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Abstract

Understanding the challenges to increasing maize productivity in sub-Saharan Africa, espe-

cially agronomic factors that reduce on-farm crop yield, has important implications for poli-

cies to reduce national and global food insecurity. Previous research on the maize yield gap

has tended to emphasize the size of the gap (theoretical vs. achievable yields), rather than

what determines maize yield in specific contexts. As a result, there is insufficient evidence

on the key agronomic and environmental factors that influence maize yield in a smallholder

farm environment. In this study, we implemented a Bayesian analysis with plot-level longitu-

dinal household survey data covering 1,197 plots and 320 farms in Central Malawi. House-

holds were interviewed and monitored three times per year, in 2015 and 2016, to document

farmer management practices and seasonal rainfall, and direct measurements were taken

of plant and soil characteristics to quantify impact on plot-level maize yield stability. The

results revealed a high positive association between a leaf chlorophyll indicator and maize

yield, with significance levels exceeding 95% Bayesian credibility at all sites and a regres-

sion coefficient posterior mean from 28% to 42% on a relative scale. A parasitic weed, Striga

asiatica, was the variable most consistently negatively associated with maize yield, exceed-

ing 95% credibility in most cases, of high intensity, with regression means ranging from 23%

to 38% on a relative scale. The influence of rainfall, either directly or indirectly, varied by site

and season. We conclude that the factors preventing Striga infestation and enhancing nitro-

gen fertility will lead to higher maize yield in Malawi. To improve plant nitrogen status, fertil-

izer was effective at higher productivity sites, whereas soil carbon and organic inputs were

important at marginal sites. Uniquely, a Bayesian approach allowed differentiation of

response by site for a relatively modest sample size study (given the complexity of farm

environments and management practices). Considering the biophysical constraints, our

findings highlight management strategies for crop yields, and point towards area-specific

recommendations for nitrogen management and crop yield.

PLOS ONE | https://doi.org/10.1371/journal.pone.0219296 August 8, 2019 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wang H, Snapp SS, Fisher M, Viens F

(2019) A Bayesian analysis of longitudinal farm

surveys in Central Malawi reveals yield

determinants and site-specific management

strategies. PLoS ONE 14(8): e0219296. https://doi.

org/10.1371/journal.pone.0219296

Editor: Arun Jyoti Nath, Assam University, INDIA

Received: December 20, 2018

Accepted: June 20, 2019

Published: August 8, 2019

Copyright: © 2019 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available at https://doi.org/10.7910/DVN/SK4STJ.

Funding: This work originates from United States

Agency for International Development (USAID)

Grant AID-OAA-A-13-00006 entitled Africa RISING

(Research In Sustainable Intensification for the

Next Generation, https://africa-rising.net/category/

partners/iita/), supported by the International

Institute for Tropical Agriculture through a grant to

SS, with support from Michigan State University.

The funders had no role in study design, data

http://orcid.org/0000-0002-9738-0649
https://doi.org/10.1371/journal.pone.0219296
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219296&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219296&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219296&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219296&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219296&domain=pdf&date_stamp=2019-08-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219296&domain=pdf&date_stamp=2019-08-08
https://doi.org/10.1371/journal.pone.0219296
https://doi.org/10.1371/journal.pone.0219296
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/SK4STJ
https://africa-rising.net/category/partners/iita/
https://africa-rising.net/category/partners/iita/


Introduction

Yield gaps in African smallholder agriculture are pervasive and large [1]. The yields achieved

on the vast majority of African farms is 10–30% of genetic yield potential [2]. Yield-limiting

factors have been identified, such as environment, sub-optimal planting in terms of timing

and spacing, as well as deficiencies in soil nutrients, moisture, and damage from weeds and

pests [3–6]. Agricultural economists also investigate yield gaps, and commonly emphasize

market prices, farmer education, and related socio-economic factors thought to influence on-

farm production [7]. There are many challenges to carrying out effective diagnostic analysis of

yield gaps, and often the focus has been on the size of the gap—theoretical vs achievable yields

[8, 9]. Yet if research priorities and agronomic recommendations are to address farm-level

constraints, there is urgent need for evidence-based assessment of the main determinants of

yield, in specific contexts [10]. Further, to ensure relevance of technical advice in a complex

and changing world, statistical approaches are required that consider uncertainity as part of

understanding yield determinants [4, 11].

The present study assesses the main determinants of maize yield by applying a Bayesian

approach to a unique survey dataset from Central Malawi. Crop simulation models are often

used for yield gap analysis and are well suited to providing insights into yield potential and

technology response to weather variability; however, this approach does not reveal the drivers

of yield gaps [12, 13]. Field experimentation, as generally implemented, also has flaws. In par-

ticular, trials are often run under conditions that are not representative of on-farm conditions.

Smallholders in sub-Saharan Africa often have marginal soils, practice variable and less inten-

sive management, and face weed, disease, insect, and other pest problems [1, 14]. The discon-

nect between soil conditions on research stations and those on smallholder farms is illustrated

by a country-wide assessment in Malawi, where soil organic matter levels on research stations

were 1.5 to 2 times as high as those observed on smallholder farms [15]. Researchers generally

choose a field site and invest resources, so as to ensure a homogenous and uniform environ-

ment within which to evaluate a practice or address a specific research question. Thus field

research sites tend to be flat, uniform and high-potential, given that conventional research

experimentation generally tests one or two component practices while controlling other

sources of variability [16]. In contrast, there is growing interest in action types of research and

extension that involve mixed-methods approaches such as surveys linked to on-farm experi-

mentation, to support informed understanding of complex interactions, tradeoffs and local

adaptation [17, 18].

This study is the first to examine the determinants of maize yield using a Bayesian

approach. One advantage of this approach over classical frequentist statistics is improved accu-

racy and credibility of the estimated parameters, because the Bayesian analysis incorporates

background knowledge from domain specialists [19]. Second, Bayesian statistics have interpre-

tive advantages as Bayesian credible intervals are straightforward to interpret by non-statisti-

cians. A third advantage is that a Bayesian analysis always provides precise answers in the form

of posterior probabilities, no matter what the model nor the data is. The model’s various

uncertainties are all quantifiable and readily reportable. In particular, no reliance on large sam-

ples is needed, an important aspect given that farm survey sample sizes are often limited rela-

tive to the complexity of biophysical environment and farmer management decision making.

Taken together, these points indicate that Bayesian statistics could be a powerful data analysis

tool for agricultural research questions, such as understanding yield determinants [11].

The overall objective of this study was to conduct a Bayesian analysis of household survey

data that comprised multiple visits to focal maize plots in Central Malawi, to determine which

variables influenced maize yields. Specifically, we assessed the predictive ability of time series
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environmental variables and management practices regarding field observations of maize

yield, for specific sites. Further, we evaluated leaf chlorophyll status and parasitic weed inci-

dence and determined area-specific predictive models for these important variables.

Materials and methods

Study sites

Central Malawi agriculture is dominated by mixed maize production systems with limited live-

stock presence, and is broadly typical of resource poor smallholder farms in Southern Africa

[14]. Administrative units used by Malawi Government Extension are comprised of region,

agricultural development divisions and extension planning areas (EPA). The study sites were

chosen using a stratified random sampling approach, where all EPAs within the Central

Malawi region were classified using the strata of marginal, moderate or mesic (based on rain-

fall and evapotranspiration) for plant growth. Study sites were choosen randomly to represent

strata [14]. The marginal site comprises two adjacent EPAs, Golomoti and Mtakataka (referred

to herein as Golomoti), two moderate potential sites were chosen, Kandeu and Nsipe, and the

high potential site comprises Linthipe, with a total of 22 village clusters included within these

five EPAs [14].

The marginal site of Golomoti is located near the lakeshore at a low elevation with a high

evapotranspiration, with a mix of soil types, dominated by Eutric Cambisols and Eutric Fluvi-

sols [20]. Linthipe is a high potential site, with well-distributed rainfall and a long history of

maize-dominated agriculture as part of Malawi’s maize basket [6, 21]. Soils in Linthipe are pri-

marily Ferric Luvisols [20]. Kandeu and Nsipe EPAs are medium potential sites, with soils

dominated by mixed Chromic Luvisols and Orthic Ferrasols [20]. Market access also varies

across study locations, with Kandeu and Nsipe being moderately remote and Golomoti and

Linthipe being proximate to markets.

Survey method

Survey location in space and time. Data for the study were from a panel of 320 farm

households, with two maize plots per household surveyed in 2014/15 and in 2015/16, at pre-

season, mid-season and at harvest. Data from a total of 1,197 plots were used in the analysis,

due to a small amount of missing data. The sampled farm households have participated in a

USAID-funded Africa RISING research project and include intervention, local control, and

distant control households from 22 village clusters in the five EPAs. The data used in the pres-

ent study are from detailed plot-level surveys of the sampled farmers, who were asked to

choose two maize plots at random, which were geo-located with GPS coordinates in October

of 2014 and soil sampled as described below. The same plots and farmers were then revisited

and surveyed at midseason (March 2015 and 2016) and at harvest (May 2015 and 2016).

The data collected in 2014/15 and 2015/16 were longitudinal which combined socio-

ecnomic information, crop production, farm management, plant and soil characteristics. The

household-level data were collected with a survey instrument approved through the Michigan

State University (MSU) Human Research Protection Program (HRPP) in the Office of Regula-

tory Affairs, following a human subjects’ protocol with informed consent obtained from all

farmers, translated into local languages, and information provided on the survey based on

valuntarity. Every effort was carried out to maintain confidentiality. Enumerators were trained

over a one-week period, and supervised in the field by graduate students, and the data collec-

tion process included close attention to data entry and data quality control.

Survey data collection. Survey topics addressed include socio-economic characteristics

(household size and composition, household head’s educational level) and farm-level
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management and focal plot practices that included labor, seed information, planting dates,

and plot management and history (farmer-reported crop residue management, crops grown,

timing of sowing and weeding, and fertilizer application). Soil samples were collected from

maize plots using 5-cm diameter auger to sample from the 0–20 cm depth, where 8 samples

were composited per plot after collection using a Z-scheme [22]. The soil sampling was thus all

done on private land, following the survey consent procedure described above, supervised by

the MSU HRPP. Soils were air dried, shipped to MSU laboratory and analyzed for pH, total C,

and permanganate oxidizable carbon (POXC). Soil pH was measured in a 1:2 soil:water solu-

tion and total organic C determined by dry combustion in a CHNS analyzer (Costech ECS

4010, Costech Analytical Technologies, Valencia, CA). POXC was analyzed as follows: 2.5 g of

air-dried soil centrifuged with 18 mL of deionized water, 2 mL of 0.2 M KMnO4 stock solution

added and tubes shaken for exactly 2 min at 240 oscillations per minute on an oscillating

shaker. Sample absorbance on an aliquot was read at 550 nm with a SpectraMax M5 micro-

plate reader using SoftMax Pro software (Version 5.4.1, Molecular devices, Sunnyvale, CA) at

exactly 10 min; we find precise timing to be critical for the POXC analytical procedure.

Midseason measurements were made assessing maize planting arrangements (including

row spacing), maize leaf chlorophyll, based on Soil Plant Analysis Development (SPAD) absor-

bance using an atLeaf CHL instrument (Green, LLC Wilmington, DE http://www.atleaf.com).

Enumerators recorded three reading replicates per plant for four plants at each of eight loca-

tions. In addition, two types of measurements were made to record the incidence of Striga
asiatica (L.) Kuntze, commonly known as witchweed, a genus of parasitic plants. One method

involved directly asking farmers if they had a striga problem on a given maize plot. Striga

information was also obtained by enumerators who made 8 observations per plot at random

sites along rows following a prescribed procedure; thus, for each plot, striga observations were

recorded from 0 to 8. At harvest, a survey was conducted to measure maize crop yield by

weighing biomass of stover and grain from three square meter plots per field, where grain was

removed from cobs and grain moisture determined in the field with a Dickey John moisture

tester to allow maize yield to be reported on a dry weight basis.

In summary, this study included plot-level longitudinal data on socio-economic informa-

tion, crop production, farm management, plant and soil characteristics (from soil samples, leaf

SPAD measurements and weighted biomass and grain after harvest).

Statistical model

Modeling framework and variables. A Bayesian framework was used to estimate the sta-

tistical relation between maize yield data and data on the farmer and plot characteristics where

the relationships were specified in a linear regression model. An agronomic perspective, based

on expert knowledge was used to form the basis of this model, as follows:

Yijk ¼ ai þ Xijkbi þ s�ijk:

where Yijk is the maize yield (in kilograms per hectare) of plot k managed by farm household j
at EPA site i; αi is the y-intercept of the linear regression model, which can be a constant

throughout the model or can vary from EPA site to EPA site; X is a design matrix that incorpo-

rates all the data from the explanatory variables, i.e. the factors that may influence yield; βi is a

vector of regression coefficients which measure how much of the variation of maize yield is

accounted for by the explanatory variables, and may also depend on the EPA site i; �ijk are

independent Gaussian noise terms (having mean zero and standard deviation of one) that rep-

resent the statistical error of the model; and the standard deviation σ, which represents the

scale of the error, and can be compared with the magnitude of the regression coefficients.

Bayesian assessment of yield determinants and site-specific management
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When α and β depend on the EPA site index i, one can gauge the “random” effect of location.

The two year data were pooled in the Bayesian model. Pooling the two years avoided model

misspecification, and has the added benefit of increasing the study’s statistical power. Further

models tested the response variable SPAD, and the parasitic weed striga, to uncover underlying

key drivers of maize yield, where we expected striga to be a negative driver and SPAD a posi-

tive factor. The noise terms were assumed to be independent across models in order to mini-

mize the number of parameters that needed to be estimated for the sake of statistical power.

This avoids at least three correlation parameters. It also avoids the use of a large number of

correlation parameters (hyperparameters) at the prior level in the Bayesian context, which

would be needed to be consistent with investigating a system of 3 equations with 12 explana-

tory variables in common between any pair of models (e.g. Maize and Striga models), one

should, at least, assume a prior correlation for pairs of regression coefficients for each explana-

tory variable, thus another 36 prior correlation parameters. Consequently unobserved factors

that might simultaneously affect more than one model are not taken into account.

Environmental factors (rainfall and soil properties) and farmer management on maize yield

which are part of the vector X were either continuous or binary variables, standardized (mean

0 and standard deviation 1), where continuous variables allowed for comparison of the esti-

mated coefficients on the same scale. Rainfall data came from the Climate Hazards InfraRed

Precipitation with Station (CHIRPS) resource, which is a public quasi-global rainfall dataset

source starting in 1981. This is the only comprehensive precipitation data source that is avail-

able for Malawi, and has been previously validated by comparisons to local rainfall records for

three of the five EPAs [14]. We included three rainfall variables in the model that record the

amount of rainfall (millimeter) for the months of (a) December, January, and February (the

sowing period), (b) March (the end of the rainy season), and (c) April and May (the harvest

period). By measuring rainfall at three key stages of the maize growing season we account, to

some degree, for the association between seasonal rainfall variability and maize yield. This use

of more than one subset of semi-annual rainfall is common in certain agricultural studies and

practices, including in the definition and calculation of rain-index-based crop insurance [23–

25]. Regarding soil properties, POXC, which is a sensitive indicator of active soil organic C,

and pH, were selected as the main soil factors in our model [26].

We also included five key farm management variables, namely ridge (row) spacing, total

ridge weed biomass, fertilizer use, intercropping, and manure/compost use. Although fertilizer

and SPAD were highly correlated, they both had explanatory power for maize yield, indicating

that they should be included simultaneously in the model. We note that endogeneity bias is

possible, particularly for the case of farmer management variables, given these are choice vari-

ables. However, we are unable to address endogeneity, because our dataset does not include

suitable instrumental variables (variables that strongly predict the endogenous explanatory

variables but do not directly affect the dependent variable–yield, Striga, SPAD). As a result,

coefficient estimates should be interpreted as indicating association rather than causality.

Ridge spacing is the distance between two ridges at each of three locations within a field, mea-

sured in centimeters. To avoid edge effects, observations were made that were at least two

ridges from the plot border and all locations were at least two ridges apart. The enumerators

then randomly chose three locations along a diagonal transect and measured from the center

of one ridge to the center of the adjacent one. Total ridge weed biomass was measured in quad-

rats of 0.5 m by 1.0 m size, at one randomly chosen location per plot. Biomass fresh weight

measurements were made in the field, and a subsample from a homogenized sample (weed

biomass chopped into ~10-cm size pieces, and mixed thoroughly) was used to determine the

wet/dry weight ratio. This measurement was done at harvest, and used as a proxy for the

Bayesian assessment of yield determinants and site-specific management
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endogenous weed pressure in a field and as an indicator of the effectiveness of weed

management.

The variables for intercropping and manure/compost use were all measured as binary vari-

ables, and we did not consider the density or the genre of the crop that farmers intercropped

with maize. Manure and compost were combined into a single binary variable having a value

of one if the farmer applied either one during a given year, and value of zero otherwise. We cal-

culated the amount of nitrogen applied with any fertilizer amendment, based on the farmer

reported-fertilizer type (converted as follows, urea is 46:0:0 and the common form of fertilizer

locally called NPK is 23:21:0) and amount of fertilizer reported as applied that season. Trained

enumerators measured the plot that was fertilized using a built in GPS based area measuring

function. In the maize yield model, Striga and SPAD were also included as explanatory

variables.

In addition to the three models described above, we conducted two sets of analyses to con-

sider if socio-economic indicators are of importance in predicting maize yield: educational

level of the household head and total dependency ratio of each household. The analysis was

based on models where these two variables were added to the data matrix X. With the available

data, it was not possible to reject or assert their importance at any reasonable level of signifi-

cance (e.g 80% credibility or higher). These inconclusive results are included as supporting

information (S1 and S2 Figs). These supplemental data show that the regression coefficients of

the other variables in X were insensitive to whether or not one includes the additional two

socio-economic indicators. This is evidence that our regression model was robust. We carried

out additional analyses by removing certain variables from X, such as ones which may not be

significant, and the remaining analyses were largely unaffected; these results are not reported

here. They were, however, similar to S1 Fig, which indicates model robustness.

The available data were also used to investigate non-specific household effects, which may

be interpreted as pointing indirectly to socio-economic effects, or directly to effects of farmer

skill. This analysis used simplified versions of the three linear models, with no predictive fac-

tors X, pooled all EPA sites together to increase power, and allowed the y-intercept parameter

α to depend on the household identifier. Despite the limited number of datapoints per house-

hold (up to 4), we were able to identify nearly 10% of households where such an effect can be

detected. The results of this household analysis are provided in the Results section.

Each of the three aforementioned models was specified in the simple linear framework,

with appropriate logistic modifications in the case of the the Striga model, to distinguish

between incidence of Striga and levels of Striga. Such a linear framework can be considered as

a first-order approximation for each response, with the understanding that it would not be

possible to distinguish, in a statistically significant way, between each of these models and

other models with non-linear features. This paper did not delve into the consideration of

higher complexity models, since they lied beyond the scope of our dataset and thus of our anal-

ysis. As such, the three structural models were uniquely characterized by their respective

response variables and explanatory variables. Because the models had the same set of explana-

tory variables, an identification problem may exist, whereby we were unable to uniquely iden-

tify the parameters of the structural model. While the problem could in theory be remedied by

having at least one explanatory variable be different in each structural model, in practice this is

not possible given the limited amount of data in this study.

For each model, the set of explanatory variables was chosen from an agromomist perspec-

tive, to be consistent with domain experts’ beliefs about what factors may influence yield,

SPAD, and Striga. Slightly streamlined yield models were also investigated, where either SPAD

or Striga were removed. It turned out that these reduced models resulted in decreasing explan-

atory power for all variables. These results were not reported, since their empirical statistical

Bayesian assessment of yield determinants and site-specific management
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power, which is easily assessed via the Bayesian posterior distributions on regression coeffi-

cients, is lower.

In sum, this study focused on biophysical determinants, yet there is more to be explored in

the future regarding socio-economic determinants.

Bayesian analysis. The Bayesian approach allows background knowledge from domain

specialists to be incorporated into the analysis, as a type of participatory model building,

improving the accuracy and credibility of the estimations [19]. Second, Bayesian statistics

show full probability distributions (posteriors) for every model parameter, providing more

information than point estimates like means and variances in classical frequentist statistics. P-

values can be computed in a Bayesian analysis, with more power and flexibility in assessing the

significance of explanatory variables [27]. This is also a way to avoid common misinterpreta-

tions of p-values, a documented problem in the application of frequentist statistics [28, 29].

A third advantage of Bayesian analysis is in increased statistical power for data-limited stud-

ies. Many papers have shown the benefits of Bayesian statistics in the context of smaller data-

sets [30–33]. There is an often quoted but rarely if ever formally cited rule of thumb in

Bayesian statistics, by which the number of parameters (or degrees of freedom) that one can

estimate reliably (e.g. with credibility level higher than 90%) in a linear model, is a third of the

total number of datapoints, compared to a tenth in ordinary frequentist linear regression. See

[32] Section IV.B for a description of this phenomenon.

To evaluate determinants of maize yield, we compared the effects of each explanatory vari-

able on the response variable in any one of our three models (yield, Striga, SPAD). Because all

variables in the models have been standardized, the estimated regression coefficients of each

variable gave a magnitude of influence (beta weights) to find out which among the explanators

of Y have the strongest effect. All the figures in this article present the values and credible inter-

vals of the regression coefficients via this simple magnitude metric. These magnitudes can also

be compared with the posterior mean of the noise term (σ). Usually, σ is quite large relative to

a single regression coefficient, but one should add the absolute magnitudes of several of the

explanatory variables for a more meaningful comparison, since the statistical error needs to be

compared to the strength of all the explanatory factors combined.

We implemented Bayesian analysis using the package PyMC3 built into the object-oriented

programming language Python. This package provides a procedure to estimate the posterior

distribution of our model parameters (regression coefficients and error terms) by implement-

ing a sampling procedure for these distributions. It uses the commonly used Gibbs sampler to

produce these samples, with a burn-in period of 500 initial samples, and an additional 10,000

iterations with two independent Monte Carlo Markov Chains (MCMC) after each burn-in.

The posterior distributions from these two chains are then compared to gauge the procedure’s

convergence. Since we did not have prior knowledge on the distribution of the parameters, in

this simple linear setting, we used the classical prior distributions, which are weakly-informa-

tive [34]: the standard normal distributions for the regression coefficients and inverse-gamma

distribution for the error term. These prior choices present numerical advantages in terms of

conjugacy [27, 34]. The reason for choosing standard (mean-zero, unit variance) normal dis-

tribution as opposed to other means and variances, is because we work with standardized vari-

ables as explained previously. We monitored the convergence of the procedure by keeping

track of the discrepancy between the two aforementioned chains, using Python’s R-hat statistic

a widely accepted convergence diagnostic statistic. All the R-hat values were below the thresh-

old of 1.1 which is considered acceptable, implying that the chains successfully converged, pro-

ducing excellent approximations of our parameters’ estimates and their credible intervals.
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Results

Descriptive statistics

Table 1 provides descriptive statistics for the model variables by study location. Mean values

for rainfall were consistent with earlier characterization of Golomoti as a low rainfall, marginal

site [14]. The other locations differ in terms of mean rainfall for March, with the high potential

site (Linthipe) having the highest rainfall level.

Soils were generally marginal at Golomoti sites, as evidenced by low mean values for soil

active carbon (POXC), consistent with earlier reports [14]. Soil active carbon was highest in

Linthipe. Soil pH varies little by location, and mean values are consistent with moderate acid-

ity, and thus non-limiting pH conditions for the crops grown.

Crop response data includes maize yield and leaf nitrogen content, as indicated by SPAD

values. Average maize yield is lowest in Golomoti, followed by Nsipe and Kandeu, and highest

in Linthipe. Maize SPAD values followed a similar but not identical pattern: low in Golomoti

and Nsipe, and high in Kandeu and Linthipe.

Striga incidence and weed biomass was distributed across EPAs with no clear spatial pat-

tern. Farmers reported Striga problems on about 16–30% of sampled fields, and from 0.18 to

0.25 kg/m2 dry weight weed biomass remaining in the field at harvest (Table 1). The latter is

an indicator of how effective farmer weed management is, although the endogenous infesta-

tion levels of weeds at a site could also contribute to observed presence.

Overall, fertilizer use was lower on the Golomoti sites than the other EPAs. This is consistent

with the intuition that farmers in marginal environments have less motivation to invest in their

land and crops. Fertilizer use was similar in Kandeu, Linthipe, and Nsipe. Compost application

was higher in Linthipe and Golomoti than in Kandeu and Nsipe. As expected, intercropping

was more frequently practiced in Linthipe and in Kandeu, locations where many farmers grow

bean and cowpea in mixed stands with maize [14]. Average plant spacing was lowest in Golo-

moti and Nsipe (~0.9 m between ridges), and highest in Kandeu (~1 m between ridges).

Table 1. Descriptive statistics of the Bayesian model variables, mean and standard error, are presented by location. Household and plot level management practices

and biophysical observational data were collected through a mid-season and a harvest survey, conducted in 2015 and in 2016.

Variable Golomoti Linthipe Kandeu Nsipe

Mean (SE)

Observations (#) 312 282 298 305

Environment

Rainfall, December to February (mm) 563.0 (78.0) 624.5 (27.7) 629.5 (94.6) 636.8 (132.8)

Rainfall, March (mm) 78.6 (26.8) 128.9 (42.0) 102.8 (26.5) 116.8 (25.4)

Rainfall, April and May (mm) 25.2 (10.4) 43.8 (11.6) 39.1 (9.1) 44.4 (8.8)

POXC (mg C/kg soil) 278.9 (152.43) 466.9 (220.5) 390.41 (191.15) 340.70 (160.22)

Soil ph 6.56 (0.61) 6.09 (0.46) 6.10 (0.53) 6.32 (0.61)

Crop performance

Maize yield (kg/ha) 1567.44 (1039.3) 2636.3 (1526.5) 2069.4 (1471.5) 2320.9 (1452.9)

SPAD 41.20 (8.85) 46.98 (7.15) 46.00 (8.62) 41.84 (8.11)

Management practice

Maize spacing (m) 0.897 (0.11) 0.927 (0.11) 0.970 (0.13) 0.914 (0.14)

Weed biomass (kg/m2) 0.183 (0.16) 0.159 (0.15) 0.201(0.15) 0.246 (0.16)

Fertilizer use (0/1) 0.67 (0.47) 0.80 (0.38) 0.85 (0.36) 0.81 (0.38)

Striga (0/1) 0.22 (0.42) 0.30 (0.46) 0.16 (0.37) 0.28 (0.45)

Intercrop (0/1) 0.66 (0.47) 0.77 (0.42) 0.74 (0.44) 0.60 (0.49)

Compost (0/1) 0.41 (0.49) 0.44 (0.50) 0.31 (0.46) 0.27 (0.45)

https://doi.org/10.1371/journal.pone.0219296.t001
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Bayesian model results

Statistical significance was determined in a linear Bayesian context. An explanatory variable

(such as SPAD) in a linear model for a response variable (such as yield) is statistically signifi-

cant at 95% Bayesian credibility if its regression coefficient has a posterior probability of being

on one side of zero which exceeds 95%. This is true as soon as the 95%-credibility intervals

(CI) of that variable’s regression coefficient lies on one side of zero. Strictly speaking, any time

a variable’s 95% CI fails to lie on one side of zero, one may then accuse it of not being statisti-

cally significant. This is a steep threshold to apply in most cases, since a variable with, for

example, 90% Bayesian credibility, still holds some predictive information. In this paper’s anal-

ysis, however, when an explanatory variable fails to be significant in its association to the mod-

el’s response variable, this failure occurs at a much lower level than 90%, as seen in the forest

plots (S2 Fig). The size of an association needs to be distinguished from its significance. For

variables which are significant, their size, or intensity, of this significance is measured by the

variable’s regression coefficient’s posterior mean.

Maize yield. Fig 1 presents the 95% credibility intervals of the determinants of maize

yields at the different sites. Across sites, maize yield was positively associated with SPAD and

negatively associated with plant spacing; the magnitude of the coefficients for SPAD were par-

ticularly large. Fertilizer quantity was positively associated with SPAD, which in turn was

highly predictive of maize yield. There was also a small but positive direct association between

fertilizer and maize yield, for Kandeu and Nsipe. Yield was not consistently influenced by soil

pH, weed biomass, intercropping, or March rainfall.

The α values in Fig 1 differ markedly from each other by EPA, which suggests that location

has an important influence on maize yield, independently of other factors in the model. Since

those factors were capable of exacerbating differences in maize yield by location, we turn now

to consider locational differences.

First, rainfall levels are only statistically significant factors for yield in Linthipe and Nsipe.

In both EPAs, early season rainfall (i.e., December to February) positively correlated with

maize yield. In Nsipe, high rainfall in April/May was associated with low maize yield, perhaps

a reflection of late-season disease harming the crop, such as Fusarium ear rot [35].

Fig 1. Bayesian regression model results for 95% credible intervals associated with drivers of maize yield for four

EPA locations in Central Malawi.

https://doi.org/10.1371/journal.pone.0219296.g001
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Secondly, soil active carbon and compost application were positively associated with maize

yield at the marginal site, Golomoti. Third, in Linthipe and Nsipe, striga had a large negative

effect on maize yield, whereas it was not significantly associated with maize yield in Golomoti

and Kandeu. Striga incidence was similar across locations (Table 1).

Overall, the results of the Bayesian maize-yield model indicate that maize leaf nitrogen

(SPAD) and striga were the strongest determinants of maize yield at the study sites, while early

and late rainfall are significant predictors of yield at some sites. As striga and SPAD can be

directly influenced by farmer behavior, we estimated separate Bayesian models to uncover the

drivers of these two critical inputs to maize yield.

SPAD

The Bayesian regression model identified three main determinants of SPAD: rainfall, poxc,

and application of fertilizer or manure (Fig 2). Rainfall was generally found to be influential on

SPAD, except in Kandeu, where rainfall variables were not statistically significant. In Golo-

moti, SPAD increased with March rainfall, whereas in Linthipe and Nsipe it was December-

February rainfall that had a positive influence on SPAD. Also in Nsipe, a negative association

with SPAD was observed for late season rainfall.

Fertilizer was an important predictor of SPAD at all sites except the dry, marginal site of

Golomoti (Fig 2). In marginal sites, plant growth and response to fertilizer was often limited

by insufficient soil moisture, thus fertilizer application doesn’t necessarily lead to plant uptake

of nitrogen or yield response. Indeed, our maize yield model results also showed a lack of

response to fertilizer in Golomoti (Fig 1). Manure application and the soil property poxc were

positively related to SPAD at this site. Fertilizer effects on both SPAD and yield were highly

variable, however, suggesting the need to improve the effectiveness of fertilizer applied. The

magnitude of the fertilizer effects on SPAD were higher in Kandeu and Nsipe than Linthipe.

Striga

Factors that influenced striga incidence (Fig 3) and level of striga infestation (Fig 4) are pre-

sented here, as striga was found to be an important negative driver of yield. The model can be

Fig 2. Bayesian regression model results for 95% credible intervals associated with drivers of SPAD for four EPA

locations in Central Malawi.

https://doi.org/10.1371/journal.pone.0219296.g002
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thought of as a two-step procedure. First, the zero and non-zero values provide two alterna-

tives which allow one to estimate the influence of the presence or absence of striga via logistic

regression, which speaks to the possibility of prevention. Next, when conditional on the pres-

ence of striga, reverting to an 8-point scale of quantitative values of striga, ordinary linear

regression is used, which is linked to the effectiveness of striga control. Having a large number

of observations equal to zero (known as zero inflation) may induce biased results [36]. The

proposed two-step analysis mitigates this problem, since the standard linear regression model

is relative to the data with non-zero striga values. The striga infestation level model assessed

field observations of striga at integer values from 0 to 8, with 0 indicating the absence of striga

and the values from 1 to 8 revealing the level of striga infestation (based on mid-season plot

observations). As stated, the logistic regression model can reveal possible striga prevention

measures, whereas the 1-8-levels model provides insights on possible striga control measures.

Among the farmer management factors and soil properties, most were either not significant

or of small magnitude in relationship to striga. There was some evidence of soil fertility

amendments being useful in prevention, as fertilizer use was assocated with striga absence (as

reported by farmers) in Kandeu and Linthipe. Fertilizer was also an apparent control factor in

Linthipe, as it was a predictor of low striga incidence at this site. Compost was associated with

both striga absence and low incidence in Nsipe, with contrasting results observed in Kandeu.

At the marginal Golomoti site, fertility amendments had no striga control benefits, and the

only farmer management effect was wide ridge spacing, which was negatively correlated to

striga incidence and intensity. Overall the results show intercropping is generally neither help-

ful nor harmful to striga prevention and control. The one exception was Linthipe where inter-

crops were associated with farmer-reported striga problems.

Farmer (household) effect

The farmer-effect study described earlier used each of the three models with indicator

(dummy) household variables to help determine whether households are predictive of yield,

SPAD, or striga. With 306 households, and up to four data points per household (two maize

plots surveyed per household in 2014 and 2015), we found that in most cases, it was not possi-

ble to determine whether there is a connection between any particular household and their

Fig 3. Logistic regression results for 95% credible intervals associated with drivers of striga prevention for four

EPA locations in Central Malawi.

https://doi.org/10.1371/journal.pone.0219296.g003
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corresponding four datapoints. However, in roughly 10% of cases, some statistical significance

was extracted, meaning that the variability among the four datapoints of each such household

is almost certainly not due to chance alone. Moreover, the effect was most likely to identify a

favorable household environment. Specifically, setting the significance level at 5%, we com-

puted the number of households for which the corresponding regression intercept α is away

from zero with Bayesian posterior probability at least 95%. The results are summarized in

Table 2. A sample of details of the data analysis output for the yield model, including 95%-

credibility interval for each household, and corresponding forest plots, are given in the sup-

porting information section, S2 Fig.

For the yield model, the total number of significant households exceeded 9%. Interestingly,

among these households, there were far more cases where the yield was higher than expected

due to chance alone, than cases where it was lower (7.5% against 1.6%). In other words, when

the data points towards a farmer having a significant effect on yield, the odds are about 5:1 that

this was a skilled farmer with high maize yields.

For the two other models, similar results hold, at the 5% significance level, to a slightly lesser

extent. For the SPAD model, about 6% of households had SPAD levels which cannot be explained

by chance, and among those, the odds of having good SPAD against low SPAD was about 3 to 2.

For the Striga model, there were no cases where one could say that a farmer was likely to be

avoiding striga entirely, while 8.5% of farmers were likely to be associated with a Striga problem.

The results on striga may seem surprising: we cannot determine any farmer with the skills

or the knowledge of practices to be superior to others in preventing striga. This conclusion is

not to be taken as a discouraging fact. Rather, it reflects that over two thirds of all plots in the

study area, i.e. a large proportion, were striga-free. Thus, while one third of plots being infected

Fig 4. Bayesian regression model results for 95% credible intervals for the factors associated with striga control

for four EPA locations in Central Malawi.

https://doi.org/10.1371/journal.pone.0219296.g004

Table 2. Number and proportion of households for which the y-intercept regression coefficient α is significantly

non-zero at the 95% credibility level.

Model Number (%) of households with positive effect Number (%) of households with negative effect

Yield 23 (7.5%) 5 (1.6%)

SPAD 11 (3.6%) 7 (2.3%)

Striga 26 (8.5%) 0 (0.0%)

https://doi.org/10.1371/journal.pone.0219296.t002
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with striga reaches epidemic levels, from the standpoint of statistical power, having two thirds

of plots without striga makes its absence so prevalent that the 306 households cannot identify

anyone with unusual striga-prevention skills. Readers are referred to the full striga model for

more precise and statistically significant recommendations on striga.

Discussion

The plot-level longitudinal dataset and Bayesian statistical models reported here place biophys-

ical constraints in sharp focus in the analysis of what influences maize yield in Malawi. Some

of the identified drivers of maize yield, notably SPAD, striga, and sub-seasonal rainfall pat-

terns, have strong effects with very high credibility. Overall, nitrogen nutrition was a key deter-

minant of yield, consistent with much of the literature on small scale, mixed maize production

systems [1, 6]. Yet, fertilizer application did not necessarily result in improved leaf nitrogen

(SPAD values) or in subsequent maize yields. Thus the results highlight the challenges to

ensuring effective nitrogen uptake and translation into grain, particularly in marginal environ-

ments. In concurrence, a study in Western Kenya found that maize yield response to nitrogen

fertilizer application is low when soil organic matter is low [37].

Fertilizer in Central Malawi was generally associated with high plant nitrogen tissue (SPAD

values) at all but the marginal location of Golomoti. This is consistent with recommending to

farmers the use of manure or legume rotations at marginal sites, to build soil active organic

matter and thus soil nitrogen supply capacity [38]. Integrated management of soil fertility

combining manure and fertilizer has been shown previously to be highly effective and profit-

able for raising maize yields [39]. Soil organic carbon fractions tend to be sensitive indicators

of crop response at lower values, as we observed here, as Golomoti had 20 to 40% lower levels

of active soil carbon compared to the other sites.

Rainfall was an important factor influencing maize yield, particularly early-mid season rain-

fall (Fig 1). This supports a previous study in Malawi that found a positive association between

seasonal rainfall and maize yield based on an econometric analysis of farm-level data [39]. At

two sites we found a negative relationship of late season rainfall to yield, and this negative

effect was also observed for SPAD. This could reflect a leaching problem, with rainfall inducing

soil inorganic nitrogen losses and thus limiting nitrogen availablity during the critical maize

grain filling period—which requires high nitrogen availability [40]. It however could also be

related to Fusarium or other infections of the corn ear, induced by a late season moist environ-

ment causing grain spoilage and thus yield loss [31]. Ours is the first study that we know of

that used household and focal plot survey data to produce this type of differentiated conclu-

sions, based on sub-seasonal data.

The findings highlighted the large negative effect of the parasitic weed striga on maize yield.

Although weed biomass alone had no discernable effect, striga was a strong negative determi-

nant of maize yields in Linthipe and Nsipe. These are relatively mesic locations with overall

medium to high maize yields, compared to Golomoti and Kandeu. It is suprising that the nega-

tive effects of striga are only observed at farms in Linthipe and Nsipe, as the presence of this

parasitic weed is common throughout the study sites and is indeed ubiquitous in Central

Malawi [41]. Our finding of a highly negative impact of striga, in areas where yield potential is

otherwise high, indicates a barrier to agricultural production that has been largely overlooked

by agricultural research and policy makers, where the focus has often been on subsidized

access to hybrid maize seeds and fertilizers. A need revealed by this study is that of effective

and affordable means of striga prevention and control.

In Malawi, farmers rely primarily on hand weeding for striga control, which appears to be

ineffective largely due to the parasitic nature of this weed—thus maize growth suppression has
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already occurred by the time hand weeding is done [42]. We explored the utility of fertilizer

and manure/compost application for striga prevention and control, based on an extensive pre-

vious literature linking low nitrogen soils to higher striga incidence [43–45]. Similarly, farmers

in a recent Malawi survey ranked manure application as the best option for striga control [46].

Given the observed differences in soil fertility and fertilizer use across the study EPAs, we

expected higher striga infestation in Golomoti vs. the other areas, yet there is no evidence of

this. Instead what we observe is widespread presence of striga and lack of uniformity in what

works for prevention and control. For example, chemical fertilizer is found to be an important

factor for striga prevention and control, but only in Kandeu and Linthipe. Manure/compost

appears to have merits for reducing striga problems in Nsipe only. In short, study findings sug-

gest a complex mode of action with difficult-to-predict reactions of maize to striga presence

and striga to control measures. Another study from Malawi similarly found complex relation-

ships between soil fertility and striga: two years of on-farm observations and participatory

research revealed that early application of fertilizer helped maize plants overcome early effects

of striga attachment, whereas late application of fertilizer was associated with worse striga [47].

Overall, the results from this study call for area-specific recommendations. The Malawi

government recommendations for hybrid maize production have focused primarily on N fer-

tilizer rate, which is 69 kg N ha-1 throughout most of the country [48, 49]. We found evidence

that shows targeting complementary investments and timing of application would add value.

For example, maize production at the mesic site would benefit from early, judicious use of fer-

tilizer for striga control, and for nitrogen nutrition benefits. Whereas for the marginal site,

response was markedly different, with no fertilizer or striga drivers observed on yield, and

instead soil active carbon and compost are positive determinants of yield, and thus recom-

mended practices should focus on soil organic matter management.

Soil carbon accumulation provided important environmental services at all sites; however, at

marginal sites the benefits from incremental gains in soil carbon were high, from stable produc-

tion over time and space, to substantial gains in nitrogen efficiency, and at one site, suppression

of striga. Compost preparation, and utilization at modest amounts, had beneficial effects at

some sites, with gains in plant health as indicated by nitrogen status and striga suppression. No

effects of compost were observed at most sites during the modest (three year) timeline of the

project, yet when a site is marginal, and during a poor rainfall season, this management practice

is one of the few consistently beneficial practices. With little to no downside, this study high-

lights the role that government policies, extension and educational efforts by civil society can all

have in building appreciation for compost benefits, particularly in dry environments.

Supporting information

S1 Fig. Bayesian regression model results for 95% credible intervals associated with socio-

economic and agro-ecological drivers of maize yield for four EPA locations in Central

Malawi.

(TIF)

S2 Fig. Forest plots for 95% credibility intervals for the y-intercepts for 306 households in

the yield model.

(TIF)
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