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Abstract

Motivation: It is more and more common to perform multi-omics analyses to explore the genome at diverse levels
and not only at a single level. Through integrative statistical methods, multi-omics data have the power to reveal
new biological processes, potential biomarkers and subgroups in a cohort. Matrix factorization (MF) is an unsuper-
vised statistical method that allows a clustering of individuals, but also reveals relevant omics variables from the
various blocks.

Results: Here, we present PIntMF (Penalized Integrative Matrix Factorization), an MF model with sparsity, positivity
and equality constraints. To induce sparsity in the model, we used a classical Lasso penalization on variable and in-
dividual matrices. For the matrix of samples, sparsity helps in the clustering, while normalization (matching an
equality constraint) of inferred coefficients is added to improve interpretation. Moreover, we added an automatic
tuning of the sparsity parameters using the famous glmnet package. We also proposed three criteria to help the user
to choose the number of latent variables. PIntMF was compared with other state-of-the-art integrative methods
including feature selection techniques in both synthetic and real data. PIntMF succeeds in finding relevant clusters
as well as variables in two types of simulated data (correlated and uncorrelated). Next, PIntMF was applied to two
real datasets (Diet and cancer), and it revealed interpretable clusters linked to available clinical data. Our method
outperforms the existing ones on two criteria (clustering and variable selection). We show that PIntMF is an easy,
fast and powerful tool to extract patterns and cluster samples from multi-omics data.

Availability and implementation: An R package is available at https://github.com/mpierrejean/pintmf.

Contact: mpierrejean.pro@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction mutations can be modeled by a binary distribution, while RNAseq

The improvement of high-throughput biological technologies ena-
bles the production of various omics data such as genomic, tran-
scriptomic, epigenomic, proteomic and metabolomic data (Ritchie
et al., 2015; Yugi et al., 2016). The generation of these data allows
investigating biological processes in cancer or complex diseases. For
example, The Cancer Genome Atlas [TCGA (Network et al., 2012)]
has already produced numerous omics data for a set of 32 cancer
types (Vasaikar et al., 2018). Recently, other multi-omics studies on
complex diseases and single-cell data have been published (Bock
et al., 2016; Rowlands et al., 2014; Yang, 2020).

However, integrating omics data addresses several statistical chal-
lenges, such as dealing with a large number of variables, few samples
and data heterogeneity (Bersanelli ez al., 2016). Indeed, the statistical
distributions of omics data are very heterogeneous. For instance,
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data can be modeled by a Negative Binomial distribution and metabo-
lomic data by a Gaussian distribution. In addition, the omic block sizes
could vary from one hundred to one billion variables. Furthermore,
collecting several types of omics data from a single sample could be dif-
ficult due to the cost and access to the biological material.

Over the past decade, unsupervised integrative methods have
been developed to analyze multi-omics datasets and to identify po-
tential biomarkers and new classifications in complex diseases
(Cantini et al., 2020; Chauvel et al., 2020; Huang et al., 2017;
Pierre-Jean et al., 2020; Tini et al., 2019). Blocks of omics data can
be seen as matrices, and relevant information can be extracted using
dimension reduction methods, particularly, matrix factorization
(MF) methods (Sastry et al., 2020) and canonical correlation ana-
lysis (CCA) (Tenenhaus and Tenenhaus, 2011).
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CCA methods are used to integrate multi-omics data and aim to
maximize the correlation between omics datasets under certain con-
straints (Rodosthenous et al., 2020; Tenenhaus et al., 2014;
Tenenhaus and Tenenhaus, 2011).

Then, MF techniques infer two matrices when applied to a single
omic dataset: the first one describes the structure between variables
(e.g. genes, probes, regions) and the second one describes the struc-
ture between samples.

One famous MF method is the Non-Negative Matrix
Factorization [NMF (Lee and Seung, 1999)]. This method imple-
ments non-negativity constraints on the two inferred matrices. NMF
provides a way to explain the structure of data by providing variable
profiles (dictionary for each dimension). NMF also enables a classi-
fication of the samples thanks to the second matrix. The NMF is a
commonly applied method used for a single omic block to identify
disease subtypes in gene expression data (Burstein ez al., 2015) or re-
cently, in DNA methylation data (Reilly ez al., 2019).

More recently, extensions of MF have been developed to per-
form integrative analysis (Chalise et al., 2014; Chen and Zhang,
2018; Mo et al., 2013). MF extensions need to infer more than two
matrices: one matrix for each omic block is computed and one ma-
trix for samples.

MEF showed that it is a powerful technique to integrate heteroge-
neous data (Cantini et al., 2020; Chauvel et al., 2020; Pierre-Jean
et al., 2020). In our article, we propose a Penalized Integrative Matrix
Factorization method called PIntMF, to discover new patterns and a
new classification of a cohort. First, to add sparsity on the first
inferred matrix (corresponding to the variable blocks), we used a
common regularization technique: the Least Absolute Shrinkage and
Selection Operator [LASSO (Tibshirani, 1996)]. Moreover, the spars-
ity on the variable block helps to the interpretation of patterns that
drive the clustering of the samples. Then, sparsity, non-negativity and
equality constraints are added to the second matrix (corresponding to
the samples) to improve the interpretability of the clustering. The ori-
ginality is the mix of the constraints for the clustering of the samples
and the discovery of potential biomarkers.

In addition, we propose criteria to choose the number of latent
variables and to properly initialize the algorithm.

The performance of this new unsupervised model was evaluated
on both simulated and real data. First, we applied PIntMF on a
simulated framework introduced by our group in Pierre-Jean et al.
(2020) and on a simulated framework from Chung and Kang
(2019). We compared our method to several existing unsupervised
methods that perform both variable selection and clustering:
intNMF (Chalise and Fridley, 2017), SGCCA (Tenenhaus et al.,
2014), MoCluster (Meng et al., 2016), CIMLR (Ramazzotti ef al.,
2018) and iClusterPlus (Mo and Shen, 2018). Then, we applied the
model on a murine liver dataset (Williams et al., 2016) and glio-
blastoma cancer data from TCGA already used in Shen et al. (2012).

2 Materials and methods

2.1 Model description

In the following, A denotes a matrix, a is a vector and a is a scalar.
We consider K matrices Xj,...Xg as the input of each method.
Each matrix X}, is of size 7 X Jj, (n is the number of samples and ],
the number of variables for the block k). In this article, we propose
a model based on the matrix factorization method, i.e.:

X* ~ WHt (1)

where W denotes a common basis matrix and H* a specific coeffi-
cient matrix associated with the block k. W is of size 7 x P and H is
of size P x J. Therefore, the variable P is the number of latent varia-
bles in the model.

To ensure identifiability and improve interpretation of the
model, non-negativity and sparsity constraints are imposed on W [as
in intNMF model described in Chalise and Fridley (2017)]. W will
be used to cluster samples simultaneously across the K omics blocks.

On H*, a sparsity constraint is imposed to perform variable selection
simultaneously to the clustering of samples. Sparsity ensures a better
interpretation of the variables that drive the clustering of samples.
The model 1 can be extended to the following optimization
problem:

K
min XE _WHE R 4 2 lIHE| -
winin 2] 1+ Al

" (2)
Zuillwx'-lll
=1
s.t. W>0
k PoL e
where [[H*[|; = 3 > |yl
p=1j=1
2.2 Solving equation
The optimization problem 2 is not convex on W,Hy, ..., HX, but is

convex separately on each matrix. Consequently, it can be solved al-
ternatively on W, Hy, ..., HX until convergence.

Solve on W: In this step, each H is fixed and the problem 3 is
solved on W.

K n

miny_ [IX* — WHY [+ > pliwall; st W20 (3)

k=1 =1

All individuals are independent for the weights W when HF are
fixed. The problem for an individual 7 can be written as follows:

K
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Equation 4 is equivalent to
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The optimization problem described by 5 is a classical lasso
problem with a positivity constraint. It can be easily and fastly
solved by glmnet R package (Jerome et al., 2010).

Solve on H*: When W is fixed, each H* can be solved independ-
ently. In this section, to be more readable, the index k is removed
from the equations.

2 L
min Q(H) = min ||X — WHI[; + A[;]:Zl [yl (6)
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OH) = (x—vec(WH))" (x — vec(WH)) + Z|[h|,
= (x—(I; ® Wvec(H))" (x — (I; @ W)vec(H))
) _+Aalhl,
= (x—Wh)"(x — Wh) + 4|[h||,

where I is the identity matrix of size ] and W= I W
We can reformulate the problem as LASSO:

OH) =

4 will be optimized for each block k = 1,..., K.

As for W, we used the glmnet package to solve this problem.

Normalization We would like to consider W as a weight matrix.
To avoid problems of convergence or non-identifiability, the nor-
malization by the sum of weights for each row of W is added after
computing the matrix, i.e. each row is divided by its sum after each
step:

[[x = Wh[* + 2 |h|,

Wie
P

> Wip
p=1

7

Wie =

Therefore, the normalization corresponds to an equality
constraint.

2.3 Stopping criteria

The stopping criterion of the model is determined by the conver-
gence of the matrix W. The stability of the similarity of matrix W
between two iterations means that the model has converged there-
fore we stop the algorithm. The similarity between W~ and W* is
measured with the Adjusted Rand Index (ARI). The users have also
the possibility to define a maximum number of iterations to limit
the computing time of the algorithm.

2.4 Automatic tuning of sparsity parameters
For each block H* and W, we need to calibrate the sparsity param-
eter A and g;. The main advantage of glmnet package is the speed
(see Supplementary Fig. S9), and, it implements a cross validation
technique to choose the best 4 or u. PIntMF takes advantage of
glmnet to calibrate the penalty on each block. We use CV at each
step to find the optimal values for 1 and p. However, all y; have
been set to 1 in the following experiments (simulations and applica-
tions) to save computational time since the results were very similar.
Therefore, the only parameter that the user needs to tune is the
number of latent variables P.

2.5 Optimization of the algorithm

Initialization: Often in NMF algorithms (Lee and Seung, 1999), the
matrices are initialized by non-negative random values. We assess
four kinds of initialization for PIntMF (hierarchical clustering, ran-
dom, Similarity Network Fusion and Singular Values
Decomposition).

The best initialization is based on the SNF algorithm (Wang
et al., 2014) (Supplementary Fig. S1). This initialization has the ad-
vantage to take into account simultaneously the K blocks of the ana-
lysis. Therefore, for all the following analyses, SNF initialization
was used.

Computing optimization of H: Several algorithms to solve the
Lasso problem on H* were tested. glmnet is the fastest package
among them (Supplementary Fig. S9).

2.6 Clustering

In this article, all clusterings are obtained by applying a hierarchical
clustering with the ward distance (Ward Jr, 1963) on matrix W. For
the optimal number of clusters, P is chosen.

2.7 Criteria to choose the best model
In this section, we present three different criteria to choose the ap-
propriate number of latent variables (P).

Mean square error: The number of latent variables can be opti-
mized by looking at the curve of the Mean Square Error (MSE). In
this context, the mean square error (MSE) for each dataset k is

defined by:

Xt - WA

k
MSE =i

(8)
Then, the total MSE is then defined by averaging the different
MSEL:

MSEp =Y MSE}/K (9)
k

Percentage of variation explained (PVE): To measure the per-
formance of the method, we computed the Percentage of Variation
Explained (Nowak et al., 2011) defined by the following formula:

k k)12
_IXE = WH [

PVE(W,H*) =1 —
[IX* = X1 [

(10)

<k - .
where X is a vector containing the average profile of each
individual:

<k : . .
X, = z}[’zx', and 1, = (1,...,1) is a row-vector of size J.

Then, we computed the global PVE as the mean of the PVE on
the K blocks, i.e.:

1 & .
PVE =-S5 PVE(W,H 11
K;;:l (W, H") (11)

Cophenetic distance: We were inspired by Gaujoux and Seoighe
(2010) for the last criterion.

We wanted to assess if the distances in the tree (after hierarchical
clustering on W) accurately reflect the original distances.

One way is to compute the correlation between the cophenetic
distances and the original distance data generated by the dist() func-
tion on W (Sokal and Rohlf, 1962). The clustering is valid, if the
correlation between the two quantities is high. Note that, we use the
cophenetic function defined by Sneath ez al. (1973).

The cophenetic correlation usually decreases with the increase of
P values. Brunet et al. (2004) suggested choosing the smallest value
of P for which this coefficient starts decreasing.

3 Performance criteria

Two criteria are used to assess the performance of our method and
to compare it with others.

3.1 Adjusted Rand Index

On a simulated dataset and on well-known real datasets, it is pos-
sible to compute the similarity between the true and the inferred
classifications. We use the ARI as a criterion to evaluate the per-
formance of our method. The ARI (Rand, 1971) is equal to one
when the two classifications that are compared are totally similar
and zero or even negative if the classifications are completely
different.

3.2 Area under the ROC curve

On a simulated dataset, the variables that drive the subgroups are
known, and it is easy to compute false-positive and true-positive
rates. First, variables are ordered by their standard deviation (from
the highest to the lowest) computed on the H matrix to highlight the
largest differences between the P components and therefore the
most contributory to the clusters. To summarize the information of
these two quantities, we compute the area under the TPR-FPR curve
[area under the roc curve (AUROC)]. An AUROC equal to one
means that the method selects the variables with no error. An
AUROC under 0.50 means that false-positive variables are selected
before the true positive ones.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab786#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab786#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab786#supplementary-data

Penalized Matrix Factorization model for data integration

903

4 Results

4.1 Performance on simulated datasets
We assess the performance of PIntMF in two simulated frameworks
described below.

4.1.1 Simulations on independent datasets (non-correlated blocks)
The performance of PIntMF to cluster samples and to select relevant
variables was evaluated on simulated data described by Pierre-Jean
et al. (2020). The framework of these simulations is composed of
three blocks with three different types of distribution (Binary, Beta-
like and Gaussian) to simulate the heterogeneity of the integrative
omics data studies. Indeed, a binary distribution could match a mu-
tation (equal to 1 if the gene is mutated and 0 otherwise); a Beta-like
distribution could match DNA methylation data, and a Gaussian
distribution could match gene expression values.

Four unbalanced clusters (composed of 25, 20, 5 and 10 individ-
uals) have been simulated (Benchmarks 1-5). Datasets with 2, 3 and
4 balanced clusters have also been simulated (Benchmarks 6-8).
Each benchmark is simulated 50 times.

PIntMF was compared with several integrative unsupervised
methods (Pierre-Jean et al., 2020) that perform both clustering and
variable selection namely: intNMF (Chalise et al., 2014), SGCCA
(Tenenhaus et al., 2014), MoCluster (Meng et al., 2016),
iClusterPlus (Mo et al., 2013) and CIMLR (Ramazzotti et al.,
2018).

Clustering performance was evaluated using the ARI on simu-
lated data (see Section 3.1).

On the eight simulated benchmarks with various levels of signal-
to-noise ratio, PIntMF and MoCluster outperform the other meth-
ods with an ARI equal to 1 in most cases (Fig. 1).

The performance of variable selection is assessed using the
AUROCG:s after computing False Positive Rates (FPR) and True
Positive Rates (TPR) (see Section 3.2). The computation of the
AUROC shows that PIntMF performs as well as MoCluster on the
three types of data (Supplementary Table S2). Indeed, PIntMF
reaches either the first or the second-best AUROC for these simula-
tions. Moreover, the lowest AUROC is equal to 0.88, which means
that the method is both sensitive and specific.

4.1.2 Simulation based on real data (correlated blocks)

We evaluate the performance of PIntMF on a simulated framework
based on real cancer data developed by Chung and Kang (2019).
Indeed, the previous simulated framework does not simulate any
correlation between omics blocks.

OmicsSIMLA is a simulation tool for generating multi-omics
data with disease status. The tool simulates CpGs with methylation
proportions, RNA-seq read counts and normalized protein expres-
sion levels. Here, we simulated 50 datasets containing 50 cases (i.e.
short-term survival) and 50 controls (i.e. long-term survival), and
three omics blocks (RNAseq, DNA methylation and proteins). We
aimed to recover the two groups but also the different features that
drive overall survival using the simulated DNA methylation, expres-
sion and protein data. For two of the three blocks (expression and
DNA methylation), the variables simulated with a differential ex-
pression or methylation between the two groups are known. The
simulated data are described in Supplementary Materials
(Supplementary Section S6).

In these simulations, we also compared the performance of
PIntMF to other methods in terms of clustering and variable selec-
tion. First, CIMLR does not give any results on these simulations
(the algorithm does not converge). For all the other methods, the
ARl s equal to 1 (maximum value) for all 50 datasets.

Then, we compared the variable selection performance of
PIntMF, intNMF, iClusterPlus, MoCluster and SGCCA by comput-
ing the AUROC on expression and DNA methylation blocks only
(the protein block does not contain any variable simulated with dif-
ferential abundance, more details are given in Supplementary
Section S6).

DNA Methylation dataset: PIntMF and iclusterPlus outperform
the others with similar performances but the AUROC of iclusterPlus
is significantly higher. However, the AUROC of PIntMF is signifi-
cantly higher than for MoCluster, SGCCA and intNMF (Fig. 2).

Expression dataset: PIntMF is the best method with an AUROC
significantly higher than the other methods. However, all methods
achieve an AUROC higher than 0.92 (Fig. 2).

On these simulations, PIntMF gives similar results to
iClusterPlus, but with automatic tuning of parameters. Moreover,
the algorithm of PIntMF is faster than iClusterPlus.

PIntMF intNMF SGCCA
1.00'—T—————— = e Y ———— ———— —**—
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0.75+ ]
[ ]
0.50+ s *
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L ]
0.00- § $ .
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1-00'—|-TT—I-————I- — i = =
[ ] ° [ ]
0.75+ ') — T
L] L] '
0.50 * 0 s H
b4 °
0.25+ T
L] ® .
0.00+
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Fig. 1. ARI of PIntMF, intNMF, SGCCA, MoCluster, iClusterPlus and CIMLR methods on simulated datasets. B1: Reference, B2: More Gaussian noise, B3: More Gaussian
noise and more Binary noise, B4: More Beta noise and more Binary noise, BS: More Relevant variables, B6: 2 balanced clusters, B7: 3 balanced clusters, B8: 4 balanced

clusters
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Fig. 2. AUROC of PIntMF, MoCluster, SGCCA, iClusterPlus and intNMF for OmicsSIMLA simulations on (a) DNA methylation and (b) Gene expression blocks

4.1.3 Stability selection

Jackknife was performed to evaluate the stability of variable selec-
tion. To perform this technique, we run the model PIntMF on the
data without one sample at each step. Therefore, we obtain # data-
sets containing 7—1 individuals on which we apply the method.

The stability of the selected variables for Binary, Gaussian,
methylation and expression datasets seems to be strong
(Supplementary Fig. S10). For proteins and for beta-like data, the
bootstrap reveals that some selected variables are not stable, even
though it was expected for proteins since they were not simulated
with a differential expression between clusters. In the case where the
selection is not stable, the solution could be using jackknife to re-
move potential false-positive variables.

4.1.4 Summary

Our method PIntMF provides satisfying clustering and variable se-
lection both on correlated blocks (Simulation Framework 2) and on
non-correlated blocks (Simulation Framework 1). PIntMF is the
only method that performs well on all simulated settings. We con-
clude on these two frameworks of simulated data that PIntMF is a
fast and flexible tool.

4.2 Applications

In this section, we assess the performance of the PIntMF method on
real data by considering two applications. The first one is a dataset
from murine liver (Williams et al., 2016) under two different diets
already used in two previous comparison articles (Pierre-Jean et al.,
2020; Tini et al., 2019), and the objective is to recover the diets of
the mice (fat diet or chow diet). The second one is a glioblastoma
dataset from TCGA used by Shen et al. (2012) and the goal is to
find the tumor subtypes.

4.2.1 PIntMF highlights variables linked to phenotypes of samples
We analyzed the BXD cohort (composed of 64 samples) (Williams
et al., 2016); the mice were divided into two different environmental
conditions of diet: chow diet (CD) (6% kcal of fat) or high-fat diet
(HFD) (60% kcal of fat). Measurements have been made in the liv-
ers of the entire population at the transcriptome (35 554 variables),
the proteome (21 547 variables) and the metabolome (956 variables)
levels.

Therefore, we applied PIntMF to this dataset as well as intNMF,
MoCluster, SGCCA, iClusterPlus and CIMLR (Supplementary
Table S4).

PIntMF produces a perfect classification of the individuals for
this real dataset.

For this dataset, all criteria for the model selection were com-
puted (Supplementary Fig. S6), and two groups were selected for
further analysis.

PIntMF highlights interesting variables that seem to have differ-
ent abundance between the two groups CD and HFD (Fig. 3):
Vitamin E (C,9H500,), Cholesteryl (C36Hg,05), Mustard Oil
(C4H;sNS). Saa2 gene that codes for a protein involved in the HDL
complex seems to be differentially expressed between the two
groups. Then, the Cidea gene that is involved in the metabolism of
lipids and lipoproteins has a slightly different level of expression be-
tween the two groups. Finally, Cyp2b9 oxides steroids, fatty acids
and xenobiotics are less expressed in the high-fat diet group. To con-
clude, PIntMF succeeds well into recovering the correct classifica-
tion and relevant markers in all datasets.

4.2. 2 PIntMF reveals a new classification of non-annotated sam-
ples on TCGA dataset

In addition, we analyzed a subset of the glioblastoma dataset from
the cancer genome atlas (TCGA): the Glioblastoma study (2009)
used in (Shen ez al., 2012). The dataset contains three matrices: copy
number variation (1599 regions), DNA methylation (1515 CpGs)
and mRNA expression (1740 genes) in 55 samples. GBM samples
were classified into four subtypes (Classical: CL, Mesenchymal:
MES, Neural: NL and Proneural: PN). In addition, there are samples
with no subtype (NA). Using the PIntMF method, we highlight sam-
ples with no classification close to labeled samples. Looking at the
three criteria, the best number of latent variables seems to be five
(Supplementary Fig. S7). For example, the green cluster from
PIntMF matches a part of the CL subtype, and one sample labeled
as NA is in this green cluster. Then, the purple cluster from PIntMF
matches the PN subtype, and one sample labeled as NA can be clas-
sified within the PN subtype (Fig. 4a). Clusters 1 (red) and 2 (blue)
are more heterogenous. However, the red one is composed of NL
and NA labeled samples. The blue one is close to samples labeled as
PN.

We performed a survival analysis to identify a relation between
groups found by PIntMF and the survival rate (Fig. 4b). The sur-
vival test gives a significant P-value at 5% (P-value = 0.00013 with
log-rank test). The prognosis for the purple (4) group is better than
those of the red and green (1 and 3) groups and even better than the
orange and blue (2 and 5) groups. Note that, the PN subtype is split
into two groups (purple and blue) that have two very different sur-
vival curves.

The previous study (Shen er al., 2012) performed with the
iCluster method (Shen ez al., 2009) identified 3 subgroups with a
less significant P-value (0.01) than PIntMF for the survival differen-
ces between subgroups. Their Cluster 1 matches the PN group,
Cluster 2 matches the CL group and Cluster 3 is mostly composed
of the MES subtype. Authors do not give any information about the
samples with no subtypes.

H matrices exhibit various types of genomic profiles according
to the clusters (Fig. 4). For instance, the orange cluster (5) shows
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few alterations at the copy number variation level (Fig. 4c) but a
particular profile for DNA methylation and gene expression data
(Fig. 4e). The blue cluster (2) has a distinct pattern of expression
(Fig. 4d).

5 Discussion

Here, we present the PIntMF model that is capable of discovering
new subgroups from a cohort and potential new biomarkers from
several types of omics data. PIntMF is a matrix factorization model
with positivity and sparsity constraints (Lasso) on inferred matrices.
The method and all the scripts of this article are available in an R
package entitled PIntMF.

The main advantage of this method is the automatic tuning of
the lasso penalties for both variable and sample matrices. To opti-
mize the computational time of the algorithm (Supplementary Fig.
S9), we tried several algorithms to infer matrices H*. glmnet is very
fast compared with the other widely used algorithms (ncvreg, quad-
rupen and biglasso), therefore it was retained for all the analyses.
We also optimized the algorithm initialization using the SNF algo-
rithm (Wang et al., 2014). This initialization enables the algorithm
to provide the best clustering and the best percentage of explained
variation (Supplementary Fig. S1). Moreover, this initialization is
performed at the integrative level rather than on each individual
data block.

PIntMF automatically tunes the penalties on matrices H* and W,
without any user intervention, and we noticed that all the matrices
are quite sparse on real datasets (Fig. 4). The user needs to choose
only one parameter that is the number of latent variables. The last
parameter can be chosen by looking at the MSE, cophenetic coeffi-
cient and the PVE (Supplementary Figs S2-56). All these criteria are
implemented in the R package. For non-correlated data simulations,
only the cophenetic coefficient and the PVE allow selecting the cor-
rect number of latent variables.

It is still difficult to evaluate the performance of an integrative
method on simulations (Cantini ez al., 2020). The relationships be-
tween blocks of omics data are complex, often not well-known, and
the modeling of these links is complicated. To our knowledge, there
does not exist any reference dataset to assess performances in terms
of clustering and variable selection. Therefore, we evaluated the al-
gorithm on two different simulation frameworks (completely simu-
lated and based on real-data) and two real datasets. Furthermore,
we compared it with several other state-of-the-art integrative meth-
ods. We demonstrated, on the first simulated dataset (non-correlated
blocks), that PIntMF outperforms the other methods on both clus-
tering and variable selection. Indeed, on simulated data, the cluster-
ing from PIntMF makes few classification errors. PIntMF is also
more robust to heterogeneous data compared with the others: the
method performs as well on gaussian distributions as on binary or
beta distributions for the variable selection. On another simulated
framework based on real data (correlated blocks), we observed good
clustering performances (perfect classification) and variable selec-
tion levels (AUROC upper than 90%). When applying the algorithm
on two real datasets (BXD and TCGA data, Section 4.2), we demon-
strated that the method could deal with real datasets. In particular,
we found relevant subgroups but also interesting variables linked to
the clinical phenotypes (diet and overall survival).

A weakness of the model is that the convergence of the algorithm
to an optimal solution is not mathematically justified. Furthermore,
a significance test for each selected variable is not given due to the
use of the LASSO regression (Jain and Xu, 2021). Jackknife could
provide an idea of the confidence in the selected variables
(Supplementary Fig. S10). However, this approach is very time-
consuming when applied on large datasets.

The method could be further improved by dealing with missing
values. Missing values could be inside a block for a few variables.
These missing values could be imputed using the average of the
other correlated variables, by the values of the nearest neighbor or
by more complex methods as proposed by Voillet er al. (2016),
Gonzélez et al. (2009), Husson and Josse (2013) and Song et al.
(2020). Commonly, a whole block can also be missing for an

individual. In this case, the matrix W could be computed only on the
blocks that are present for this individual. Thanks to the W matrix,
we could deduce a new profile for this patient from the H* matrix
inferred with the other individuals.

We could also extend the scope of PIntMF by including prior in-
formation such as the genome structure. For instance, we could
force the algorithm to select the same genes in the DNA methylation
block and the expression block. A group Lasso penalty (Simon e al.,
2013) could be added to the proposed model to include such a prior.

To conclude, PIntMF is an easy and flexible method to integrate
omics data. It implements an original mixture of constraints on
matrices to cluster samples and discover new biomarkers. PIntMF
exhibits good performance in terms of classification or variable se-
lection in both simulation cases (correlated blocks or non-correlated
blocks). It outperforms the other tested methods since it is the only
one that works well in all our simulated frameworks. PIntMF is fast
and automatically tunes the penalty for each block to select an ap-
propriate number of variables (sparse matrices). Moreover, it pro-
vides a sparse matrix W to facilitate the clustering of samples.
Finally, we also provide three criteria namely MSE, PVE and cophe-
netic coefficient to choose the best number of latent variables.

The integration of several types of omics data using our method
could help in discovering potential new biomarkers even with a
small number of patients. Finally, it could also help to classify
patients with unknown phenotypes.

Data availability

An R package named PIntMF can be used to reproduce all simula-
tions and figures and is available online at https:/github.com/mpier
rejean/pintmf.
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