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Abstract: Resistance exercise transiently activates anabolic and catabolic systems in skeletal muscle.
Leucine-enriched essential amino acids (LEAAs) are reported to stimulate the muscle anabolic
response at a lower dose than whey protein. However, little is known regarding the effect of LEAA
supplementation on the resistance exercise-induced responses of the anabolic and catabolic systems.
Here, we conducted a randomized, double-blind, placebo-controlled, parallel-group comparison
trial to investigate the effect of LEAA supplementation on mechanistic target of rapamycin complex
1 (mTORC1), the ubiquitin–proteasome system and inflammatory cytokines after a single bout of
resistance exercise in young men. A total of 20 healthy young male subjects were supplemented with
either 5 g of LEAA or placebo, and then they performed 10 reps in three sets of leg extensions and leg
curls (70% one-repetition maximum). LEAA supplementation augmented the phosphorylation of
mTORSer2448 (+77.1%, p < 0.05), p70S6KThr389 (+1067.4%, p < 0.05), rpS6Ser240/244 (+171.3%, p < 0.05)
and 4EBP1Thr37/46 (+33.4%, p < 0.05) after resistance exercise. However, LEAA supplementation
did not change the response of the ubiquitinated proteins, MuRF-1 and Atrogin-1 expression.
Additionally, the mRNA expression of IL-1β and IL-6 did not change. These data indicated that
LEAA supplementation augments the effect of resistance exercise by enhancing mTORC1 signal
activation after exercise.

Keywords: LEAAs; resistance exercise; mTORC1; ubiquitin; inflammation

1. Introduction

Skeletal muscle mass is a major determinant of physical performance in humans. Resistance
training effectively increases skeletal muscle mass, and numerous nutritional interventions can be used
to augment the effect of exercise training [1–4]. One type of nutritional intervention is supplementation
with essential amino acids (EAAs, in particular, leucine). EAAs have a stimulatory effect on muscle
anabolism [5,6]. Several previous animal studies have reported that leucine supplementation effectively
attenuates skeletal muscle atrophy and/or muscle protein degradation induced by inflammation,
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disuse, and other factors [7,8]. Thus, EAAs can positively affect not only muscle anabolism but also
muscle catabolism.

Resistance exercise is known to transiently activate muscle protein synthesis, and repeated exercise
as training accumulates proteins, which leads to skeletal muscle hypertrophy [9,10]. Although the
detailed mechanisms are still unclear, the mechanistic target of the rapamycin complex (mTORC)
plays a role in these processes [11–13]. In particular, mTORC1 was reported to be crucial for skeletal
muscle hypertrophy induced by mechanical overload [14], and numerous studies reported the transient
activation of mTORC1 after resistance exercise in humans [15,16]. The muscle protein degradation
system also regulates skeletal muscle mass, and resistance exercise is known to increase muscle
protein degradation [9]. The ubiquitin–proteasome system is one of the major protein degradation
systems. In this system, damaged proteins are targeted by ubiquitination and degraded by the 26S
proteasome. A previous study reported that resistance exercise acutely increased the mRNA expression
of muscle RING-finger protein-1 (MuRF-1)—which is an E3 ubiquitin ligase and promotes protein
ubiquitination—in human skeletal muscle [17]. Given that contractile proteins in skeletal muscle,
including myosin heavy and light chains and actin, are degraded by this system [18–20], the attenuation
of the excessive activation of this process may further contribute to increased muscle mass.

EAAs are known to induce muscle anabolic responses, including mTORC1 activation [5,21,22].
Branched chain amino acids (BCAAs; leucine, isoleucine, and valine) stimulate the muscle anabolic
response more robustly than other EAAs, and leucine causes the most effective stimulation [23].
However, BCAAs were reported to stimulate mTORC1 signaling more effectively when taken with
other EAAs [24]. Based on this information, the intake of EAAs, including leucine at high levels,
effectively stimulates the muscle anabolic response, and previous studies reported that leucine-enriched
essential amino acids (LEAAs) stimulated the resistance exercise-induced muscle anabolic response in
older women at lower levels than whey protein (~30%) [25,26]. However, resistance exercise, especially
involving eccentric contraction, causes muscle trauma, and muscle injury is known to activate local
inflammation in muscle tissue [27,28]. Additionally, resistance exercise was reported to transiently
increase the transcription of inflammatory cytokines [29–31], and inflammation is known to enhance
proteolytic systems [32–35]. However, a previous study reported that the intake of BCAAs attenuated
the squat exercise-induced increase in serum myoglobin concentration, a marker of muscle damage,
in healthy young women [36]. Therefore, researchers proposed that LEAA supplementation not only
stimulates the muscle protein anabolic response, but also attenuates the protein degradative response
after resistance exercise. However, little is known regarding the effect of LEAA supplementation on
the anabolic response in young men, or the response in the degradation system and inflammation after
resistance exercise.

In the present study, we investigated the effect of LEAA supplementation on mTORC1,
the ubiquitin–proteasome system and inflammatory cytokines after a single bout of resistance
exercise in young men. We hypothesized that LEAA supplementation augments mTORC1
activation, and attenuates the increase in ubiquitin ligases and inflammatory cytokines induced
by resistance exercise.

2. Materials and Methods

2.1. Study Design

We performed a parallel-group comparison study between February and June 2019. A total of
24 subjects were recruited; however, 4 subjects dropped out during the study. Thus, the data for
20 subjects were used for the final analysis (10 in the placebo group and 10 in the LEAA group, see Table 1
for the subject demographics). The eligibility criteria were being male and between 20 and 40 years of
age. The following exclusion criteria were applied: allergies to soy; habitual resistance exercise training
(more than once a week); the habitual intake of protein or amino acid supplements; orthopedic disease
or injury in the leg; a history of cardiovascular disease or conditions; the current use of antithrombotic
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drugs; or other factors identified by the trial supervisor or the trial attending physician. The participants
refrained from intense physical activity in the week before the tests. Randomization and blinding
(to subjects and those assessing the outcomes) were performed in a random allocation sequence using
the envelope method with a 1:1 ratio. Misallocation of one subject in the intervention group was
identified after unblinding; however, all data were analyzed as initially randomized according to
the intention-to-treat principle. Before participating in the study, the subjects were informed of all
procedures and risks, and provided written, informed consent. This study was approved by the
Ethics Committee for Human Experiments at Ritsumeikan University (BKC-IRB-2018-058) and the
institutional review board of Ajinomoto Co., Inc. (No. 2018-016) and was conducted in accordance
with the Declaration of Helsinki. The trial was registered at http://www.umin.ac.jp/ctr/index.htm,
with the identifier UMIN000036068. The exercise regimen and data collection were performed at
Ritsumeikan University.

Table 1. Subject characteristics.

Placebo Leucine-Enriched Essential
Amino Acid (LEAA) p-Value (t-Test)

Age (years) 21.4 ± 1.3 21.8 ± 1.5 0.535
Height (cm) 172.5 ± 6.5 171.8 ± 5.8 0.782
Weight (kg) 64.4 ± 9.3 61.4 ± 5.0 0.377
BMI (kg/m2) 21.5 ± 1.9 20.9 ± 1.9 0.443

One-repetition
maximum (1-RM)

Leg Extension (kg) 118.8 ± 27.5 126.1 ± 15.7 0.475
Leg Curl (kg) 84.7 ± 21.2 85.4 ± 10.1 0.926

Values are expressed as the mean ± SD. No significant difference was observed.

2.2. Assessment of One-Repetition Maximum

The one-repetition maximum (1-RM) was assessed using the following weight-stack machines:
leg extension and leg curl (Life Fitness, Tokyo, Japan). The 1-RM tests were performed based on the
procedure recommended by the National Strength & Conditioning Association [37]. Briefly, after the
warm-up consisting of one set of 10 repetitions at a level of 40–60% of the estimated 1-RM, and three
repetitions at 60–80% 1-RM. Three to four subsequent attempts were performed with progressively
increasing weight until the participants failed. The participants took 3 min rests between each attempt.

2.3. Study Protocol

The subjects were fed a standard dinner (a boxed meal containing 18.6 g protein, 20.4 g fat,
and 120.2 g carbohydrate; the total energy was 758 kcal; consumed at home) and then fasted from
2000 h the previous day. On the morning of the study (0800 h), an indwelling needle was inserted
into the median vein in the forearm for venous blood sample collection (Figure 1). After preoperative
collection of a blood sample, the first muscle biopsy was obtained from the lateral portion of the
randomly selected vastus lateralis muscle. The muscle biopsy was performed using a Bergström muscle
biopsy needle (5 mm × 100 mm) under local anesthesia via injection of 1% lidocaine. The collected
muscle tissue was immediately rinsed with saline, trimmed, frozen in liquid nitrogen, and stored at
−80 ◦C until analysis. After the first collection of blood samples and biopsy, each subject ingested
LEAAs or a placebo with 150 mL of water according to their group (the amount of amino acids
contained in the LEAAs was 2.5 g and the compositions of the supplements are shown in Table 2).
Immediately after the ingestion, the subjects performed a bout of knee extension and knee flexion
resistance exercise (10 reps × three sets) at 70% of the predetermined 1-RM with a 3 min rest between
sets, on weight stack machines (Life Fitness, Rosemont, IL, USA). Immediately after the exercise bout,
each subject ingested the same supplement again. Seven more sets of blood samples were taken after
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the completion of the leg extension exercise (Ex), and again immediately and 15, 30, 45, 60 and 90 min
after the entire exercise bout. Two more sets of biopsies were taken 10 and 90 min after the exercise
bout from the other vastus lateralis muscle. The study schematic is outlined in Figure 1.

Figure 1. Schematic diagram of the experiment. Resistance exercise (RE) consists of 10 reps × three sets
of leg extension and leg flexion at 70% of the one-repetition maximum. Subjects performed three sets of
leg extension and then performed three sets of leg flexion. Blood sampling for the resistance exercise
was taken during the switching of exercise events. Biopsies at rest and after exercise were taken from
different legs.

Table 2. Composition of LEAAs and placebo taken per time.

LEAA (g) Placebo (g)

l-Leucine 1.00
l-Isoleucine 0.27
l-Valine 0.28
l-Threonine 0.23
l-Methionine 0.08
l-Histidine

hydrochloride 0.04

l-Lysine hydrochloride 0.42
l-Tryptophan 0.02
l-Phenylalanine 0.17

Maltitol 0.08 2.69
Excipient and Perfume 0.35 0.25

Total 2.94 2.94

Amino acids were replaced with maltitol in the placebo.

2.4. Blood Insulin, Glucose, Lactate and Amino Acid Concentrations

The collected blood samples were centrifuged at 1.710× g for 10 min at 4 ◦C, and then serum,
plasma and protein-free samples were obtained and stored at −4 ◦C until analysis. The serum
glucose, serum insulin and lactate in the protein-free samples were measured in a clinical laboratory
(SRL, Inc., Tokyo, Japan). The plasma amino acid concentrations were analyzed using liquid
chromatography–electrospray ionization mass spectrometry (UF-Amino Station, Shimadzu, Kyoto,
Japan) followed by precolumn derivatization with APDSTAG® (Fujifilm Wako Pure Chemicals, Osaka,
Japan) [38,39].

2.5. Western Blotting

The vastus lateralis muscle samples were homogenized and analyzed as described previously,
with slight modifications [40]. Briefly, the muscle samples were homogenized in RIPA buffer
(Cell Signaling Technology (CST), Danvers, MA, USA) containing a cOmplete Mini protease inhibitor
cocktail and PhosSTOP phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA).
The homogenates were then centrifuged at 10,000× g for 10 min at 4 ◦C, and the supernatants
were collected. After determination of the protein concentrations, the samples were diluted in 3 × Blue
Loading Buffer (CST) and denatured at 95 ◦C for 5 min. Then, 10 µg protein was separated on 7.5%,
10% or 12% TGX gels (Bio-Rad, Hercules, CA, USA), and subsequently transferred to polyvinylidene
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difluoride membranes. After the membranes were blocked with 5% skim milk in Tris-buffered saline
with 0.1% Tween 20 (TBST) for 1 h at room temperature, they were incubated overnight at 4 ◦C with
the following primary antibodies: phospho-Akt (Ser473, cat#9275, CST), total Akt (cat#4691, CST),
phospho-mTOR (Ser2448, cat#2971, CST), total mTOR (cat#2983, CST), phospho-p70S6K (Thr389,
cat#9234, CST), total p70S6K (cat#2708, CST), phospho-rpS6 (Ser240/244, cat#2215, CST), total rpS6
(cat#2217, CST), phospho-4EBP1 (Thr37/46, cat#9459, CST), total 4EBP1 (cat#9644, CST), phospho-eEF2
(Thr56, cat#2331, CST), total-eEF2 (cat#2332, CST), ubiquitinated proteins (cat#3936, CST), MuRF-1
(ab172479, Abcam, Cambridge, UK) and Atrogin-1 (ab168372, Abcam). The membranes were then
incubated for 1 h with the appropriate secondary antibodies at room temperature and visualized
using chemiluminescence (Immobilon Forte Western HRP substrate, Millipore, CA, USA). The bands
were detected with an LAS 4000 system (GE Healthcare, Little Chalfont, UK). Ponceau S staining was
performed to verify equal loading between lanes and for normalization. The band intensities were
quantified with ImageJ software (National Institutes of Health, Bethesda, MD, USA).

2.6. RNA Extraction and Real-Time qPCR

The total RNA was extracted from muscle samples with ISOGEN II (Nippon Gene, Toyama,
Japan) according to the manufacturer’s instructions. The RNA concentrations were determined
using a NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA), and 1.0 µg of total RNA
was reverse-transcribed into cDNA using ReverTra Ace (Toyobo Co., Ltd., Osaka, Japan). The gene
expression levels of MurF-1 (Hs00822397_m1), Atrogin-1 (Hs01041408_m1), FoxO3a (Hs00818121_m1),
IL-6 (Hs00174131_m1), IL-1beta (Hs01555410_m1) and GAPDH (Hs02758991_g1) were quantified by
TaqMan Gene Expression Assays with a 7500 Fast Sequence Detection System (Applied Biosystems,
Waltham, MA, USA). The evaluation of mRNA was performed as an exploratory analysis based upon
the results of protein kinetics. For confirmation of the evidence, the samples were reblinded to those
assessing the outcome by staff not involved in the trial before analysis.

2.7. Statistical Analysis

Previous studies examining the effect of LEAA intake on muscle protein synthesis included n = 8
for each group. Referring to these reports and considering the possibility of dropout, we recruited 12
participants per group [25,26].

For comparison of the items in subject characteristics, a t-test was used. For the determination
of the effect of exercise and LEAA intake on each variable, time-dependent changes against baseline
values within each treatment group were evaluated using Dunnett’s test. For the analysis of the effect
of LEAA supplementation, the significance of the differences between two treatment groups at each
time point was evaluated by ANCOVA adjusted for baseline values. All values are expressed as the
mean ± SD. Statistical significance was indicated by p < 0.05.

3. Results

3.1. Blood Insulin, Lactate and Glucose Concentrations

The time-dependent changes in blood insulin, lactate and glucose concentrations are shown
in Table 3. In the placebo group, the blood glucose concentration increased between Ex and 0 min
post-exercise in the placebo group (p < 0.001, peaking at 98.5 ± 6.7 mg/dL), and that in the LEAA
group increased at Ex (p < 0.01, peaking at 98.6 ± 5.5 mg/dL). However, no significant difference was
observed between the groups at each time point (Figure 2A). The blood insulin concentration in the
placebo group increased between Ex and 30 min post-exercise (p < 0.05, peaking at 9.7 ± 5.6 µIU/mL).
The blood insulin concentration in the LEAA group increased between Ex and 45 min post-exercise
(p < 0.05, peaking at 15.2 ± 8.4 µIU/mL) and was also significantly higher than that of the placebo group
at 0-90 min post-exercise (p < 0.05, Figure 2B). The blood lactate concentrations increased between Ex
and approximately 45 min post-exercise (p < 0.01, peaking at 70.5 ± 17.6 mg/dL) in the placebo group,
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and that in the LEAA group increased between Ex and approximately 30 min post-exercise (p < 0.01,
72.0 ± 33.9 mg/dL). However, no significant difference was observed between the groups at each time
point (Figure 2C).

Table 3. Time-dependent changes in the blood parameters.

Item
Placebo LEAA

Ex P 0 P 15 P 30 P 45 P 60 P 90 Ex P 0 P 15 P 30 P 45 P 60 P 90

Glucose ↑ *** ↑ *** → → → → → ↑ ** → → → → → →

Insulin ↑ * ↑ ** ↑ * ↑ * → → → ↑ *** ↑ *** ↑ *** ↑ ** ↑* → →

Lactate ↑ *** ↑ *** ↑ *** ↑ *** ↑ ** → → ↑ *** ↑ *** ↑ *** ↑ ** → → →

Leucine ↓ ** ↓ *** ↓ *** ↓ *** ↓ *** ↓ *** ↓ *** → ↑ ** ↑ *** ↑ *** ↑ *** ↑ *** →

Isoleucine → ↓ *** ↓ *** ↓ *** ↓ *** ↓ *** ↓ *** → ↑ ** ↑ * ↑ *** ↑ *** → →

Valine ↓ * ↓ *** ↓ *** ↓ *** ↓ *** ↓ *** ↓ *** → ↑ * ↑ * ↑ *** ↑ *** → →

Total
EAA → ↓ *** ↓ *** ↓ *** ↓ *** ↓ *** ↓ *** → ↑ *** ↑ ** ↑ *** ↑ *** ↑ *** →

Arrows pointing up and down indicate increases and decreases in the pretreatment values in each group. Horizontal
arrows indicate unchanged values from the pretreatment values in each group. Ex and P 0-P 90 indicate sampling
timepoints taken after the completion of leg extension and 0-90 min post-exercise, respectively. The data were
analyzed using Dunnett’s test. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. pretreatment for each group.

Figure 2. The effect of LEAA supplementation on blood glucose, insulin, and lactate concentrations
after a single bout of resistance exercise. (A) Blood glucose, (B) blood insulin and (C) blood lactate.
Data are expressed as the mean ± SD. The data were analyzed using ANCOVA adjusted for baseline
values. * p < 0.05, ** p < 0.01 vs. the placebo group at the same time point.

3.2. Plasma BCAAs and Total EAA Concentrations

Time-dependent changes in the plasma BCAAs and total EAA concentrations are shown in
Table 3. In the placebo group, the plasma leucine concentration decreased slightly between Ex and
approximately 90 min post-exercise (p < 0.01, lowest value at 106.6 ± 11.7 µM). The plasma leucine
concentration in the LEAA group increased between 0 and approximately 60 min post-exercise (p < 0.01,
peaking at 339.5 ± 116.9 µM) and was also significantly higher than that in the placebo group at
Ex-90 min post-exercise (p < 0.01, Figure 3A). The plasma isoleucine concentration in the placebo
group decreased slightly between 0 and approximately 90 min post-exercise (p < 0.001, bottoming
at 53.6 ± 4.9 µM). The plasma isoleucine concentration in the LEAA group increased between 0
and approximately 45 min post-exercise (p < 0.01, peaking at 115.0 ± 33.7 µM) and was significantly
higher than that in the placebo group at Ex-90 min post-exercise (p < 0.05, Figure 3B). The plasma
valine concentration in the placebo group decreased slightly between Ex and approximately 90 min
post-exercise (p < 0.05, bottoming at 198.7 ± 22.4 µM). The plasma valine concentration in the LEAA
group increased between 0 and approximately 45 min post-exercise (p < 0.05, peaking at 298.7 ±
50.6 µM) and was significantly higher than that in the placebo group at Ex-90 min post-exercise (p < 0.05,
Figure 3C). The plasma total EAA concentration in the placebo group decreased slightly between
0 and approximately 90 min post-exercise (p < 0.001, lowest level at 892.5 ± 57.5 µM). The plasma
EAA concentration in the LEAA group increased between 0 and approximately 60 min post-exercise
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(p < 0.01, peaking at 1404.4 ± 273.9 µM) and was significantly higher than that in the placebo group at
Ex-90 min post-exercise (p < 0.05, Figure 3D).

Figure 3. The effect of LEAA supplementation on amino acid concentrations after a single bout of
resistance exercise. (A) Leucine, (B) isoleucine, (C) valine and (D) the total EAAs. The data were
analyzed using ANCOVA adjusted for baseline values. The data are expressed as the mean ± SD.
* p < 0.05, ** p < 0.01 vs. placebo group at the same time point.

3.3. mTORC1 Signaling

The time-dependent changes in mTORC1 signaling factors are shown in Table 4. In the placebo
group, the phosphorylation of AktSer473 increased at 10 min post-exercise (p < 0.001), and no significant
difference was observed between the groups at each time point (Figure 4A). The phosphorylation
level of mTORSer2448 did not change from the pre-exercise level in the placebo group, however,
in the LEAA group, this level was significantly higher than that in the placebo group at 10 and
90 min post-exercise (p = 0.012 and p = 0.035, respectively, Figure 4B). The placebo group showed a
tendency toward increased phosphorylation of p70S6KThr389 at 90 min post-exercise (p = 0.051), and the
phosphorylation of p70S6KThr389 in the LEAA group was significantly higher than that in the placebo
group at 10 min post-exercise (p = 0.020, Figure 4C). Similarly, the phosphorylation of rpS6Ser240/244

showed a significant increase at 90 min post-exercise in the placebo group (p = 0.045), and, in the LEAA
group, this phosphorylation showed an increased trend at 10 min and was significantly higher at 90 min
post-exercise than in the placebo group (p = 0.061 and p = 0.045, respectively, Figure 4D). The placebo
group showed a tendency toward decreased phosphorylation of 4EBP1Thr37/46 at 10 min post-exercise
(p = 0.096), while in the LEAA group at 90 min post-exercise, this phosphorylation was significantly
higher than that in the placebo group (p = 0.015, Figure 4E). The placebo group showed no significant
time-dependent change in the phosphorylation of eEF2Thr56. Additionally, no significant difference
was observed between the placebo and LEAA groups at 10 and 90 min post-exercise (Figure 4F).
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Table 4. Time-dependent changes in muscle parameters.

Placebo LEAA

Post 10 Post 90 Post 10 Post 90

Protein
Content/Phosphorylation

P/T Akt ↑ *** → ↑ *** ↑ **
P/T mTOR → → ↑ * ↑ ***
P/T p70S6K → ↑

† → ↑ ***
P/T rpS6 → ↑ * → ↑ ***

P/T 4EBP1 ↓
† → → →

P/T eEF2 → → → →

Ubiquitinated
Proteins → → → →

MuRF-1 → → → →

Atrogin-1 → → → →

mRNA Expression

murf-1 → ↑ *** ↑ ** ↑ ***
atrogin-1 → ↑ * ↑ * ↑

†

foxo3a ↑ ** ↑ *** ↑ ** ↑ ***
il-1beta → ↑ *** → ↑ **

il-6 → ↑ ** → ↑ **

Arrows pointing up and down indicate increases and decreases in the pretreatment values in each group. Horizontal
arrows indicate no change from the pretreatment values in each group. The items written in italic indicate changes
in the mRNA. The data were analyzed using Dunnett’s test. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the
pretreatment values for each group.

Figure 4. The phosphorylation of proteins in mTORC1 signaling. (A) Akt, (B) mTOR, (C) p70S6K,
(D) rpS6, (E) 4EBP1, (F) eEF2 and (G) the representative bands. The data were analyzed using ANCOVA
adjusted for baseline values. The data are expressed relative to the pretreatment condition in the
placebo group as the mean ± SD. * p < 0.05 vs. the placebo group at the same time point.

3.4. Ubiquitin–Proteasome System-Related Factors

The time-dependent changes in the ubiquitin–proteasome system-related factors are shown in
Table 4. The expression of ubiquitinated proteins and the MuRF-1 and Atrogin-1 proteins in the placebo
group showed no significant change after resistance exercise. Additionally, no significant difference
was observed between the placebo and LEAA groups at each time point (Figure 5A–C). However,
the mRNA expression of MuRF-1 and Atrogin-1 increased in the placebo group at 90 min post-exercise
(p < 0.001 and p = 0.024, respectively), but no significant difference between the groups was observed
at each time point for either factor (Figure 5E,F). The FoxO3a mRNA expression was increased in the
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placebo group at 10 and 90 min post-exercise (p < 0.001), but no significant difference was observed at
each time point between the groups (Figure 5G).

Figure 5. The protein and mRNA expression of factors in the ubiquitin–proteasome system.
The expression of (A) ubiquitinated proteins, (B) MuRF-1, (C) Atrogin-1, and (D) the representative
bands. The mRNA expression of (E) MuRF-1, (F) Atrogin-1, and (G) FoxO3a. The data were analyzed
using ANCOVA adjusted for baseline values. The data are expressed relative to the pretreatment
conditions in the placebo group as the mean ± SD. No significant difference was observed between the
groups at each time point.

3.5. Inflammatory Cytokines

The time-dependent changes in the mRNA expression of IL-6 and IL-1β are shown in Table 4.
The mRNA expression of both IL-6 and IL-1β increased at 90 min post-exercise in the placebo group
(p < 0.001 and p < 0.01, respectively), but no significant difference was observed between the groups at
each time point (Figure 6A,B).

Figure 6. The mRNA expression of inflammatory cytokines. The mRNA expression of (A) IL-6 and (B)
IL-1β. The data are expressed relative to the pretreatment condition in the placebo group as the mean
± SD. The data were analyzed using ANCOVA adjusted for baseline values. No significant difference
was observed between the groups at each time point.
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4. Discussion

We investigated the effect of LEAA supplementation on the acute response to resistance exercise.
As previously reported, a single bout of resistance exercise activated mTORC1 signaling, increased the
expression of genes involved in the ubiquitin–proteasome system, and evoked inflammatory responses
in the present study. Here, we further demonstrated that LEAA supplementation (i) augmented
resistance exercise-induced activation of mTORC1 signaling, (ii) did not attenuate the increase in
genes involved in the ubiquitin–proteasome system, and (iii) did not attenuate the increase in the
mRNA expression of inflammatory cytokines induced by a single bout of resistance exercise. These
observations suggest that LEAA supplementation augments the activation of the muscle anabolic
response, but does not augment/attenuate the muscle catabolic response after resistance exercise.

The resistance exercise protocol composed of 10 reps in three sets at an intensity of 70% 1-RM
is known to induce muscle hypertrophy when it is performed as training in men [41]. As expected,
this exercise protocol also induced mTORC1 activation in the vastus lateralis muscle in the present
study. In addition, the amount of LEAA taken in the present study was 5 g, the net content of leucine
was 2 g, and the concentration of leucine in the plasma reached more than 300 µM. The threshold of the
leucine concentration for muscle anabolism was approximately 250–300 µM, which stimulates muscle
protein synthesis [42]. These facts indicated that the quantity of LEAAs used in the present study was
sufficient to augment the effect of resistance exercise on the anabolic response.

Consistent with previous studies [17,31,43], a single bout of resistance exercise increased the
MuRF-1 mRNA expression. Additionally, we observed the elevation of FoxO3a mRNA expression,
which was not observed in a previous study that used a similar exercise protocol [31]. The explanation
for this discrepancy is currently unclear; however, it may be due to differences in the contraction
mode (concentric only vs. concentric and eccentric). This issue should be elucidated in a future
study. We expected the inhibitory effect of LEAAs on the ubiquitin–proteasome system after resistance
exercise. However, LEAA supplementation did not show any significant effect on MuRF-1, Atrogin-1,
or FoxO3a in the present study. A previous study reported that an intake of 85 mg of BCAAs/kg body
weight (45% leucine, 30% valine, and 25% isoleucine) prevented the increase in the MuRF-1 protein
and Atrogin-1 mRNA levels 3 h after a single bout of resistance exercise composed of a single leg
press [44]. In the same study, the participants ingested BCAAs five separate times, from the resting
period to 45 min post-exercise, and the expressions of MuRF-1 and Atrogin-1 were observed at 3 h
post-exercise. Therefore, a longer observation period might be needed to observe changes in the
expression of MuRF-1 and Atrogin-1. Our results suggest that the intake of 5 g of LEAAs does not
suppress the ubiquitin–proteasome system after a single bout of resistance exercise in young men
within 90 min post-exercise.

Consistent with previous studies [29–31], a single bout of resistance exercise evoked acute
inflammatory responses, as indicated by the increase in the mRNA expression of IL-1β and IL-6 in the
present study. EAAs were reported to attenuate inflammatory responses after high-intensity exercise
or training. Matsumoto et al. reported that BCAA supplementation (5 g valine, 10 g leucine and
5 g isoleucine, for each training day) attenuated the increase in plasma creatine kinase concentration
after 3 days of running 12–40 km in humans [45]. Kato et al. reported that LEAA intake (1 g/kg,
same composition as the present study, leucine intake was 0.12–0.16 g/day) attenuated muscle injury
in rat skeletal muscle after 50 eccentric contractions [46]. As inflammation is one of the secondary
phenomena of muscle injury, we expected an anti-inflammatory effect of LEAA supplementation.
However, an anti-inflammatory effect of LEAAs was not observed in the present study. Recently,
Rowlands et al. investigated the effect of protein–leucine–carbohydrate–fat ingestion (70/15/180/30 g,
23/5/180/30 g, or 0/0/274/30 g) on the regenerative inflammo-myogenic transcriptome in skeletal muscle
following a 100 min cycle exercise [47]. In the previous study, transcriptome and bioinformatic analyses
indicated the attenuation of IL-6 gene expression and predicted attenuation of IL-6 and IL-1β activation
at 240 min after exercise, but not by 30 min after exercise [47]. These findings indicated that LEAAs
have difficulty exerting anti-inflammatory effects in the early phase after a single bout of resistance
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exercise. Analysis of the mRNA expression of inflammatory cytokines at later phases after a single
bout of resistance exercise would be useful to determine the presence/absence of an anti-inflammatory
effect of LEAA supplementation.

Growing evidence demonstrated the effect of leucine and EAAs on the muscle anabolic response
in vivo and in vitro [6,8,23,26,48]. In the present study, LEAA supplementation augmented the
phosphorylation of mTORSer2448, p70S6KThr389, rpS6Ser240/244, and 4EBP1Thr37/46 at 10 and/or 90 min
post-exercise. Given the required time for the absorption and circulation of LEAAs, the enhancement
of the phosphorylation of mTOR, p70S6K and rpS6 (trend) at 10 min post-exercise might be provided
by the pre-exercise intake of LEAAs. The contribution of the early activation of mTORC1 to muscle
anabolism in the later post-exercise period is currently unclear, and should be elucidated in future
studies. To our knowledge, this is the first study to show the effect of low-dose LEAA intake on mTORC1
in young men. In previous human studies, the activation of muscle protein synthesis induced by
resistance exercise or EAA ingestion was reported to be suppressed by rapamycin administration [5,49].
Additionally, some previous studies reported that LEAA supplementation increased muscle protein
synthesis at the basal level, and after resistance exercise in older women [25,26]. These findings indicate
that LEAA supplementation augments the muscle anabolic effect induced by resistance exercise in
young men. Further studies demonstrating the effectiveness of LEAA supplementation on muscle
hypertrophy induced by resistance exercise training would strengthen the evidence supporting the
application of LEAA in various fields.

The present study has some potential limitations. First, we did not evaluate time-dependent
changes in each factor after 90 min post-exercise. In particular, the increase in the mRNA expression of
inflammatory cytokines was reported to continue until 24 h post-resistance exercise. Hence, LEAA
supplementation might affect the increase in the mRNA expression of inflammatory cytokines beyond
90 min post-exercise in the present study. Second, we did not have a placebo group with a matched
amount of nitrogen intake. Although the effectiveness of LEAAs on the mTORC1 signal response after
resistance exercise was clarified by comparing the intake of LEAAs and maltitol in the present study,
the LEAA-specific effect, compared to that of other amino acids, was not elucidated.

In conclusion, a single bout of resistance exercise evoked the activation of mTORC1 signaling,
and increased the mRNA expression of ubiquitin–proteasome system-related factors and inflammatory
cytokines in young men. LEAA supplementation did not reduce the increase in the mRNA expression
of ubiquitin–proteasome system-related factors and inflammatory cytokines, but effectively augmented
the activation of mTORC1 signaling induced by resistance exercise. These findings suggest that LEAA
supplementation is useful for augmenting the effect of resistance exercise in young men. Further studies
are required to assess the applicability of LEAAs in athletes, as well as patients in clinical settings.
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