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Background: MicroRNAs (miRNA) play a key role in the regulation of gene expression

through the translational suppression and control of post-transcriptional modifications.

Aim: Previous studies demonstrated that miRNAs conduct the pathways involved in human

reproduction including maintenance of primordial germ cells (PGCs), spermatogenesis,

oocyte maturation, folliculogenesis and corpus luteum function. The association of miRNA

expression with infertility, polycystic ovary syndrome (PCOS), premature ovarian failure

(POF), and repeated implantation failure (RIF) was previously revealed. Furthermore, there

are evidences of the importance of miRNAs in embryonic development and implantation.

Piwi-interacting RNAs (piRNAs) and miRNAs play an important role in the post-

transcriptional regulatory processes of germ cells. Indeed, the investigation of small RNAs

including miRNAs and piRNAs increase our understanding of the mechanisms involved in

fertility. In this review, the current knowledge of microRNAs in embryogenesis and fertility

is discussed.

Conclusion: Further research is necessary to provide new insights into the application of

small RNAs in the diagnosis and therapeutic approaches to infertility.
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Introduction
MicroRNAs (miRNAs) are small fragments made of 20–24 nucleotides in single-

stranded noncoding ribonucleic acid structures, influencing the normal function of

eukaryotic cells from various organisms, including mammalian cells. Their sequence

homology is approximately 90% conserved among human, rat, and mouse.1 The

miRNAs are known to be transcribed by RNA polymerase II as primary stem-loop

structured miRNA molecules are processed through DROSHA enzyme and DGCR8

proteins cooperation to produce pre-miRNAs with hairpin structures and 60–70-

nucleotides length in the nucleus. Finally, the recent molecules are exported to the

cytoplasm by exportin 5 (XPO5), and processed by a ribonuclease III enzyme named

DICER1 that produces the mature 19–25 nucleotides miRNAs.2 The guide strand of

the mature miRNA in accompany with the miRNA-induced silencing complex

(miRISC), composed of DICER1 and Argonaute (AGO) proteins, directs the

miRISC for a sequence complementary binding to the target mRNAs.3 miRNA

plays an important role in almost every biochemical process in the body through post-

transcriptional regulation. Many of the miRNA templates are located in intronic

regions and are transcribed into a double strand pre-miRNA, often adopting

a hairpin conformation. The pre-miRNA is then cleaved by RNase III and unwound
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to form a single strand mature miRNA in the cytoplasm.4

This strand is eventually unwound at the 5ʹ end, the less

stable terminal sequence, and is subsequently packaged into

a RNA-induced silencing complex (RISC). RISC has cleav-

ing capacity and most often interacts with the noncoding

region of mRNA and is composed of Argonaut proteins.4

The recent studies on miRNAs and their new implied

role in the regulation of cellular processes revealed new

insight into the regulation of gene expression.5,6

miRNA molecules may induce negative regulation by

mRNA degeneration via deadenylation7,8 and/or transla-

tional repression by partial complementary mRNA anneal-

ing or direct messenger RNA (mRNA) cleavage1,9 in

addition to the positive effect on target gene promoters.10

There are up to 50,000 different miRNAs, each with hun-

dreds to thousands of potential target mRNAs, regulating

approximately 30% of protein-coding genes as predicted by

computational analysis in mammalian cells.11,12 Moreover,

there is evidence that miRNAs are associated with several

biological processes including cell growth, development,

and differentiation.13

MiRNAs are also associated with human diseases

including several types of cancers, viral infections, and

heart disease.1,13,14 Synthesis and degradation of miRNAs

have been proven to play an important role during oogen-

esis and embryonic development.15,16 Global miRNA

expression profiling has shown that miRNAs are inherited

maternally and almost 60% of them are being lost during the

maternal-zygotic transition from one to two cell stages.17,18

It seems that dynamic degradation and synthesis of

miRNAs coexist during the development of the preimplan-

tation mouse embryo with an overall elevation in miRNAs

toward the blastocyst stage.19 The animal studies have

proved that specific stages of mouse embryonic prenatal

development including E9.5, E10.5, and E11.5 indicated

different miRNA expression profiles with the identification

of new mammalian miRNAs.20

Expressionally, miRNA defects have been identified to

be associated with a number of human diseases,21 includ-

ing benign gynecological conditions, malignancies of

female reproductive organs and fertility disorders of the

human female reproductive tract.22

It is thought that the new advancements in miRNA

technology together with the new insights into the function

of miRNAs may enable the development of new biomar-

kers of female infertility. This can encompass biomarkers

of ovarian physiology, the quality of oocyte and embryos,

implantation potential of embryos as well as tissue recep-

tivity of the endometrium.

In this review we aim to utilize the current knowledge

on miRNAs and their involvement in female reproductive

potential from the beginning point in the early developmen-

tal stage to the time of embryo formation in order to identify

stage-specific biomarkers for the ovarian status in fertile or

infertile women, to find causes of impaired ovarian func-

tion, the role of miRNAs in infertility and the prediction of

Assisted Reproductive Technology (ART) results.

miRNAs and Uterine Function
It has been demonstrated that miRNAs mediate regulation

and expression of important genes of uterine during

implantation.23 For instance, cyclooxygenase-2 expres-

sion, which is pivotal for embryo implantation in the

mouse, is regulated following the transcription of two

miRNAs including ha-miR-199a, and hsa-miR-101a.24

Additionally, implantation failure has been remarkably

considered as a significant contributor to human infertility;

therefore, the aberrant expression of critical miRNAs dur-

ing implantation can also be a factor. To gain insight into

miRNA expression amongst human embryos development,

quantitative real-time PCR (qPCR) was performed for

a set of 12 miRNAs on individual human blastocysts.21

These miRNAs were specifically selected from recent

MICE model publications that proved their expression in

either mouse embryos4,17 or human embryonic stem cells:

RNUU48, hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7g,

hsa-miR-93,hsa-miR-92, hsa-miR-21, and hsa-miR-24.1

miRNAs and Primordial Germ Cell
Development
It is assumed that the development of human preimplantation

begins with primordial germ cells (PGCs) that singularly

emerge outside the genital ridge region and can be first

distinguished in the human embryo at about 3 weeks in the

yolk sac epithelium beside the base of developing allantois.25

The role of endometrial miRNAs on implantation is

beginning to be understood, but, the targeted mRNAs and

the regulatory networks induced by miRNAs in PGCs

remain unclear. Also, primordial germ cell has a vital role

in development/miscarriage. One of the most remarkable

functions of miRNAs in PGCs is identified as targeting the

epigenetics-related genes and DNA methylation process in

developing gonads.26 The related in vivo mouse models

have revealed the important role of miR-29b in female
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gonadal development, targeting epigenetics-related genes

including DNMT3A and DNMT3B and modulating methy-

lation of genomic DNA in PGCs.27 Previous studies indi-

cated the importance of miR-290-295 and miR-17-92

clusters during mouse germ cell development, through

remarkably abundant miRNAs in PGCs.26 These findings

were confirmed similarly in chicken with improved

DNMT3B expression in a female germ cell-specific aspect

and down-regulation of four miRNAs including miR-15c,

miR-29b, miR-383, and miR-222.28 Other researches on the

vertebrate species like Carassius auratus (goldfish)29 and

Danio rerio (zebrafish)30 have identified some different

miRNAs which may play an important role in development

and maintenance of PGCs. Although some miRNAs includ-

ing miR-29b and miR-430 demonstrated overlap between

different species, the structure of miRNA expression in

PGCs seems to be species-specific.31

miRNAs and Ovarian Development
PGCs migrate and colonize to become oogonia in the

forming fetal ovary. The oogonia undergo mitotic divi-

sions and proliferate broadly by up to 5–7 million cells

in humans. MiRNAs found in mouse ovarian cells have

been recently explored in ovarian cells, revealing their

influence on fundamental ovarian aspects like ovulation,

steroidogenesis, and corpus luteum development and

function.26 Three different miRNAs including miR-224,

miR-378, and miR-383 have been identified to play

a role in the regulation of aromatase expression during

follicle development. Furthermore, miR-21 was implicated

in promotion the follicular cell survival during ovulation.

Proangiogenic miRNAs including miR-17-5p and let-7b

proved to be crucial for normal development of the corpus

luteum after ovulation.32 Mouse animal studies showed

that ribonuclease III nominated Dicer1 is involved in the

process of folliculogenesis. Dicer1 protein is expressed in

oocytes and granulosa cells of follicles.33 To determine

miRNAs function in the development of mouse ovary, in

a new strategy, Dicer1 was deleted specifically in mouse

granulosa cells, which resulted in Dicer1 conditional

knockout (Cho) mouse. Dicer1 deletion caused signifi-

cantly miR-503 downregulation.31 This miRNA is more

abundant in mouse ovary tissue compared with other tis-

sues. Increasing the pool of primordial follicles hastened

recruitment of early follicle and therefore more degener-

ated follicles can be observed.

The ovarian niche is very crucial for the growth and

maturation of follicles/oocytes that may cause infertility.31

Oocyte-Cumulus Complex
Each oocyte grows and matures in the practical unit of the

ovary, the follicle enveloped and supported by granulosa

and theca cells, which demonstrate the important niche for

oocyte growth and maturation.34 Normal fertilization and

the development of an embryo depend on normal growth

and maturation of the oocyte which needs sufficient com-

munication between the oocyte and surrounding follicular

cells.34 Recent studies indicate that miRNAs are expressed

within the organs of the female reproductive tract where

they regulate necessary cellular pathways for proper func-

tion of these organs.35 While miRNAs represent a limited

and sensitive biological material, which is mostly not

available to researchers, their related data in human

oocytes are insufficient.36 A few studies on human oocytes

resulted from the in vitro fertilization have proved the

existence of miRNAs in these germ cells.31 A study

showed the dynamic changes of miRNAs from GV- to

MII-stages using miR-CURY LNA microarray platform

and quantitative RT-PCR, indicating the concordant

dynamic changes of miR-15a and miR-20a expression

during meiosis.37 Furthermore, increased concentration of

follicle-stimulating hormone (FSH) in the in vitro matura-

tion medium, had a reverse effect on the expression of

miR-15a and miR-20a, strengthening the evidence for the

role of these miRNAs in the oocyte maturation process

under FSH induction.37 Another study demonstrated that

human mature MII-stage oocytes have an abundance of

miR10A, miR100, and miR184 in which they differ from

the miRNAs profile in enclosing cumulus oophorus. The

cumulus oophorus are a group of cells surrounding the

oocytes in the ovarian follicle.38 Moreover, it is shown

that ovarian pathologies including polycystic ovary syn-

drome (PCOS) and premature ovarian failure (POF) or

primary ovarian insufficiency affect the miRNA expres-

sion in follicular fluid and plasma.39

Polycystic Ovary Syndrome (PCOS)
PCOS is a systematic disease defined by a set of symptoms

resulting from a hormonal imbalance in women and is the

most common endocrinopathy in women of reproductive

age, affecting reproduction performance and metabolic

process.40 Patients are diagnosed with anovulation, high

androgen levels, and several ovarian cysts detected by

ultrasound, low fertility, irregular or no menstrual periods,

obesity, heavy periods, pelvic pain, excess body and facial
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hair (hirsutism), acne and patches of thick and darker skin

as typical symptoms.40

Circulating miRNAs are observed in whole blood,

serum, plasma and the follicular fluid of PCOS patients

which provide potential biomarkers and a new diagnostic

tool for the PCOS.41 In PCOS, human follicular fluids

microarray profiling demonstrated the upregulation of

miR-9, miR18b, miR-32, miR-34c, miR-135a and down-

regulation of miR-132 and miR-320 between the PCOS

patients and normal groups of women.41

Premature Ovarian Failure (POF)
POF is an indication of the early severe ovarian failure

which is defined as an ovarian disorder of multifactorial

origin characterized by hypergonadotropism (e.g.,

increased FSH levels) and hypoestrogenism where no fol-

licles/oocytes are available to be fertilized in women under

the age of 40 years.31 Due to the stability of miRNAs in

body fluids, upregulation of miR-126, miR-202, miR-23a,

miR-146a, miR-139-3p, miR-125b-2, miR-654-5p, miR-

27a, miR-765, and miR-342-3p and downregulation of

miR-22-3p, let-7c, and miR-144 was identified in prema-

ture ovarian failure,31 thus giving rise to novel biomarkers

for ovarian function.42

Embryo, Development, and
Implantation
Human embryos have been found to secrete miRNAs

into culture media which were recognized as new bio-

markers for embryo development and implantation.43

miRNAs expression from culture media of 55 single-

embryo transfer cycles was tested using array-based RT-

PCR (or qPCR) analysis. The results demonstrated an

association between the expressions of identified

miRNA with pregnancy outcomes.44 Two miRNAs

including miR-191 and miR-372 were expressed speci-

fically in spent media after embryo culture.44 Other

miRNAs were identified in more concentrated status in

intracytoplasmic sperm insemination (ICSI) research

and day-5 media samples compared with regularly inse-

minated and day-4 samples, respectively.22

It was found that miRNA levels are associated with

some severe conditions. For instance, miR-191 was more

highly concentrated in media from aneuploid embryos,

while miR-372, miR-645, and miR-191 were more con-

centrated in media from failed in vitro fertilization cycles

without pregnancy.44

The Repeated Implantation Failure
(RIF)
RIF is one of the most noteworthy problems that may be

experienced in the in vitro fertilization program.45 Studies

on implantation miRNAs biomarkers may help clinicians

to predict pregnancy outcome and detect occult implanta-

tion deficiency. Thirteen different miRNAs have been

identified in RIF’s endometrial samples, in comparison to

normal ones, which putatively regulate the expression of

3800 genes.41 It was found that ten miRNAs were over-

expressed in RIF endometrial samples, including but not

limited to miR-23b, miR-99a, and miR-145.46

Endometriosis is out of uterine cavity formation of endo-

metrial tissues including glands and stroma. Endometriomas

are Endometrial cysts of the ovary which are known as cho-

colate cysts,47 in which the most effective treatment for the

disease is surgery due to endometriomas resistance to common

treatment methods.48 It is reported that approximately 16% of

reproductive age women undergoing hysterectomy showed

endometriosis,49 while up to 40% of women presenting infer-

tility revealed endometriosis.50 In comparison with eutopic

tissues, many mRNA transcripts are differentially regulated

in endometriotic.51 A study by Pan et al,52 indicated differen-

tial expression of 48miRNAs in amicroarray panel analysis,52

in which most of these miRNAs showed reduced expressions

in eutopic and ectopic tissues in affected women with endo-

metriosis in comparison to controls. Additionally, validated

microarray panel results of qRT-PCR, confirm dysregulation

of two important miRNAs miR-26a and miR-21 in eutopic

tissues compared with ectopic tissues.52 Some of infertility

associated miRNAs in females is summarized in Table 1.

miRNA, Spermatogenesis and Male
Fertility
miRNAs play critical roles in the regulation of gene

expression, especially at the post-transcriptional level.

They are expressed in a cell- or phase-specific manner

during spermatogenesis and have a crucial role in male

reproductive health (Figures 1 and 2). Consequently, dys-

regulation of miRNAs considers as a molecular basis for

male infertility and the aberrant expression patterns of

these molecules can be transferred to the offspring.

Molecular genetic abnormalities are very important in the

etiology of male infertility.,53 in which approximately 60-

75% of cases have idiopathic oligozoospermia and

azoospermia.54 Recent studies on clusters of small RNA

demonstrated the different expression patterns of small
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RNA molecules influence gene expression in the specific

process of spermatogenesis.47

Previous studies on miRNAs revealed that they regu-

late expression through interfering with mRNA transla-

tion. This finding was first identified in Caenorhabditis

elegans and further studies identified this role in several

other organisms including humans.19,55 Currently, miRNA

is proved to regulate the expression of approximately 60%

of protein-coding genes in the human genome. Since

September 2010, 1100 miRNAs have been sequenced on

the human genome, and that number is rapidly predicted to

grow in the coming years.20 It has been proven that each

chromosome, except the Y chromosome, contains miRNA

coding genes and X chromosome demonstrated signifi-

cantly more miRNA coding genes than other chromo-

somes which are specific to primates and exclusively

express in the epididymis with predicted target proteins

involved in morphogenesis of the epididymis, direct and

indirect regulation of immotile sperm with flagella moti-

lity, development of the lumen and maintenance of mature

sperm. The SPAG6 protein, sperm-associated antigen 6

that was found as an infertility protein, was also

a predicted target.56 These mechanisms of specific clusters

of miRNAs are found throughout the genome, and

especially on the X chromosome suggesting that small

RNA regulate stages of spermatogenesis at different

levels. Another study revealed that many miRNAs from

X chromosome templates are present in pachytene sper-

matocyte and the biogenesis of these miRNAs may cause

the meiotic sex chromosome inactivation escape (MSCI).

This study indicated that miRNA may play a role in

suppressing the sex-linked chromosomal transcription,

implicating small RNAs at different stages of spermato-

genesis like maturation.4 Some of the important small

RNAs associated with male reproduction and fertility are

summarized in Table 2.

piRNAs and Infertility
P-element Induced Wimpy testis (PIWI) proteins in complex

with PIWI-interacting RNA (piRNA) are a novel member of

small non-coding RNAs (ncRNAs) with approximately

24–32 nucleotides.57 piRNAs are expressed in the gonads,

suggesting a significant role in germline stem cell mainte-

nance including epigenetic and post-transcriptional gene

silencing of retrotransposon and other genetic elements in

germline cells, such as reproductive stem cell self-sustain-

ment, differentiation, meiosis, and spermatogenesis. PIWI

mutations in Drosophila, C. elegans, mice and Zebrafish

Table 1 List of miRNAs Expressed in Granulosa Cells, Oocytes and Ovaries

miRNAs Regulation Target Genes Functions Ref.

Granulosa cells

miR-10a;miR-105 miR-182: CyclinB1;TdT Involve in GC [45]

miR-23a Caspase-3 dependent

apoptosis pathway

XIAP;Caspase-3 Pro-apoptotic role [21]

miR-21 COL4A1 Regulate COL4A1 synthesis [41]

miR-125b Induced by

dihydrotestosterone-1 and

testosterone

BAK;BAX Suppression of proapoptotic [41]

Oocytes

miR-184;miR-10a

miR-100

- SMARCA5

NCOR2;

HOXA1

Oocyte reprogramming; Repression nuclear receptors;

Regulation of oocyte-specific gene expression

[10,27,30,60]

miR-20a;miR-15a miR-

602

miR-20a, miR-15a: dynamic

changes during meiosis

miR-15a: BCL-2

family;CDC25A

Regulation of cell division and cell growth [33]

microRNAs in Ovary

let-7d, let-7e, let-7g

has-mir-106b; has-mir

-142-3p; has-mir-146a

[19]
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caused gametogenic defects such as failure of germline

establishment, loss of germline stem cells, meiotic arrest

and blockage in spermiogenesis, leading to sterility.58

The PIWI family proteins are expressed predominantly

in the germline of various organisms and are highly con-

served during the evolutionary process.59,60 PIWI proteins

are indispensable for piRNA biogenesis and function.61

However, in humans, the actual involved mechanism is

not well understood.61 Recent studies have demonstrated

that piRNAs and PIWI proteins play vital roles in devel-

opments of germ cells and fertility,62 as mutations that

knockout either PIWI protein function or piRNA biogen-

esis, resulting in germ cell death, gonadal atrophy, and

finally sterility in invertebrates and vertebrates.63

PIWIL1/HIWI, PIWIL2/HILI, PIWIL3/HIWI3, and

PIWIL4/HIWI2 are four human PIWIs,57 while the mouse

genome only encodes three PIWI homologs including

Piwil1/Miwi, Piwil2/Mili, and Piwil4/Miwi2.64 The role

of piRNAs during spermatogenesis is confirmed by the

known functions of their partner, the PIWI proteins.65

Transposable DNA elements make up a fundamental

proportion of most eukaryotic genomes.66 As these ele-

ments are highly mutagenic, regulatory mechanisms are

required for their control. Previous studies on animal germ

cells have demonstrated a crucial function of the piRNA

pathway in silencing transposable elements (TEs)67,68

through epigenetic and the post-transcriptional level

mechanisms, protecting the integrity of the genome and

the development of gametes.69

In mice, the de novo DNA methylation of mobile genetic

elements is mediated by MILI and MIWI2, which are loaded

via transposon-derived piRNAs.70 MILI mutant/deficient

Figure 1 Mirnas Biogenesis Pathway. Data from Harchegani et al.53
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models disclose a loss of methylation at L1 (LINE-1)

retrotransposon,71 resulting in reactivation of transposable

elements that contribute tomeiotic arrest andmale infertility.66

Previous studies have shown that PIWI/piRNAs

complexes methylate DNA to silence repetitive ele-

ments, in male germline stem cells. In infertile males

with spermatogenic failure, hypermethylation in the pro-

moter regions of PIWIL2 has been consistent with the

repression of PIWIL2 due to hypermethylation, hypo-

methylation of LINE-1 sequences was also observed.66

Consistently, other findings demonstrated the functional

result of piRNA depletion is a depression of repetitive

elements.72–74

PIWI proteins and piRNAs expression patterns are

tightly regulated during spermatogenesis in mouse,75

including successful mitotic, meiotic, and post-meiotic

phases.76 MILI and MIWI2 mutant/deficient mice are

sterile due to impaired spermatogenesis caused by

meiotic arrest at the pachytene spermatocyte and early

prophase of meiosis-I,74,77 respectively. Moreover,

MIWI-null mice are infertile because of spermatogenic

arrest at the round spermatid stage without elongated

spermatids or mature spermatozoa.78 In contrast,

females with the deficiency in genes that are required

for piRNA biogenesis including PIWI proteins family,

exhibit normal oogenesis and fertility.79 The presence

miR-34a, miR-34b, 
miR-34c, miR-449, 
miR-18, miR-214, 
miR-34b-5p, miR-
184

PSPC

SSP

miR-471, miR-470, 
miR-463, miR-465, 
miR-743a, miR7-43b, 
miR-883, miR-880, 
miR-201, miR-547, 
miR-23b, miR-30c, 
miR-30d, miR-690, 
miR-133b, miR-202, 
miR-132, miR-1285, 
miR-431, miR-543, 
miR-17 family

SCs

miR-140-5p, miR-140-

Leydig cells

miR-34a, miR-
34b, miR-34c, 
miR-424, miR-322

miR-20, miR-21,miR34-c, 
miR-135a,miR-146a,miR-
182, miR183, miR-204, 
miR-465a-3p, miR-465b-
3p, miR-465c-3P, miR-
465c-5p, miR-544, miR-
106a, miR-224, miR-
221/222, miR-184, miR-
17-92 clusters, let7 family, 
miR-106b-25 clusters

SSC

SPG

SPs

RS

miR-122a, miR-
469, miR-184

Figure 2 The expression of relevant miRNAs in testicular cells. A large number of miRNAs are responsible for the normal function of reproductive organ and

spermatogenesis. They control all levels of spermatogenesis including 1-Leydig and Sertoli cells development, 2-spermatogonial stem cells formation and their differentiation

to 3-spermatogonia, 4-primary spermatocytes, 5-secondary spermatocytes, 6-round spermatids, and 7-mature sperm cells. Data from Harchegani et al.53

Abbreviations: SSCs indicates spermatogonial stem cells; SPG, spermatogonia; PSPC, primary spermatocytes; SSPC, secondary spermatocytes; RS, round spermatids; SPs,

sperm cells; SCs, sertoli cells; miRNAs, microRNAs.
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of piRNA genes that are exclusively expressed in the

ovary indicates the probable role of piRNAs in ovarian

function.75

In humans, piRNA expression is widely limited to

the adult testis and fetal ovary. Unlike chronological

age of adult testis and fetal ovary, germ cells in adult

testis and fetal ovaries are at similar stages of gameto-

genesis. The abundance of piRNAs in adult ovary and

fetal testis is nearly 25 fold lower compared to the fetal

ovary and adult testis. These differences suggest the

importance of appropriate levels of piRNAs for

fertility.75 However, alterations in piRNAs levels are

not the only contributors to male infertility, the sup-

porting proteins for piRNAs including MILI and

MIWI2 must also be at appropriate levels to warrant

normal spermatogenesis.

Table 2 A List of the Important Small RNA Molecules Related to Male Reproduction and Fertility

Small RNA Expression

Alterations in

Infertile to Fertile

Men

Target Gene Function of Target References

miR-17-92 E2F1 Regulation of Apoptosis [31]

miR-371,2,3 Oncogenic RAS and

active wild type p53

Apoptotic regulation and oncogenesis [31]

miR-34b,

miR-34c

NOTCH 1 Potential targets of these miRNAs are involved in

spermatogenesis process, apoptosis, cell proliferation,

differentiation, and testicular development

[75]

miR-100, let-

7b

ERα (estrogen receptor

α)

Germ cell proliferation [37]

miR-429, and

miR-7-1-3p

Rb1 and Pik3r3 Effects on cell cycle and apoptosis in spermatogenesis [18]

miR-141 Cbl, Tgfb2 Act as a negative regulator of many signal transduction

pathways

[18]

miR-122a TNP2 Participate in the removal of the nucleohistones and in the

initial condensation of the spermatid nucleus

[75]

miR-21, miR-

22

ERβ (estrogen receptor β) ERβ increase the proliferation of immature Sertoli cells [20]

miR-449a BCl-2 Spermatogonial apoptosis [8]

miR-1, miR-

181a, miR-

221 and miR-

9

DNA methyltransferase

3b (DNMT3b)

This methyltransferase is thought to function in de novo

methylation during early development and gametogenesis

[31]

miR-15b Isocitrate dehydrogenase

3 (NAD+) alpha (IDH3A)

Lower expression of IDH3A disrupts sperm motility by

altering sperm energy metabolism

[75]

miR-383 Growth arrest and DNA-

damage-inducible, gamma

(GADD45G)

Can induce apoptosis and inhibit cell growth in response to

stress shock

[31]

miR-145 SOX9 Required for Sertoli cell maturation and normal

spermatogenesis

[31]

hsa-miR

-196a-5p

HOX genes HOX clusters are groups of related transcription factor genes

crucial for numerous developmental programs in animals

[82]

Notes: Upward arrow: Increase; Downward arrow: Decrease.
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Conclusion
The miRNAs represent a great challenge in reproductive and

regenerative medicine for better understanding the preim-

plantation development in humans including PGCs,

gametes, female reproductive tissues, embryos, and embryo-

nic stem cells. Upcoming new knowledge can provide new

biomarkers and therapeutic targets and approaches for ferti-

lity and degenerative disorders in the future.

The miRNAs have indirect DNA methylation function.

Therefore, they can control transcriptional activity. This

indicates their role in genetic imprinting that may demon-

strate epigenetic patterns for embryonic development.

Recent surveys have revealed a strong role of epigenetic

changes in the regulation of the process of fertility and

spermatogenesis. It has been revealed that changes in the

epigenetic system could change the performance of impor-

tant genes/pathways in spermatogenesis or fertility. Thus,

future studies can explore the effect of small RNAmolecules

on the process of epigenetic modifications which not only

influences the individuals having the modifications but are

also transmitted to the next generation. Therefore, the small

RNAs contribution and regulation displayed in epigenetic

modifications can help further knowledge of the spermato-

genesis and associated infertility processes. Infertility has

been combated with Assisted Reproductive Techniques

(ART), in particular, thanks to extracting abnormal func-

tional sperm and fertilizing an oocyte via ICSI. Despite

ICSI which permits sperm to enter the oocytes for fertiliza-

tion, genetic factors that may be compromised and are still

being propagated to progeny through ART must be consid-

ered. Many sperm maturation steps directly correlate with

expression levels of certain small RNAs. Many of the spe-

cific roles of small RNAs are yet unknown, but the genes

and proteins that interact are new windows through which

their involvement can be understood.

Further research is required to comprehend the func-

tion of lncRNAs in reproductive disorders and this field is

likely to be a remarkable point in the coming years.

With the aid of novel technologies and searchable

databases, which includes ontology and bioinformatics

databases, lncRNAs can additionally give us an exquisite

outlook to analysis, prevent and manage some reproduc-

tive disorders.
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