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Abstract:  26 

The protection afforded by vaccination against severe acute respiratory syndrome 27 

coronavirus 2 (SARS-CoV-2) to individuals with chronic lung disease is not well 28 

established. To understand how chronic lung disease impacts SARS-CoV-2 vaccine-29 

elicited immunity we performed deep immunophenotyping of the humoral and cell 30 

mediated SARS-CoV-2 vaccine response in an investigative cohort of vaccinated 31 

patients with diverse pulmonary conditions including asthma, chronic obstructive 32 

pulmonary disease (COPD), and interstitial lung disease (ILD). Compared to healthy 33 

controls, 48% of vaccinated patients with chronic lung diseases had reduced antibody 34 

titers to the SARS-CoV-2 vaccine antigen as early as 3-4 months after vaccination, 35 

correlating with decreased vaccine-specific memory B cells. Vaccine-specific CD4 and 36 

CD8 T cells were also significantly reduced in patients with asthma, COPD, and a 37 

subset of ILD patients compared to healthy controls. These findings reveal the complex 38 

nature of vaccine-elicited immunity in high-risk patients with chronic lung disease. 39 

 40 

Introduction 41 

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 42 

targeting the ancestral (Wuhan-Hu-1/2019) viral spike (S) protein has been broadly 43 

effective at limiting infection and severe coronavirus disease (COVID-19) (1-6). With 44 

respect to SARS-CoV-2 infection, both the humoral and cell mediated arms of the 45 

adaptive response are important for achieving optimal control of COVID-19 (7). As such, 46 

generating effective B cell and T cell immunity against SARS-CoV-2 remains the goal 47 

during vaccination. Much of the protection afforded by both the Pfizer/BioNTech 48 
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BNT162b2 and the Moderna mRNA-1273 mRNA vaccines is mediated by increased 49 

serum neutralizing antibodies to the viral spike protein (8). The efficacy of such 50 

neutralizing antibodies depends on their titer, avidity, and half-life (9-17). Indeed, the 51 

importance of maintained humoral immunity is evident since breakthrough cases of 52 

COVID-19 appear in otherwise healthy, vaccinated or previously infected individuals at 53 

the time of waning antibody titers (18-21). Variants such as Omicron BA.1 appear to 54 

cause less severe disease in vaccinated individuals due to cross-reactivity between the 55 

vaccine epitopes and those in the BA.1 variant, but this protection is not afforded 56 

against all Omicron variants including BA.4 and BA.5 (22-24).  Whether new vaccine 57 

formulations or vaccination schemes are required to maintain lasting protection is 58 

currently an area of interest (25). 59 

 In infected individuals, the half-lives of IgG anti-spike and anti-RBD have been 60 

reported to be 103-126 and 83-116 days, respectively (26, 27). The half-life of 61 

antibodies in vaccinated individuals may be shorter, as titers are significantly decreased 62 

after 6 months (28-33). The difference in antibody half-life between infected and 63 

vaccinated individuals may depend on the half-lives of the plasma cells or differences in 64 

the memory B cells that produce them (34). Memory B cells don’t participate in the 65 

immediate increase in antibody production after re-exposure to virus or vaccine, but 66 

within several days provide high levels of protective antibodies pursuant to their peri-67 

infection conversion to plasma cells (35). The importance of memory B cells in lasting 68 

immunity to SARS-CoV-2 infection after vaccination is highlighted by findings showing 69 

that spike protein receptor binding domain (RBD) specific memory B cells survive even 70 

after anti-RBD antibodies are absent from serum (33, 36).   71 
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In addition to humoral immunity, SARS-CoV-2-specific T cells provide protection 72 

against the virus and may be particularly relevant in the case of SARS-CoV-2 variants 73 

of concern such as B.1.617.2 delta and B.1.1.529 omicron which display mutated spike 74 

proteins that can more effectively evade neutralizing antibodies (32, 37-41). The ability 75 

of the virus to escape antibody but not T cell immunity stems from the nature of the 76 

different antigenic targets on the spike protein recognized by B cells (proteins) and T 77 

cells (peptides) (7, 40, 42-45). Underlying their potential importance, the relative 78 

expansion of SARS-CoV-2 specific CD4+ and CD8+ T cells associates with COVID-19 79 

disease severity, and T cell memory appears more durable than serum antibody titers 80 

(26, 33, 43, 46, 47). Circulating CD4+ follicular T helper cells (cTfh) are also found in the 81 

memory T cell pool. While SARS-CoV-2-specific Tfh cell are less durable than other 82 

memory T cell subsets after vaccination and may not be required for the generation of 83 

antibodies against the virus, these cells are probably important in orchestrating a 84 

productive T and B cell response to SARS-CoV-2 infection (33, 42, 48-52).  85 

Although we have gained significant understanding about natural immunity and 86 

response to SARS-CoV-2 infection and vaccination, informative data were not 87 

generated in chronic lung disease patients, who are at highest risk of mortality and 88 

morbidity due to COVID-19 (53).  Patients with lung diseases may suffer more than 89 

healthy subjects from SARS-CoV-2 infections because of underlying pulmonary 90 

limitation and/or abnormal lung immune function. Immunosuppressant drugs taken by 91 

patients with chronic lung disease can also reduce their immune responses to the 92 

SARS-CoV-2 vaccine as reported in other disease contexts (54-58). Indeed, certain 93 
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conditions and treatments may significantly reduce the ability of the patient to produce 94 

anti-SARS-CoV-2 antibody (59-66). 95 

Individuals with chronic lung disease that fail to mount an immune response to 96 

the vaccines may be unaware of their higher risk for potentially severe “breakthrough 97 

COVID” that results from new SARS-CoV-2 variants that evade antibody neutralization. 98 

This is of particular concern as masking and social distancing have been lifted in many 99 

localities. Therefore, it is critical to understand the vaccine response in high-risk chronic 100 

lung disease patients to help identify subsets of individuals who may be at greatest risk 101 

of poor outcomes. Although the greatest at-risk patients are likely those that fail to 102 

respond appropriately to the SARS-CoV-2 vaccination, simple measurement of 103 

antibodies against the RBD does not account for heterogeneity in protective immune 104 

responses to vaccination. Therefore, to reveal whether limitations in vaccine 105 

responsiveness exist within chronic lung disease patients and to better understand the 106 

heterogeneity of responses across different chronic lung diseases, we performed deep 107 

phenotyping of the humoral and cell mediated immune response to SARS-CoV-2 108 

vaccination in a select, investigative cohort of patients with interstitial lung disease 109 

(ILD), chronic obstructive pulmonary disease (COPD), and asthma, compared to 110 

healthy subjects.  111 

 112 

Results  113 

A subset of patients with chronic lung disease exhibit reduced serum antibody 114 

titers after mRNA vaccination against SARS-CoV-2. 115 
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Serum samples were used to assess SARS-CoV-2 Pfizer-BioNTech BNT162b2 and 116 

Moderna mRNA-1273 vaccine responsiveness in a cohort of 9 asthma, 8 COPD, and 15 117 

ILD patients and 31 healthy controls (Table 1).  To investigate the humoral response, 118 

we performed an in-house quantitative ELISA for serum spike RBD-specific antibodies. 119 

Serum collected between 14-231 days after the last vaccination/boost was analyzed 120 

(Fig. 1A). Asthma (p<0.35) and COPD (p<0.022) patients showed significantly reduced 121 

antibody titers 3-4 months after vaccination compared to healthy controls. 40% (6/15) of 122 

ILD patients also exhibited reduced antibody titers compared to healthy subjects. To 123 

validate these findings, serum titers from the in-house anti-RBD assay and QuantiVac 124 

ELISA (semiquantitative Spike protein IgG) were compared. As expected, samples with 125 

the highest serum anti-RBD titers, including 100% of healthy controls, were most 126 

prominent in the highest anti-spike titer bin (>350 binding antibody units (BAU)/mL) 127 

while those showing low anti-RBD titers were enriched in the lowest bin (<150 BAU/mL) 128 

(Fig. 1B). Together, these investigative findings suggest that many patients with ILD, 129 

asthma, and COPD may not achieve or maintain the same level of humoral protection 130 

after vaccination as healthy subjects. 131 

 132 

Circulating spike-specific B cells are reduced in patients with chronic lung 133 

disease.  134 

To investigate vaccine-specific memory B cells, we enriched PBMC for B cells and 135 

identified RBD-specific B cells using double colored RBD-tetramers (Fig. 2A) (67). We 136 

minimized contamination of non-RBD-specific B cells by eliminating B cells that bound 137 

an “irrelevant” ovalbumin-FITC protein (68, 69). Individuals with ILD (p<0.012) and 138 
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asthma (p<0.032) had significantly fewer circulating RBD-specific B cells than healthy 139 

controls (Fig. 2B). COPD patients on average had fewer RBD-specific B cells within the 140 

circulating B cell population than observed in healthy controls (Fig. 2B). When RBD-141 

specific B cells from all patients were compared to their RBD-specific serum antibody 142 

titers, a significant correlation (r=0.477; p<0.002) was observed (Fig. 2C). While the 143 

strongest positive correlation was observed in healthy subjects (r=0.572), ILD patients 144 

(r=0.588; p<0.021) also correlated. Together, these data indicate that many individuals 145 

with chronic lung disease fail to generate a robust pool of circulating vaccine-specific B 146 

cells compared to healthy controls.  147 

 148 

T cell response to SARS-CoV-2 vaccination is impaired in patients with chronic 149 

lung disease. 150 

To investigate the RBD-specific CD8+ and CD4+ T cell responses in a way that was 151 

agnostic to a patient’s HLA type, we used a modified approach previously described to 152 

efficiently detect spike-responsive T cells in the blood of patients with mild COVID-19 153 

(48). Using this approach, subsets of individuals with underlying lung conditions 154 

exhibited diminished RBD-specific T cell responses compared to healthy controls (Fig. 155 

3A, B). Specifically, CD8+ (p<0.004) and CD4+ (p<0.023) T cell responses in asthma 156 

patients were significantly reduced, as were CD8+ (p<0.008) T cell responses in COPD 157 

patients. Of note, 21% of ILD patients showed limited CD8+ T cell responses and 42% 158 

failed to evoke a robust CD4+ T cell response after vaccination. Similarly, 33-37.5% of 159 

asthmatic and COPD patients had no observable CD4+ and CD8+ T cell responses to 160 

the vaccine antigen. While CD4+ T cell responsiveness correlated strongly (r=0.728; 161 
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p<0.0001) with CD8+ T cell vaccine responses across disease cohorts, no correlation 162 

was observed between RBD-specific T cell responses and RBD-specific antibody titers 163 

(Fig. 3C-E). This suggests that an individual’s humoral vaccine response can be 164 

independent of their vaccine-elicited T cell immunity and vice versa.    165 

 166 

Vaccine-specific T cells in patients with chronic lung conditions have impaired 167 

cytokine potential. 168 

To address T cell function, the cytokine potential in our patient cohorts was assayed by 169 

intracellular cytokine staining. While the percentages of bulk CD8+ T cells that were 170 

IFN-g competent were significantly (p<0.012) elevated among vaccinated COPD 171 

patients compared to healthy controls, the percentage of such cells in asthmatic and 172 

ILD patients were not significantly different (Fig. 4A). On the other hand, the percentage 173 

of bulk CD8 T cells from asthmatic patients that could produce IL-2 were significantly 174 

(p<0.014) reduced relative to healthy controls (Fig. 4A). While this suggests some 175 

heterogeneity exits in the cytokine profiles of patients with chronic lung disease, for the 176 

most part, bulk T cell function appears similar across disease groups.  Even less 177 

heterogeneity was observed in the cytokine potential of CD4+ T cells across disease 178 

groups and healthy patients (Fig. 4B). 179 

In contrast to bulk T cell populations, heterogeneity in cytokine potential was 180 

observed in vaccine-responsive T cell populations. In these experiments vaccine 181 

responsive T cells were defined by loss of CPD, indicative of cells that had divided in 182 

response to RBD antigen. In patients with chronic lung disease, the percentage of RBD 183 

responsive CD8+ T cells from asthma and COPD patients that could produce IFN-g 184 
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and/or IL-2 was significantly reduced compared to similar T cells obtained from healthy 185 

subjects (Fig. 4C, D). A similar finding was observed in RBD responsive CD4+ T cells 186 

from asthma and COPD patients (Fig. 4E, F). Of note, while asthma and COPD patients 187 

showed more homogeneity in their T cell functionality, a subset of patients with ILD also 188 

exhibited decreased IFN-gamma and IL-2 within RBD-specific CD4+ and CD8+ T cells 189 

compared to healthy controls. This suggests that at least some patients within each 190 

disease cohort exhibit reduced T cell functionality to the vaccine. 191 

When looking at total T cell responsiveness, patients mounting a productive 192 

CD4+ T cell response generally exhibited a productive CD8+ T cell response (r=0.703; 193 

p<0.0001) (Fig. 4G). To understand if T cell function similarly tracked with humoral 194 

immunity after vaccination, we compared IFN-gamma+ RBD-specific T cells in each 195 

patient to their serum anti-RBD titers. In all patient groups, no significant correlation was 196 

observed (Fig. 4H, I). Together with serum antibody and memory B cell data, these 197 

findings indicate that the SARS-CoV-2 vaccine may differentially promote T cell and 198 

humoral immunity in some ILD, asthma, and COPD patients.  199 

 200 

SARS-CoV-2-specific Tfh cells exhibit decreased cytokine potential in patients 201 

with chronic lung conditions compared to healthy controls. 202 

Given Tfh cells are important in driving humoral vaccine responses, we next 203 

investigated the Tfh response in vaccinated patients with pulmonary disease. The 204 

percentage of circulating CXCR5+ CD4+ Tfh (cTfh) cells among the total CD4+ T cell 205 

pool was decreased across all disease cohorts reaching significance within asthma 206 

(p<0.011) and COPD (p<0.006) patients (Fig. 5A). While IL-2 production remained 207 
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comparable to healthy controls, the relative percentage of IFN-g expressing cTfh cells 208 

was increased across all chronic lung disease cohorts (Fig. 5B). Increased IFN-g 209 

production was most evident in COPD (p<0.027) patients, however, at least some ILD 210 

and asthma patients also exhibited increased interferon expression within bulk cTfh 211 

cells relative to healthy controls. Despite the increased IFN-g production observed in 212 

bulk cTfh cells in patients with chronic lung disease, RBD-responsive (CPD-lo) cTfh on 213 

average exhibited decreased IFN-g production compared to vaccinated, healthy 214 

controls. In fact, 21% of ILD patients, 44% of asthma patients, and 25% of COPD 215 

patients in this investigative cohort lacked IFN-g-expressing RBD-responsive Tfh cells 216 

above background (Fig. 5C). This mirrors the decreased functionality of vaccine 217 

responsive T cells within non-Tfh cell populations. 218 

  219 

Discussion  220 

This study highlights the significant heterogeneity that exists in the vaccine response to 221 

SARS-CoV-2 in individuals with ILD, COPD and asthma compared to healthy controls. 222 

In our assessment of vaccine-induced antibody titers, memory B cell subsets, and T 223 

cells in patients with asthma, COPD, and ILD, we found that 48.3% of patients with 224 

chronic lung disease exhibited serum antibody titers to the vaccine antigen below the 225 

expected titers observed in healthy controls 3-4 months after the last vaccine 226 

administration. This correlated with decreased RBD-specific circulating memory B cells. 227 

In addition to impaired humoral hallmarks, most patients with asthma and COPD and a 228 

subset of patients with ILD had reduced circulating RBD-responsive CD4+ T cells, 229 

CD8+ T cells, and Tfh cells. These vaccine-specific T cell populations also exhibited 230 
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decreased cytokine potential compared to healthy controls. Of note, while some 231 

individuals lacking antibody and memory B cell production after vaccination also 232 

exhibited reduced T cell immunity, many patients had evidence of defects in only one 233 

arm of the adaptive response to SARS-CoV-2 vaccination. This highlights the 234 

considerable variability in vaccine responses among patients with chronic lung disease 235 

and illustrates the importance of deep immunophenotyping of high-risk patients to 236 

determine their overall immunity to SARS-CoV-2 after vaccination. 237 

Most of the available data regarding the safety, efficacy, and durability of mRNA 238 

vaccines against SARS-CoV-2 has been generated from healthy vaccinated cohorts (5, 239 

20, 29, 33, 70-73). In these initial studies, nearly all healthy vaccine recipients 240 

developed binding and neutralizing antibodies. However, this level of vaccine 241 

responsiveness does not appear to always extend to individuals with chronic lung 242 

disease (59, 74). While not designed or powered to address safety, efficacy, or 243 

durability of the vaccine response in patients with chronic lung disease, the current data 244 

suggest that what we understand regarding vaccination in healthy subjects may not be 245 

directly applicable to patients with chronic lung disease. Further, the data also show that 246 

vaccine responses may differ depending on the type of underlying lung condition. For 247 

example, as a group, individuals with COPD and asthma were more likely to exhibit 248 

impaired antibody and T cell responses than ILD patients, who instead exhibited greater 249 

heterogeneity in their mRNA vaccine response. Factors that separate responders from 250 

non-responders within a particular disease group may reflect distinct disease-251 

associated endotypes within COPD, asthma, and ILD, including the possibility that 252 

subsets of each of these lung diseases are associated with broadly abnormal immunity, 253 
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a concept that finds support in previous studies (75). Understanding how the intrinsic 254 

nature of each pulmonary disease impacts B cell and T cell immunity in patients with 255 

chronic lung disease is particularly important as such patients are more at risk for 256 

“breakthrough COVID-19” driven by emerging SARS-CoV-2 variants of concern. 257 

One of the key caveats in the current study is the lack of a longitudinal 258 

assessment within these different disease cohorts. We know from healthy controls that 259 

each arm of the immune system varies over time after vaccination. For example, while 260 

anti-RBD antibody titers and cTfh numbers wane six months after vaccination, vaccine-261 

specific T cell responses and memory B cell responses remain relatively stable over 262 

that same period in healthy subjects (33, 76). Whether similar kinetics occur in 263 

individuals with chronic lung disease remains unknown. The investigative data provided 264 

herein suggest that a large percentage of individuals with chronic lung disease fail to 265 

mount productive humoral and cell mediated immunity during the first and second 266 

dosing of the vaccine. What remains unclear is whether such non-responders remain 267 

impaired after subsequent vaccination attempts. While there is evidence that a third 268 

booster can be effective in providing some protection against SARS-CoV-2 in other 269 

high-risk populations (62, 77-79), some seronegative individuals who did not respond to 270 

the first two doses of vaccine also fail to respond to the third boost (80).  How boosting 271 

can benefit non-responders becomes even more complicated as natural exposures to 272 

the virus and its variants become more frequent. Thus, the benefit of multiple boosts or 273 

more frequent boosting in subsets of patients with asthma, ILD, and COPD that show 274 

inadequate vaccine responsiveness should be explored. 275 
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In conclusion, vaccination against SARS-CoV-2 has had a significant impact on 276 

our ability to control the current COVID-19 pandemic. However, much of what we 277 

understand comes from data collected from clinical trials comprised of healthy 278 

individuals. Our study suggests that efficacy of the vaccine and vaccine-induced 279 

immunity in healthy individuals should not be uniformly extrapolated to individuals with 280 

chronic lung disease. This finding has clinical relevance, as these individuals are 281 

considered at high-risk for contracting severe COVID-19. Patients with COPD, for 282 

example, have increased odds of hospitalization, intensive care unit admission, and 283 

mortality compared to healthy controls if exposed to SARS-CoV-2 (53). Given the 284 

relatively high percentage of patients with chronic lung disease showing some form of 285 

impaired vaccine responsiveness and the high degree of heterogeneity in the responses 286 

observed across individuals with ILD, asthma, and COPD, chronic lung disease patients 287 

may benefit from personalized vaccination schemes and deeper assessment of immune 288 

responses to ensure optimal protection in this vulnerable population. 289 

 290 

Methods 291 

Study participants:  Chronic lung disease and healthy control blood samples were 292 

collected as part of two institutional IRB-approved protocols under which subjects 293 

provided informed consent: 1) a prospective study of response to SARS-CoV-2 294 

vaccinations that recruited from NJH clinics and 2) the National Jewish Health BioBank 295 

that recruits patients undergoing normal clinical laboratory testing or from a healthy 296 

donor pool. The samples were stored and maintained as part of the National Jewish 297 

Health (NJH) Biobank. Patient information regarding vaccine status, medicine, and 298 
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infection status was collected at time of sample collection or as part of their normal 299 

medical record. 300 

 301 

Serum and peripheral blood mononuclear cell sample preparation: Blood was 302 

collected from multiple 10 mL blood draws into EDTA tubes. Serum was processed after 303 

density gradient centrifugation and PBMC –post red blood cell lysis– were resuspended 304 

in 10% DMSO + 90% FBS in cryovials prior to storage in liquid nitrogen.  305 

 306 

SARS-CoV-2 receptor binding domain generation: SARS-CoV-2 spike receptor 307 

binding domain (aa319 to aa541) with C-terminal 6* histidine tag was expressed in 308 

293F cell as described previously (81). The RBD protein was purified with nickel column 309 

and the eluted protein was further purified by size-exclusion column to collect monomer 310 

sized RBD. 311 

 312 

RBD-tetramer generation: SARS-CoV-2 spike receptor binding domain (aa319 to 313 

aa541) with C-terminal histidine tag and Avitag was expressed and purified in the same 314 

way above. The RBD was biotinylated by BirA enzyme. The biotinylated RBD was 315 

conjugated to the streptavidin labeled with different fluorescent dyes. 316 

 317 

Enzyme-linked immunosorbent assay (ELISA) for RBD serum antibody: Twenty 318 

µg/ml 6*-histidine tagged RBD was used for coating ELISA plate. After blocking, human 319 

serum at different dilutions was incubated on the plates. The bound IgG was detected 320 
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with goat anti-human IgG, Fcγ fragment specific conjugated with alkaline phosphatase 321 

(Jackson ImmunoResearch #109-055-008). Bamlanivimab was used as standard for 322 

converting ELISA O.D. value to serum antibody amount (82).  323 

 324 

Staining of RBD specific B cell subsets by flow cytometry: Human PBMC samples 325 

were obtained from Biobank at National Jewish Health. Cells were stained with 2 µg/ml 326 

double colored RBD tetramers (conjugated with BV421 and PE respectively), human Fc 327 

block and FITC-OVA first on ice for 30 minutes. CD19 APCcy7, IgD BV510, dump 328 

(CD4, CD8, CD14, CD16) PerCP antibodies were then added for staining. Cells were 329 

washed and stained with Ghost UV450 dye and fixed with 1% paraformaldehyde for 330 

flow cytometry analysis. 331 

 332 

PBMC cultures and antigen-specific T cell stimulation: PBMCs were thawed and 333 

resuspended in complete RPMI-1640 (10% FBS, 10mM HEPES, 50uM 2-beta 334 

mercaptoethanol, 2mM L-glutamine, and 1% penicillin and streptomycin). After 335 

counting, PBMC were stained with 5uM cell proliferation dye eFluor 670 (CPD; #65-336 

0840, Thermo Fisher). CPD labeled cells were plated at 2x105 PBMC per well in cRPMI 337 

+ 2ng/mL (10U/mL) of recombinant human IL-2 (Biolegend). For RBD stimulation, wells 338 

were incubated with 2.5ug/mL of RBD or media alone. For cytokine analysis, cultures 339 

were left unstimulated or were stimulated with 50ng/mL phorbol 12-mryistate 13-acetate 340 

(PMA; Sigma) and 1ug/mL of ionomycin (Sigma-Aldrich) 4 hours before harvest. All 341 

wells were provided 10ug/mL of brefeldin A (Sigma-Aldrich) and 1x dilution of monensin 342 

(GolgiStop; #554724 Becton Dickinson) to prevent cytokine secretion.  343 
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 344 

Staining of T cell subsets by flow cytometry:  PBMC were labeled with LIVE/DEAD 345 

fixable violet dye (L34955; Invitrogen), followed by surface antibody staining (CD4, 346 

Clone:RPA-T4; CD8, Clone:SK1; CD3, Clone:OKT3, CXCR5, clone:J252D4, 347 

Biolegend). After surface staining, cells were fixed and permeabilized using 348 

FOXP3/Transcription factor staining buffer set (#00-5523-00, Invitrogen) per 349 

manufacturer’s instructions. Fixed cells were stained for intracellular cytokines anti-IL-2 350 

(Clone:MQ1-17412, Biolegend) and anti-interferon gamma (Clone:4S.B3, Biolegend). 351 

Data were collected by flow cytometric analysis on a LSR II (BD Biosciences) cytometer 352 

and analyzed using FlowJo (BD Bioscience).  353 

 354 

Statistical Analysis: All comparisons were made using paired and unpaired t tests with 355 

Prism 9 (GraphPad). Where possible p values and r correlations are provided directly in 356 

figures. P values in grouped graphs represent unpaired, two-tailed T test. 357 

 358 
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 631 

Tables: 632 

Table 1: Investigative cohort of SARS-CoV-2 vaccinated patients with chronic 633 

lung disease 634 

 635 

  
Asthma COPD  ILD  Healthy 

Controls Total 

9 subjects 8 subjects 15 subjects 31 
subjects 

63 
subjects 

Age at Sample - average 
(range) 

58 (43-71) 64 (57-73) 62 (47-73) 50 (25-
72) 

56 (25-73) 

Female - number (%) 5 (56%) 5 (62%) 9 (60%) 14 (45%) 33 (52%) 
Male - number (%) 4 (44%) 3 (38%) 6 (40%) 17 (55%) 30 (48%) 
Days from last vaccination 
to sample - average 
(range) 

117 (87-
156) 

138 (112-
163) 

122 (84-144) 121 (14-
231) 

123 (14-
231) 

Immunosuppressants (%) 6 (66%) 4 (50%) 9 (60%) 0 (0%) 19 (30%) 
FEV-1 Pre-Bronch % 
Predicted 

76 (49-106) 
n=8 

63 (27-98) 
n=7 

77 (33-109) 
n=15 

n/a n/a 

FVC Pre-Bronch % 
Predicted 

78 (61-99) 
n=8 

81 (55-111) 
n=7 

75 (34-97) 
n=15 

n/a n/a 

FEV1/FVC Pre-Bronch % 
Predicted 

94 (78-109) 
n=8 

75 (48-101) 
n=7 

101 (88-115) 
n=15 

n/a n/a 

Meets GINA 4 criteria 3         
Meets GINA 5 criteria 3         

  636 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.25.23284971doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.25.23284971
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Figures:  637 

Figure 1 638 

  639 
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Figure 2 640 

 641 

642 
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Figure 3 643 
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Figure 4 645 

 646 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2023. ; https://doi.org/10.1101/2023.01.25.23284971doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.25.23284971
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

Figure 5 647 
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Figure Legends: 649 

Figure 1: Impaired serum antibody titers against SARS-CoV-2 spike RBD in a 650 

subset of patients with chronic lung disease after vaccination. (A) ELISA for serum 651 

IgG binding to SARS-CoV-2 RBD in healthy (black), ILD (green), asthma (red), and 652 

COPD (blue) patients 14-231 days post SARS-CoV-2 mRNA vaccination. Line 653 

represents simple linear regression for healthy subjects flanked by 95% confidence 654 

intervals. (B) Serum anti-RBD antibodies detected 75-175 days after vaccination of 655 

healthy and chronic lung disease patients using the in-house ELISA were compared to 656 

antibody titers against the SARS-CoV-2 spike protein S1 domain using QuantiVac 657 

ELISA (EUROIMMUN) IgG binding antibody units (BAU). Statistical analysis: p values in 658 

(A) represent unpaired, T test comparing titers taken 75-175 days after last vaccination.   659 

 660 

Figure 2: Decreased circulating RBD-reactive memory B cells in patients with 661 

chronic lung disease after vaccination compared to healthy controls. PBMC 662 

collected 14-175 days post vaccination. (A) Representative contour plots of circulating B 663 

cells from blood of patients pre- and post-SARS-CoV-2 vaccination. Gate represents 664 

dual RBD-tetramer binding B cells. (B) Graph represents the percentage of RBD+ B 665 

cells within the total circulating B cell pool of healthy (black), ILD (green), asthma (red) 666 

and COPD (blue) patients.  (C) Correlation of serum anti-RBD antibody titers and 667 

circulating RBD-binding B cells detected in healthy and chronic lung disease patients 668 

after SARS-CoV-2 vaccination. Lines represents best-fit simple linear regression with 669 

flanking lines demarcating 95% confidence intervals. (n=8-14; error bars represent +/- 670 

S.E.M) 671 
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 672 

Figure 3: Decreased circulating SARS-CoV-2 RBD-specific T cells in a subset of 673 

patients with chronic lung disease after vaccination. PBMC collected 75-220 days 674 

post vaccination. (A) Graph represents the percentage of CPD-low (divided) RBD-675 

specific CD8+ T cells within the total circulating CD8+ T cell populations after culture 676 

and stimulation with RBD-protein in healthy (black), ILD (green), asthma (red) and 677 

COPD (blue) patients. Numbers are normalized by subtracting CPD-low population in 678 

PBMC cultures that received no protein. (B) Graph represents the percentage of CPD-679 

low (divided) CD4+ T cells within the total circulating CD4+ T cell populations after 680 

culture and stimulation with RBD-protein in healthy patients and patients with chronic 681 

lung disease. Numbers are normalized by subtracting CPD-low population in PBMC 682 

cultures that received no protein. (C) Correlation of CPD-low (divided) CD4+ and CD8+ 683 

T cells in circulation in healthy (black), ILD (green), COPD (blue), and asthma (red) 684 

patients after SARS-CoV-2 vaccination. Central line represents best-fit simple linear 685 

regression; flanking lines demarcate 95% confidence intervals.  (D) Correlation between 686 

CPD-low (divided) CD8+ T cells in circulation and serum antibody titers against RBD in 687 

healthy (black), ILD (green), COPD (blue), and asthma (red) patients after SARS-CoV-2 688 

vaccination. Central solid line represents best-fit simple linear regression; flanking lines 689 

demarcate 95% confidence intervals. (E) Correlation between CPD-low (divided) CD4+ 690 

T cells in circulation and serum antibody titers against RBD in healthy (black), ILD 691 

(green), COPD (blue), and asthma (red) patients after SARS-CoV-2 vaccination. Central 692 

line represents best-fit simple linear regression; flanking lines demarcate 95% 693 

confidence intervals. (n=5-14; error bars represent +/- S.E.M)). 694 
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 695 

Figure 4: Impaired cytokine potential among SARS-CoV-2 RBD-specific T cells 696 

after vaccination of patients with chronic lung disease.  PBMC collected 75-220 697 

days post vaccination. (A) Graph represents the percentage of IFN-gamma and IL-2 698 

expressing CD8+ T cells within the total circulating CD8+ T cell population after 699 

stimulation with RBD-protein in healthy patients and patients with chronic lung disease. 700 

(B) Graph represents the percentage of IFN-gamma and IL-2 expressing CD8+ T cells 701 

within the total circulating CD8+ T cell population after stimulation with RBD-protein in 702 

healthy patients and patients with chronic lung disease. (C) Contour plots and graph 703 

identifying the percentage of IFN-gamma+ CPD-low (divided) CD8+ T cells within the 704 

total CD8+ T cells pool. Gate in contour plot identifies circulating CPD-low (divided) 705 

CD8+ T cells that express IFN-gamma. Dividing cells above background are only found 706 

in cultures stimulated with RBD. (D) Graph identifying the percentage of IL-2+ CPD-low 707 

(divided) CD8+ T cells within the total CD8+ T cells pool. Numbers in graph are 708 

normalized by subtracting CPD-low (dividing) population in PBMC cultures that received 709 

no protein.  (E) Contour plots and graph identifying the percentage of IFN-gamma+ 710 

CPD-low (divided) CD4+ T cells within the total CD4+ T cells pool after vaccination. 711 

Gate in contour plot identifies circulating CPD-low (divided) CD4+ T cells that express 712 

IFN-gamma. Notable CPDlow population that falls outside of gate represents RBD-713 

responsive T cells that are not expressing IFN-gamma. Numbers in graph are 714 

normalized by subtracting CPD-low (dividing) population in PBMC cultures that received 715 

no protein. (F) Graph identifying the percentage of IL-2+ CPD-low (divided) CD4+ T 716 

cells within the total CD4+ T cells pool. Numbers in graph are normalized by subtracting 717 
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CPD-low (dividing) population in PBMC cultures that received no protein. (G, H, I) 718 

Correlation between IFN-gamma expressing CPD-low (divided) CD4+ and CD8+ T cells 719 

(G), IFN-gamma expressing CPD-low (divided) CD8+ T cells and serum RBD antibody 720 

titers (H) and IFN-g expressing CPD-low (divided) CD4+ T cells and serum RBD 721 

antibody titers (I) in healthy (black), ILD (green), asthma (red), and COPD (blue) 722 

patients after SARS-CoV-2 vaccination. Central solid line represents best-fit simple 723 

linear regression; flanking lines demarcate 95% confidence intervals. (n=5-14; error 724 

bars represent +/- S.E.M)). 725 

 726 

Figure 5: Patients with chronic lung disease have heterogeneous Tfh cell 727 

responses after SARS-CoV-2 vaccination compared to healthy controls. PBMC 728 

collected 75-220 days post vaccination. (A) Contour plots from representative PBMC 729 

cultures from healthy and ILD vaccinated patients. Gate reveals the percentage of 730 

CXCR5+ Tfh cells among total circulating CD4+ T cells. (B) Representative contour plots 731 

of CXCR5+ Tfh cells from PBMC cultures of healthy and COPD vaccinated patients with 732 

or without stimulation with PMA/ionomycin. Gates reveal the percentage of CXCR5+ Tfh 733 

cells expressing one of or both IFN-g and IL-2 cytokines. Graphs show the percentage 734 

of cTfh in these distinct disease cohorts and healthy controls that express IFN-g or IL-2. 735 

(C) Graph shows the percentage of IFN-g expressing CPD-low (divided) CXCR5+ Tfh 736 

cells within the RBD-specific Tfh cell population in healthy patients and patients with 737 

chronic lung conditions. Numbers in graph are normalized by subtracting CPD-low 738 

(dividing) population in PBMC cultures that received no protein. (n=5-14; error bars 739 

represent +/- S.E.M). 740 
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