smaller than the nominal type I error α.

Power and sample-size computation

For power or sample-size computation, not only the distri-
bution of the test statistic under the null hypothesis needs
to be obtained but also its distribution under the alternative
hypothesis. Under certain regularity conditions, if the alter-
native hypothesis holds, both the LR and the Wald statistic
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follow a non-central Chi-square distribution with C − 1
degrees of freedom and non-centrality parameter λ:

λLRn = n (2E[l(�1)] − 2E[l(�0)])
λWn = n

(
γ

′
kV(γ k)

−1γ k

)
.

(4)

Here, E[l(�1)] and E[l(�0)] denote the expected value
of the log-likelihood for a single observation under the
alternative and null model, respectively, assuming that the
alternative model holds. In the definition of λWn , V(γ k)

−1 is
the matrix of parameter covariances based on the expected
information matrix for a single observation. Note that (4)
is rather similar to equation (3). However, an important dif-
ference is that equation (3) represents the sample statistics
(used for the actual testing) evaluated at the ML estimates
computed using the sample concerned, whereas equation (4)
gives the expected value of these statistics for a given sam-
ple size evaluated at the assumed population values for the
parameters, and are thus not sample statistics.

The power of a test is defined as the probability that the
null hypothesis is rejected when the alternative hypothe-
sis is true. Using the theoretical distribution of the LR and
Wald tests under the alternative hypothesis, we calculate this
probability as

powerLR = P
(
LR > χ2

(1−α)(C − 1)
)

powerW = P
(
W > χ2

(1−α)(C − 1)
)

,
(5)

where χ2
(1−α)(C−1) is the (1−α) quantile value of the cen-

tral Chi-square distribution with C − 1 degrees of freedom,
and LR and W are random variates of the correspond-
ing non-central Chi-square distribution. That is, LR,W �
χ2(C − 1, λ), where λ is as defined in Eq. (4). For the Wald
test, this large sample asymptotic approximation requires
multivariate normality of the ML estimates of the logit
parameters, as well as that V(γ k) is consistently estimated
by Vγ̂ k) (Redner, 1981; Satorra and Saris, 1985; Wald,
1943).

Computing the asymptotic power (also called the the-
oretical power) using Eq. 5, requires us to specify the
non-centrality parameter. However, in practice, this non-
centrality parameter is rarely known. Below, we show how
to obtain the non-centrality parameter using a large simu-
lated data set, that is, a data set generated from the model
under the alternative hypothesis.

Calculating the non-centrality parameter

O’Brien (1986) and Self et al. (1992) showed how to
obtain the non-centrality parameter for the LR statistic in
log-linear analysis and generalized linear models using a
so-called “exemplary ” data set representing the population
under the alternative model. In LC analysis with covariates,
such an exemplary data set would contain one record for

each possible combination of indicator variable responses
and covariate values, with a weight equal to the likelihood
of occurrence of the pattern concerned. Creating such an
exemplary data set becomes impractical with more than a
few indicator variables, with indicator variables with larger
numbers of categories, and/or when one or more continu-
ous covariates are involved. As an alternative, we propose
using a large simulated data set from the population under
the alternative hypothesis. Though such a simulated data set
will typically not include all possible response patterns, if it
is large enough, it will serve as a good approximation of the
population under H1.

By analyzing the large simulated data set using the H0

and H1 models, we obtain the values of the log-likelihood
function under the null and alternative hypotheses. The large
data set can also be used to get the covariance matrix of the
parameters based on the expected information matrix. These
quantities can be used to calculate the non-centrality param-
eters for the LR and Wald statistics as shown in equation
(4). More specifically, the non-centrality parameter is calcu-
lated, using this large simulated data set, via the following
simple steps:

1. Create a large data set by generating say N = 1000000
observations from the model defined by the alternative
hypothesis.

2. Using this large simulated data set, compute the max-
imum value of the log-likelihood for both the con-
strained null model and the unconstrained alternative
model. These log-likelihood values are denoted by
l̃(�0) and l̃(�1), respectively. For the Wald test, use the
large simulated data to approximate the expected infor-
mation matrix under the alternative model. This yields
Ṽ(γ k), the approximate covariance matrix of γ k .

3. The non-centrality parameter corresponding to a sample
of size 1 is then computed as follows:

λLR1 = 2̃l(�1) − 2̃l(�0)

N
and λW1 = γ

′
kṼ(γ k)

−1γ k

N

for the LR and Wald test, respectively. As can be seen,
this involves computing the LR and the Wald statistics
using the information from step 2, and subsequently
rescaling the resulting values to a sample size of 1.

4. Using the proportionality relation between sample size
and non-centrality parameter as shown in Eq. 4, the
non-centrality parameter associated with a sample of
size n is then computed as λLRn = nλLR1 andλWn =
nλW1 (Brown et al., 1999; McDonald and Marsh, 1990;
Satorra & Saris, 1985).

Power computation

The power computation itself proceeds as follows:
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1. Given the assumed population values under the alterna-
tive hypothesis, compute the non-centrality parameter
λ1 using the large simulated data set as discussed above.
Rescale the non-centrality parameter to the sample size
under consideration.

2. For a given type I error α, read the (1 − α) quantile
value from the (central) Chi-square distribution with
C − 1 degrees of freedom. That is, find χ2

(1−α)(C −
1) such that P

(
LR > χ2

(1−α)(C − 1)
)

= α and

P
(
W > χ2

(1−α)(C − 1)
)

= α for the LR and Wald

test statistics, respectively. This quantile—also called
the critical value—can be read from the (central) Chi-
square distribution table, which is available in most
statistics text books. For example, for α = .05 and
C = 2, we have χ2

(.95)(1) = 3.84 (Agresti, 2007).
3. Using the non-centrality parameter value obtained in

step 1, the specified sample size n, and the critical
value obtained in step 2, evaluate Eq. 5 to obtain the
power of the LR or Wald test of interest. This involves
reading the probability concerned from a non-central
Chi-square distribution with degrees of freedom C − 1
and non-centrality parameter λn.

Sample-size computation

The expression for sample-size computation can be derived
from the relation in Eq. 4:

nLR = λn {2E[l(�1)] − 2E[l(�0)]}−1

nW = λn

[
γ

′
kV(γ k)

−1γ k

]−1
,

(6)

where nLR and nW are the LR and Wald sample size,
respectively.

Using equation (6), the sample size required to achieve a
specified level of power is computed as follows:

1. For a given value of α, read the (1 − α) quantile value
from the central Chi-square distribution table.

2. For a given power and the critical value obtained in step
1, find the non-centrality parameter λn such that, under
the alternative hypothesis, the condition that the power

is equal to P
(
LR > χ2

(1−α)(C − 1)
)

for the LR statis-

tic and P
(
W > χ2

(1−α)(C − 1)
)

for the Wald statistic

is satisfied.
3. Given the parameter values of the model under the alter-

native hypothesis and the λn value obtained in step 2,
use Eq. (6) to compute the required sample size. Note
that also for sample size computation a large simulated
data set is used to approximate E[l(�0)], E[l(�1)], and
V(γ ).

LC-specific factors affecting the power

As in any statistical model, also in LC analysis the power
of a test is influenced by sample size, effect size, and type
I error. However, an important difference between a LC
analysis with covariates and a standard logistic regression
analysis is that in the former the outcome variable in the
logistic regression model is not directly observable, and thus
its value is uncertain. It can, therefore, be expected that also
factors affecting the certainty about individuals’ class mem-
berships (or the class separation) will affect the power of the
statistical tests of interest. Information on the (un)certainty
about individuals’ class memberships is contained in the
posterior membership probabilities:

P(X=c|yi , zi )=
P(X = c|zi )

∏P
j=1 P(Yj = yij |X = c)

∑C
s=1 P(X = s|zi )

∏P
j=1 P(Yj = yij |X = s)

.

(7)

Gudicha et al. (2016) discussed how the elements of the
expected information matrix for class-indicator associations
are related to the posterior class membership probabilities;
that is, the diagonal elements become smaller when the pos-
terior membership probabilities are further away from 0 and
1. A similar thing applies to the covariate effects. When
covariates are included, the diagonal element of the infor-
mation matrix for effect γkc conditional on y and z can be
expressed as follows:

I(γkc,γkc |y,z) =(zk)
2
{

[P(X=c|y, z)]2−2P(X=c|y, z)P (X=c|z)
+ [P(X = c|z)]2

}
(8)

This reduces to the expression for the standard multinomial
regression model when class membership is certain, that is,
when P(X = c|y, z) equals 1 for one class and 0 for the
others. It is mainly the term [P(X = c|y, z)]2 in Equation
(8) which yields the information loss. The sum of this term
over classes, and thus also the total information contributed
by a data pattern, decreases when uncertainty about the class
membership increases. This affects not only the power of
the Wald test through the parameter covariance matrix but
also the power of the LR test. A large amount of information
on the parameters corresponds to a larger curvature of the
log-likelihood function at �̂1 (Buse, 1982), which implies
the difference between 2l(�̂1) and 2l(�̂0) will be larger.
This will have a direct effect on both the LR value calculated
via Eq. (3) and the non-centrality parameter calculated via
the procedures discussed above.
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Considering different scenarios for the LC model struc-
ture and parameter values, Gudicha et al. (2016) showed
that more favorable conditions in terms of class separation
occur with response probabilities which differ more across
the classes, with a larger number of indicators, with more
equal classes sizes, and with a smaller number of classes.

Numerical study

The purpose of this numerical study is to (1) compare the
power of the Wald test with the power of the LR test, (2)
investigate the effect of factors influencing the uncertainty
about the individuals’ class membership—mainly the mea-
surement parameters—on the power of the Wald and LR
tests concerning the structural parameters, (3) evaluate the
quality of the power estimation using the non-centrality
parameter value obtained with the large simulated data set,
and (4) give an overview of the sample sizes required to
achieve a power level of .8 or higher, .9 or higher, or .95 or
higher in several typical study designs. In the current numer-
ical study, we consider models with one covariate only,
but the proposed methods are also applicable with multi-
ple covariates. We assume asymptotic distributions for both
the tests, and estimate the non-centrality parameter of the
non-central Chi-square distribution using the large data set
method described earlier. All analyses were done using the
syntax module of the Latent GOLD 5.0 program (Vermunt
and Magidson, 2013).

Study setup

The power of a test concerning the structural parameters
is expected to depend on three key factors: the population
structure and the parameter values for the other parts of the
model, the effect sizes for the structural parameters to be
tested, and the sample size. Important elements of the first
factor include the number of classes, the number of indicator
variables, the class-specific conditional response probabili-
ties, and the class proportions (Gudicha et al., 2016). In this
numerical study, we varied the number of classes (C = 2
or 3) and the number of indicator variables (P = 6 or 10).
Moreover, the class-specific conditional response probabili-
ties were set to 0.7, 0.8, or 0.9 (or, depending on the class, to
1–0.7, 1–0.8, and 1–0.9), corresponding to conditions with
weak, medium, and strong class-indicator associations. The
conditional response probabilities were assumed to be high
for class 1, say 0.8, and low for class C, say 1–0.8, for all
indicators. In class 2 of the three-class model, the condi-
tional response probabilities are high for the first half and
low for the second half of the indicators.

The effect size was varied for the structural parameters
to be tested, that is, for the logit coefficients that specify
the effect of a continuous covariate Z on the latent class
memberships (see Eq. 2 above). Using the first class as the
reference category, the logit coefficients were set to 0.15,
0.25, and 0.5, representing the three conditions of small,
medium, and large effect sizes. In terms of the odds ratio,
these small, medium, and large effect sizes take on the val-
ues 1.16, 2.28, and 1.65, respectively. Two conditions were
used for the intercept terms: in the zero intercept condi-
tion, the intercepts were set to zero for both C = 2 and
C = 3, while in the non-zero intercept condition the inter-
cepts equaled -1.10 for C = 2, and -1.10 and -2.20 for
C = 3. Note that the zero intercept condition yields equal
class proportions (i.e., .5 each for C = 2 and .33 each for
C = 3), whereas the non-zero intercept condition yields
unequal class proportions (i.e., .75 and .25 for C = 2, and
.69, .23, and .08 for C = 3).

In addition to the above-mentioned population character-
istics, we varied the sample size (n = 200, 500, or 1000)
for the power computations. Likewise, for the sample-size
computations, we varied the power values (power = .8, .9,
or .95). The type I error was fixed to .05 in all conditions.

Gudicha et al. (2016) showed that a study design with
low separation between classes leads to low statistical power
of tests concerning the measurement parameters in a LC
model. Therefore, Table 1 shows the entropy R-square,2

which measures the separation between classes for the
design conditions of interest.

Results

Tables 2, 3, and 4 present the power of the Wald and LR
tests for different sample sizes, class-indicator associations,
number of indicator variables, class proportions, and effect
sizes. Several important points can be noted from these
tables. Firstly, the power of the Wald and LR tests increases
with sample size and effect size, which is also the case
for standard statistical models (e.g., logistic regression for
an observed outcome variable). Secondly, specific to LC
models, the power of these tests is larger with stronger

2The entropy R-square compares the entropy of the specified model
with the entropy of a baseline model in which the class proportions
are the same for each individual. Latent Gold uses a baseline model
based on the actual class proportions, whereas the others (e.g., Mplus
and PROC LCA ) use a baseline model with equal class proportions.
The Latent Gold R-square is a bit more conservative, but matches
somewhat better the definition of an R-square: the improvement in
prediction compared to an intercept only model.
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Table 1 The computed entropy R-square for different design cells

Equal class proportions Unequal class proportions

Class-indicator Class-indicator

associations associations

Weak Medium Strong Weak Medium Strong

C = 2 P = 6 .574 .855 .981 .534 .838 .978

C = 2 P = 10 .732 .935 .997 .704 .944 .998

C = 3 P = 6 .354 .650 .900 .314 .618 .878

C = 3 p = 10 .502 .805 .969 .462 .782 .963

C = the number of classes; P = number of indicator variables. The entropy R-square values reported in this table pertain to the model with small
effect sizes for the covariate effects, and these entropy R-square values slightly increase for the case when we have larger effect sizes

class-indicator associations, a larger number of indicator
variables, and more balanced class proportions. These LC-
specific factors affect the class separations as well, as can be
seen from Table 1. Comparing the power values in Tables 2
and 3, we also observe that the statistical power of the tests

depends on the number of classes as well. Thirdly, the power
of the LR test is consistently larger than of the Wald test,
though in most cases differences are rather small.

The results in Tables 2, 3, and 4 further suggest that, for
a given effect size, a desired power level of say .8 or higher

Table 2 The power of the Wald and the likelihood ratio test to reject the null hypothesis that covariate has no effect on class membership in the
two-class latent class model; the case of equal class proportions

n = 200 n = 500 n = 1000

Effect Class-indicator Class-indicator Class-indicator

size associations associations associations

Weak Medium Strong Weak Medium Strong Weak Medium Strong

Six indicator variables

Small Wald .125 .164 .181 .242 .338 .379 .429 .587 .645

LR .126 .166 .180 .245 .343 .377 .434 .594 .645

Medium Wald .269 .363 .408 .546 .721 .779 .835 .945 .971

LR .260 .369 .411 .548 .729 .784 .836 .953 .973

Large Wald .702 .868 .913 .976 .998 1 1 1 1

LR .743 .885 .923 .985 .998 1 1 1 1

Ten indicator variables

Small Wald .147 .177 .184 .297 .369 .385 .523 .633 .655

LR .151 .176 .181 .307 .367 .380 .539 .63 .647

Medium Wald .319 .397 .412 .653 .766 .786 .914 .967 .974

LR .315 .402 .422 .647 .773 .796 .91 .969 .976

Large Wald .812 .903 .917 .994 .999 .999 1 1 1

LR .837 .918 .9309 .996 .999 .999 1 1 1

The power values reported in this table are obtained by assuming theoretical Chi-square distributions for both the Wald and the likelihood ratio
test statistics, for which the non-centrality parameter of the non-central Chi-square is approximated using a large simulated data set
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Table 3 The power of the Wald and the likelihood ratio test to reject the null hypothesis that the covariate has no effect on class membership in
the three-class latent class model; the case of equal class proportions

n = 200 n = 500 n = 1000

Effect size Class-indicator associations Class-indicator associations Class-indicator associations

Weak Medium Strong Weak Medium Strong Weak Medium Strong

Six indicator variables

Small Wald .081 .106 .125 .131 .200 .252 .222 .365 .464

LR .080 .108 .126 .130 .206 .255 .221 .377 .471

Medium Wald .135 .214 .272 .281 .478 .599 .517 .789 .894

LR .140 .215 .272 .295 .48 .600 .540 .792 .894

Large Wald .365 .642 .779 .752 .967 .994 .968 1 1

LR .436 .686 .810 .837 .978 .996 .989 1 1

Ten indicator variables

Small Wald .089 .118 .130 .155 .233 .265 .272 .430 .49

LR .092 .119 .133 .163 .236 .274 .289 .436 .504

Medium Wald .163 .252 .287 .353 .559 .628 .632 .864 .913

LR .178 .263 .290 .391 .583 .632 .686 .882 .915

Large Wald .471 .738 .807 .871 .989 .996 .994 1 1

LR .571 .772 .823 .938 .993 .997 .999 1 1

The power values reported in this table are obtained by assuming theoretical Chi-square distributions for both the Wald and the likelihood ratio
test statistics, for which the non-centrality parameter of the non-central Chi-square is approximated using a large simulated data set

Table 4 The power of the Wald and the likelihood ratio test to reject the null hypothesis that the covariate has no effect on class membership; the
case of unequal class proportions, and six indicator variables

n = 200 n = 500 n = 1000

Effect size Class-indicator associations Class-indicator associations Class-indicator associations

Weak Medium Strong Weak Medium Strong Weak Medium Strong

Two-class model

Small Wald .102 .133 .148 .183 .263 .299 .319 .465 .525

LR .103 .136 .153 .185 .268 .312 .322 .475 .547

Medium Wald .195 .283 .322 .411 .590 .658 .688 .872 .918

LR .197 .282 .331 .414 .590 .674 .693 .871 .926

Large Wald .549 .761 .826 .909 .988 .996 .995 1 1

LR .590 .783 .844 .933 .991 .997 .998 1 1

Three-class model

Small Wald .077 .100 .120 .120 .185 .238 .198 .334 .439

LR .076 .101 .121 .119 .188 .242 .197 0.34 .447

Medium Wald .125 .197 .257 .253 .439 .570 .467 .746 .873

LR .127 .208 .267 .257 .465 .593 .474 .775 .889

Large Wald .337 .600 .751 .712 .951 .990 .945 .999 1

LR .387 .641 .785 .782 .966 .994 .977 1 1

The power values reported in this table are obtained by assuming theoretical chi-square distributions for both the Wald and the likelihood ratio
test statistics, for which the non-centrality parameter of the non-central Chi-square is approximated using a large simulated data set
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Table 5 Sample-size requirements for Wald statistic in testing the covariate effect on class membership given specified power levels, class-
indicator associations, number of indicator variables, number of classes, class proportions, and effect sizes

power = .8 power = .9 power = .95

Effect size Class-indicator Class-indicator Class-indicator

associations associations associations

Weak Medium Strong Weak Medium Strong Weak Medium Strong

Two-class model with equal class proportions and six indicator variables

Small 2473 1652 1434 3312 2210 1925 4097 2734 2380

Medium 911 606 527 1210 811 705 1509 1003 872

Large 253 165 143 338 221 191 418 273 236

Two-class model with equal class proportions and ten indicator variables

Small 1929 1485 1412 2582 1988 1891 3193 2458 2338

Medium 709 544 518 949 729 693 1173 901 857

Large 194 148 140 260 198 188 321 245 232

Two-class model with unequal class proportions and six indicator variables

Small 3544 2241 1916 4745 3000 2566 5868 3710 3173

Medium 1306 811 700 1749 1098 937 2163 1357 1159

Large 362 221 187 484 295 250 599 365 310

Three-class model with equal class proportions and six indicator variables

Small 4922 2785 2120 6464 3657 2786 7888 4463 3400

Medium 1869 1025 777 2454 1347 1020 2995 1644 1245

Large 558 283 210 733 372 276 895 454 337

can be achieved by using a larger sample, more indicator
variables, or, if possible, indicator variables that have a
stronger association with the respective latent classes. Given
a set of often-unchangeable population characteristics (e.g.,
the class proportions, the class conditional response proba-
bilities, and the effect sizes of the covariate effects on latent
class memberships), one will typically increase the power
by increasing the sample size. Table 5 presents the required
sample size for the Wald test to achieve a power of .8, .9,
and .95 under the investigated conditions. As can be seen
from Table 5, for the situation where the class proportions
are equal, the number of response variables is equal to 6, the
number of classes is equal to 2, and the class-indicator asso-
ciations are strong, a power of 0.80 or higher is achieved (1)
for a small effect size, using a sample of size 1434, (2) for
a medium effect size, using a sample of size 527, and (3)
for a large effect size, using a sample of size 143. When the
class-indicator associations are weak, the class proportions
are unequal, or the requested power is .9, the required sam-
ples become larger. We also observe from the same table that
in three-class LC models with six indicator variables and
strong class-indicator associations, a power of .80 or higher
is achieved by using sample sizes of 2120, 777, and 210, for
small, medium, and large effect sizes, respectively.

To assess the accuracy of the proposed power-analysis
method, we also calculated the empirical power by
Monte Carlo simulation. Using the critical value from the
theoretical central Chi-square distribution, we computed the
empirical power as the proportion of the p values rejected
in 5000 samples generated from the population under the
alternative hypothesis. In Table 6, we refer to this empirical
power as ’LR empirical’ and ’Wald empirical’, indicating
the power values computed from the empirical distribu-
tion of the LR and Wald statistics under the alternative
hypothesis. We report results for the study conditions with
a small effect size and equal class proportions, but similar
results were obtained for the other conditions. Compar-
ison of the theoretical with the corresponding empirical
power values shows that these are very close in most cases,
meaning that the approximation of the non-centrality
parameter using the large simulated data set works well.
Overall, the differences between the theoretical and empir-
ical power values are small, with a few exceptions, which
are situations in which the power is very low anyway. The
exceptions occur when the class-indicator associations are
weak in two-class LC models with six indicator variables
and in three-class LC models with six as well as ten indi-
cator variables, which in Table 1 correspond to the design
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Table 6 Theoretical versus empirical (H1-simulated) power values of the likelihood ratio test of the covariate effect on class membership in
design conditions of interest

n = 200 n = 1000

Class-indicator Class-indicator

associations associations

Weak Medium Strong Weak Medium Strong

Two-class model with six indicator variables

Wald theoretical .125 .164 .181 .429 .587 .645

Wald empirical .131 .156 .176 .429 .584 .648

LR theoretical .126 .166 .180 .434 .594 .645

LR empirical .138 .177 .182 .432 .58 .648

Two-class model with ten indicator variables

Wald theoretical .147 .177 .184 .523 .633 .655

Wald empirical .138 .175 .196 .513 .632 .652

LR theoretical .151 .176 .181 .539 .63 .647

LR empirical .150 .179 .189 .537 .638 .665

Three-class model with six indicator variables

Wald theoretical .081 .106 .125 .222 .365 .464

Wald empirical .187 .134 .123 .223 .368 .454

LR theoretical .08 .108 .126 .221 .377 .471

LR empirical .238 .146 .134 .267 .374 .456

Three-class model with ten indicator variables

Wald theoretical .089 .118 .130 .272 .430 .490

Wald empirical .169 .118 .127 .283 .426 .508

LR theoretical .092 .119 .133 .289 .436 .504

LR empirical .161 .133 .134 .286 .443 .493

The power values reported in this table are for the study design conditions with small effect size and equal class proportions

conditions with entropy R-square values of .574, .345, and
.502, respectively.

Table 7 Type I error rates for the Wald and LR tests

Sample Test Class-indicator associations

Size Statistic Weak Medium Strong

200 Wald .106 .077 .063

LR .204 .079 .062

500 Wald .094 .072 .063

LR .118 .064 .056

1000 Wald .08 .069 .061

LR .088 .068 .052

The type I error rates reported in this table pertain to the three-class
model with six indicator variables and equal class size

Conclusions and discussion

Hypotheses concerning the covariate effects on latent class
membership are tested using a LR, Wald, or score (Lagrange
multiplier) test. In the current study, we presented and eval-
uated a power-analysis procedure for the LR and the Wald
tests in latent class analysis with covariates. We discussed
how the non-centrality parameter involved in the asymp-
totic distributions of the test statistics can be approximated
using a large simulated data set, and how the value of the
obtained non-centrality parameter can subsequently be used
in the computation of the asymptotic power or the sample
size.

A numerical study was conducted to study how data
and population characteristics affect the power of the LR
test and the Wald test, to compare the power of these two
tests, and to evaluate the adequacy of the proposed power-
analysis method. The results of this numerical study showed
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that, as in any other statistical model, the power of both
tests depends on sample size and effect size. In addition to
these standard factors, the power of the investigated tests
depends on factors specific to latent class models, such as
the number of indicator variables, the number of classes,
the class proportions, and the strength of the class-indicator
associations. These latent class-specific factors affect the
separation between the classes, which we assessed using the
entropy R-square value.

We saw that the sample size required to achieve a cer-
tain level of power depends strongly on the latent class-
specific factors. The stronger the class-indicator variable
associations, the more indicator variables, the more bal-
anced the class proportions, and the smaller the number of
latent classes, the smaller the required sample size that is
needed to detect a certain effect size with a power of say
.8 or higher. We can describe the same finding in terms
of the entropy R-square, that is, the larger the entropy
R-square, the smaller the sample size needed to detect
a certain effect size with a power of say .8 or higher.
A more detailed finding is that for a given effect size,
the improvement in power obtained through adding indi-
cator variables is more pronounced when class-indicator
associations are weak or medium than when they are
strong.

In line with previous studies (see for example Williamson
et al. (2007)), the power for the LR test is larger than for
the Wald test, though the difference is rather small. An
advantage of the Wald test is, however, that it is compu-
tationally cheaper. Given the population values under the
alternative hypothesis and the corresponding non-centrality
parameter, the sample size for the Wald test can be com-
puted using equation (6) directly. When using the LR test,
the log-likelihood values under both the null hypothesis and
the alternative hypothesis must be computed, which can
be somewhat cumbersome when a model contains multiple
covariates.

The adequacy of the proposed power analysis method
was evaluated by comparing the asymptotic power values
with the empirical ones. The results indicated that the per-
formance of the proposed method is generally good. In the
study design condition for which the entropy R-square is
low—this occurs when few indicator variables with weak
associations with the latent classes are used—and the sam-
ple size is small, the empirical power seemed to be larger
than the asymptotic power, but these were situations in
which the power turned out to be very low anyway. We
also looked at the type I error rates of the Wald and LR
tests (Table 7). In simulation conditions with medium/strong
class-indicator associations or larger sample sizes, the type
I error rates of the two tests are generally comparable and
moreover close to the nominal level. However, in conditions
with weak class-indicator association and small sample

size, the type I error rates of both the tests are highly
inflated. In such design conditions, instead of relying on the
asymptotic results, we suggest using the empirical distribu-
tions constructed under the null and under the alternative
hypothesis.

We presented the large data set power analysis method
for a simple LC model with cross-sectional data, but the
same method may be applied with LC models for longitudi-
nal and multilevel data. Moreover, although the simulations
in the current paper were performed with a single covariate,
it is expected that increasing the number of (uncorrelated)
covariates to two or more will improve the entropy R-
square and therefore also the power. The method may
also be generalized to the so-called three-step approach
for the analysis of covariate effects on LC memberships
(Bakk et al., 2013; Gudicha and Vermunt, 2013; Vermunt,
2010).

As in standard logistic regression analysis (Agresti,
2007), null hypothesis significance testing can be performed
using Wald, likelihood ratio, or score (Lagrange multiplier)
tests. Under certain regularity conditions, these three test
statistics are asymptotically equivalent, each following a
central Chi-square distribution under the null hypothesis
and a non-central Chi-square under the alternative hypothe-
sis. In the manuscript, we focus on the Wald and LR tests.
Future research may consider extending the proposed power
analysis method to the score test.

Sometimes researchers would like to know what the
required effect size is for a specified sample size and power
level (Dziak et al., 2014). Because our power and sam-
ple size computation methods depend on the alternative
hypothesis, they cannot be used directly for such an effect-
size computation. An indirect approach, however, can be
used, which involves applying the method multiple times
with different effect sizes. That is, if for the specified
effect size and power level the computed sample size turns
out to be larger than the sample size one would wishes
to use, the effect size should be increased. If the com-
puted sample size is smaller than one would like to use,
the effect size can be reduced. Interpolation techniques can
be used for an efficient implementation of such a search
procedure.

This research has several practical implications. Firstly, it
provides an overview of the design requirements for achiev-
ing a certain level of power in LC analysis with a covariate
affecting class memberships. Secondly, it presents a tool
for determining the required sample size given the specific
research design that a researcher has in mind instead of
relying on a rule of thumb. Based on the literature and on
the results of our study, we can conclude that easy rules of
thumb, such as a sample size of 500 suffices when the num-
ber of indicator variables is six, cannot be formulated for LC
analysis.
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Appendix: Latent GOLD syntax for Wald and LR
power computations

This appendix illustrates the application of the proposed
Wald and LR power computation methods using the Latent
GOLD 5.0 program (Vermunt & Magidson, 2013) Syntax
. As an example, we use a two-class LC model with six
binary response variables (y1 through y6) and a covariate
(Z). Using the proposed methods, in order to perform a
power computation, one should first create a small “exam-
ple” data set; that is, a data set with the structure of the data
one is interested in. With six binary response variables and
one covariate, this file could be of the form:

This data file contains ten arbitrary values for the response
variables, (standardized) values for the covariate, and the
cases weights.

A Latent GOLD syntax model consists of three sections:
“options ” “variables ” and “equations ”Ṫhe relevant LC
model is defined as follows:

// basic model

options

output parameters=first standard errors

profile; variables

caseweight Freq1000000;

dependent y1 nominal 2, y2 nominal 2,

y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class <- 1 + (beta) Z;

y1-y6 <- 1 | class;

The “output ” option indicates that we wish to use
dummy coding for the logit parameters with the first cate-
gory as the reference category. Subsequently, we define the
variables that are part of the model.

The two equations represent the logit equations for the
structural and the measurement part of the model, respec-
tively. Note that “1 ” indicate an intercept, and “| ” that the
intercept depends on the variable concerned. Next the power
computation is proceeded as follow: Step 1: Using the large
data set method, one should first simulate a large data set
from the population defined by the H1 model. Simulating
the large data set is done as follows:

options

output

parameters=first profile;

outfile ’sim.sav’ simulation;

variables

caseweight Freq1000000;

dependent y1 nominal 2, y2 nominal 2,

y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class < - 1 + Z;

y1-y6 < - 1 | class;

{

0.000

0.25

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

}

In the “variables ” section, we define the variables which
are in the model and also their number of categories. These
are the six response variables, the latent variable “class ” ,
and the covariate Z . The “equations” section specifies the
logit equations defining the model of interest, as well as
the values of the population parameters. We use the “out-

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1836 Behav Res (2017) 49:1824–1837

file ” option to indicate that a data file should be simulated,
use the “caseweight ” to indicate the size of the large data
set (here 1000000), and specify the parameter values of
the population model. Note that the values .000, .25, and
0.84729786 for a logit coefficients corresponds to equal
class size, medium effect size, and a conditional response
probability of .70.

Step 2: Analyze the large data set obtained under step 1
using both the H0 and H1 model.

i) Fit the H1 model

options

output

parameters=first profile;

variables

variables

dependent y1 nominal 2, y2 nominal

y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class <- 1 + (b)Z;

y1-y6 <- 1 | class;

,2

ii) Fit the H0 model

options

output

parameters=first profile;

variables

variables

dependent y1 nominal 2, y2 nominal

y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class <- 1 + (b)Z;

y1-y6 <- 1 | class;

b[1,1] = 0;

2,

Next, based on the results in (i) and (ii) for the LR test
and the results in (i) for the Wald test, we compute the

non-centrality parameter. Once the non-centrality parame-
ter is obtained, one may use the following R subscript to
compute the power:

CV<-qchisq(0.05, 2, ncp=0,

lower.tail = FALSE, log.p = FALSE)

power<-pchisq(CV, 2, ncp=1.7218,

lower.tail = FALSE, log.p = FALSE)

where, in this example, the non-centrality parameter is equal
to 1.7218

For the Wald test, power may also computed the power
(without simulating the large data set) as follows.

The “output” line in the “options” section lists the out-
put requested. With WaldPower=<number>, one requests a
power or sample size computation. When using a “number”
between 0 and 1, the program reports the required sample
size for that power, and when using a value larger than 1, the
program reports the power obtained with that sample size.
The optional statement WaldTest=‘filename’ can be used to
define the null hypothesis.
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