
Received: 21 August 2023 | Accepted: 1 November 2023

DOI: 10.1002/aps3.11566

S O F TWAR E NOT E

CuticleTrace: A toolkit for capturing cell outlines from leaf
cuticle with implications for paleoecology and paleoclimatology

Benjamin A. Lloyd1,2 | Richard S. Barclay3 | Regan E. Dunn4,5 |

Ellen D. Currano6 | Ayuni I. Mohamaad6,7 | Kymbre Skersies6 |

Surangi W. Punyasena8

1Department of Earth and Space Sciences, University of Washington, Johnson Hall Rm‐070, Box 351310, 4000 15th Ave. NE, Seattle, Washington 98195‐1310, USA

2Smithsonian Environmental Research Center, Smithsonian Institution, 647 Contees Wharf Rd., Edgewater, Maryland 21037‐0028, USA

3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 1000 Madison Dr. NW, Washington, D.C. 20560, USA

4La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, 5801 S. Wilshire Blvd., Los Angeles, California 90036, USA

5Department of Earth Sciences, University of Southern California, 3551 Trousdale Parkway, Los Angeles, California 90089, USA

6Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071, USA

7Department of Geological Sciences, University of Florida, 241 Williamson Hall, P.O. Box 112120, Gainesville, Florida 32611‐2120, USA

8Department of Plant Biology, University of Illinois Urbana‐Champaign, 139 Morrill Hall, 505 South Goodwin Ave., Urbana, Illinois 61801, USA

Correspondence

Benjamin A. Lloyd, Department of Earth and Space
Sciences, University of Washington, Johnson Hall
Rm‐070, Box 351310, 4000 15th Ave. NE, Seattle,
Washington 98195‐1310, USA.
Email: blloyd96@uw.edu

Surangi W. Punyasena, Department of Plant
Biology, University of Illinois Urbana‐Champaign,
139 Morrill Hall, 505 South Goodwin Avenue,
Urbana, Illinois 61801, USA.
Email: spunya1@illinois.edu

Abstract
Premise: Leaf epidermal cell morphology is closely tied to the evolutionary history of
plants and their growth environments and is therefore of interest to many plant
biologists. However, cell measurement can be time consuming and restrictive with
current methods. CuticleTrace is a suite of Fiji and R‐based functions that streamlines
and automates the segmentation and measurement of epidermal pavement cells
across a wide range of cell morphologies and image qualities.
Methods and Results: We evaluated CuticleTrace‐generated measurements against
those from alternate automated methods and expert and undergraduate hand tracings
across a taxonomically diverse 50‐image data set of variable image qualities. We
observed ~93% statistical agreement between CuticleTrace and expert hand‐traced
measurements, outperforming alternate methods.
Conclusions: CuticleTrace is a broadly applicable, modular, and customizable tool that
integrates data visualization and cell shape measurement with image segmentation,
lowering the barrier to high‐throughput studies of epidermal morphology by vastly
decreasing the labor investment required to generate high‐quality cell shape data sets.
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The accurate, consistent, and efficient characterization of the
leaf epidermis is key to advancing our understanding of the
relationships of plants to their environments and their
evolutionary history. The morphology and arrangement of

leaf epidermal cells vary significantly across different
environmental conditions and taxonomic groups (Kürsch-
ner, 1997; Royer, 2001; Vőfély et al., 2019). The shape of cell
walls captures changes to canopy structure over geologic time
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(Dunn et al., 2015; Bush et al., 2017; Milligan et al., 2021),
and cell patterns and cell types can be used to enhance
taxonomic resolution of paleofloras (e.g., Strömberg, 2011).
When epidermal cells can be counted, the number of stomata
relative to pavement cells has been used to constrain
paleoenvironmental conditions such as atmospheric CO2

concentration (McElwain and Chaloner, 1996; Royer, 2001).
In crop science, phenomics links high‐throughput phenotyp-
ing of leaf epidermal characters (e.g., cell size, shape, number)
with genomics to breed plants with idealized physiological
traits (Zhao et al., 2019).

Hand tracing has remained the most viable option for
characterizing epidermal pavement cell morphology in most
cases (e.g., Vőfély et al., 2019; Brown and Jordan, 2023).
Hand‐traced data sets have been part of high‐impact studies
investigating cell shape, such as those using undulation
index (UI) to determine the canopy position of fossil leaves
(Kürschner, 1997), to estimate growing season character-
istics from the cells of birch trees (Wagner‐Cremer
et al., 2010), and to determine canopy position of leaves
by correlating UI with the δ13C gradient present at
increasing ground height (Bush et al., 2017; Graham
et al., 2019). Cell wall undulation and aspect ratios have
also been used to investigate hypotheses about pavement
cell form and function within a phylogenetic context
(Vőfély et al., 2019) and to untangle the interactions
between climate and the biota living in forests in a deep‐
time context (Dunn et al., 2015). These studies demonstrate

the relatively untapped potential of plant cell shape data
sets, which can reveal changes to climate, ecosystems, and
their influence on patterns in evolutionary biology that
cannot be obtained with other methodologies.

Efforts to automate leaf epidermal measurement have
met differing levels of success. Stomata can be efficiently
identified from microscope images (e.g., Fetter et al., 2019;
Li et al., 2022), but the accurate characterization of
epidermal pavement cell morphologies remains limited to
specific taxa or imaging techniques (Möller et al., 2017; Li
et al., 2022). Hand tracing is a slow and tedious process,
with cell‐outline quality highly dependent upon both the
tools used for tracing (e.g., mouse, stylus, tablet, desktop
computer) and the experience level and conscientiousness
of the tracer (e.g., Wagner‐Cremer et al., 2010). The high
labor requirement of hand tracing—and the non‐
standardized measurements that result—imposes a barrier
to the use of epidermal cell shape in multiple disciplines.

We developed the CuticleTrace toolkit to streamline and
automate the tracing and measurement of epidermal pavement
cells. Our easily fine‐tuned, open‐source workflow uses the
freeware software Fiji (Schindelin et al., 2012) and R Statistical
Software (R Core Team, 2022). Our methodology can be
applied across a wide variety of taxa, image qualities, and
image preparations to generate large cell shape data sets from
images of leaf cuticle or epidermis. The CuticleTrace process is
fast, consistent, reproduces expert‐level measurements, and
produces much larger data sets than when drawn by hand.

F IGURE 1 The processing workflow for the CuticleTrace toolkit (left) illustrated on an image of Castanea pumila L. (Fagaceae, FLMNH00115). Scale
bar = 10 µm. Processing starts by (A) compiling an image set and (B) selecting input parameters. This is followed by epidermal cell segmentation, consisting
of (C) local contrast enhancement, (D) Gaussian blur, (E) local thresholding, (F) shape smoothing, and (G) skeletonization. Particles are analyzed in Fiji, by
(H) generating regions of interest (ROIs), (I) enlarging and interpolating ROIs, and (J) measuring ROIs. ROI measurements are (K) filtered with median
statistics and (L) visualized overlaying unprocessed images.
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METHODS AND RESULTS

CuticleTrace description

The CuticleTrace workflow consists of four steps. First,
users determine appropriate batch‐processing inputs with
the “Single Image Processor” Fiji macro (Figure 1B).
Second, users batch‐process images and measure cells with
the “Batch Generate ROIs” and “Batch Measure (Different
Scales)” Fiji macros, which generate (1) thresholded and
skeletonized binary images (Figures 1F, G), (2) sets of files

recording individual cell shapes known as “regions of
interest” (ROIs; Figure 1I), and (3) shape parameter
measurements associated with each ROI (Figure 1J). Third,
the resulting cell measurements are filtered with median
statistics by the “CuticleTrace Data Filtration” R Notebook
(Figure 1K). Last, users can visualize the effects of data
filtration with the “Batch Overlay” Fiji macro (Figure 1L).

An illustrated manual for the installation and use of Fiji and
R tools is available in the CuticleTrace User Manual (available
in the GitHub repository: https://github.com/benjlloyd/
CuticleTrace; see Data Availability Statement). A video tutorial

F IGURE 2 The effect of thresholding (A, D, G) on skeletonization (B, E, H) and unfiltered ROI sets (C, F, I), demonstrated on Talisia princeps Oliv.
(Sapindaceae, FLMNH00443). The image is thresholded by (A–C) Sauvola local thresholding (ideal), (D–F) Bernsen local thresholding (satisfactory), and
(G–I) NiBlack local thresholding (ineffective). Scale bars = 50 µm.
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is available online (https://youtu.be/XLhWd-tpU70), and all
software is documented on the CuticleTrace GitHub repository.

Determination of batch processing inputs

Both the “Single Image Processor” and “Batch Generate
ROIs” macros apply seven user inputs to images. “Single
Image Processor” works with an open image, while “Batch
Generate ROIs” processes all images in an image set. Each
user input sets the parameters for different image processing
operations. Before batch‐processing, users must first deter-
mine the appropriate input parameters on a small subset of
images using the “Single Image Processor” macro. The
selection of appropriate input parameters is extremely
important to ensure accurate results (Figure 2). Detailed
instructions for user input selection are provided in section
4.1 of the CuticleTrace User Manual (see Data Availability
Statement), which includes examples of images with optimal
and suboptimal values for all inputs.

For both macros, users select: (1) whether cell walls are
dark on a light background or light on a dark background, (2)
the standard deviation of Gaussian blur (Figure 1D), (3) the
automated local thresholding algorithm (Figures 1E, 2), (4) the
initial local thresholding radius (Figure 1E), (5) the range of
sizes (in pixels squared) of all cells expected in the image set
(Figure 1E), (6) the percentage of Fourier descriptors to retain
during shape smoothing (Figure 1F), and (8) the scale (in
pixels/unit) of all images in the image set (Figure 1J).

Image processing and measurement

The “Batch Generate ROIs” macro outputs thresholded and
skeletonized binary images, and unfiltered (enhanced and
interpolated) ROI sets of all images in a directory
(Figure 1C–I). Users may also elect to output measurements
of ROI shape parameters if all images have the same scale,
or use “Batch Measure (Different Scales)” to measure ROIs
of images with differing scales (Figure 1J, Table 1). These
unfiltered ROI sets and measurement files may then be
brought directly into the “CuticleTrace Data Filtration” R
Notebook for statistical filtration.

Data filtration

The ROIs produced by the CuticleTrace Fiji analysis
pipeline will inevitably include partial cells, multiple cells,
vein cells, or non‐cuticle image artifacts (e.g., slide back-
ground, debris). The “CuticleTrace Data Filtration” R
Notebook removes these erroneous data points by excluding
ROIs with measurements outside one or two median
absolute deviations (MADs) from each image's median
area, perimeter, circularity, aspect ratio, roundness, and
solidity (Table 1). The R Notebook creates new ROI sets of
the remaining ROIs after filtering (Figure 3).

We use the median as our reference point because unfiltered
measurements are non‐normally distributed (Figure 4). Using
the median, rather than the mean, allowed us to work efficiently
with the skewed distribution of ROIs and identify erroneous
outliers. Distribution around the median captured the central
tendency of cell size or shape. The limitation of using deviation
from the median, however, is that it requires a large number of
ROIs to be effective. If there are only a limited number of ROIs
or few erroneous outliers, this threshold will discard a large
percentage of accurate measurements. For this reason, users
should visualize outlines, before and after filtering, in order to
determine whether the choice of threshold meets the specific
needs of their images.

Data visualization

The “Batch Overlay” Fiji macro allows users to visualize
CuticleTrace outputs by creating images overlain with outlines
of each ROI in an ROI set, formatted to the user's preference.
“Batch Overlay” may be used to overlay any batch of ROI sets
on any batch of images. In our evaluation, we used “Batch
Overlay” to visually check the accuracy of ROIs resulting from
different input parameters (Figure 2) and to compare unfiltered
ROI sets with the filtered versions from the “CuticleTrace Data
Filtration” R Notebook (Figures 3 and 4).

TABLE 1 Descriptions or equations of all shape parameters measured
by CuticleTrace.

Measurement
parameter Description or equation

Area The area of an ROI.

Perimeter The length of the outside boundary of
an ROI.

Bounding rectangle The x‐y coordinates and dimensions of the
smallest rectangle that encloses an ROI.

Fit ellipse The dimensions and orientation of an ellipse
fit to an ROI.

Feret's diameter The longest distance between any two points
on the ROI boundary.

Minimum Feret's
diameter

The minimum caliper diameter of an ROI.

Circularity
∗π Area

Perimeter
4 [ ]

[ ]2

Aspect ratio Major Axis of Fit Ellipse
Minor Axis of Fit Ellipse

[ ]
[ ]

Roundness
∗

∗

Area
π Major Axis of Fit Ellipse

4 [ ]
[ ]2

Solidity Area
Area of Convex Hull

[ ]
[ ]

Undulation index
∗

Perimeter
π Area π
[ ]

2 [ ]/

Note: ROI = region of interest.
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CuticleTrace evaluation

We evaluated CuticleTrace across a range of image
resolutions, magnifications, and qualities, using an
image set of 50 vouchered herbarium specimens from
the Cuticle Database (https://cuticledb.eesi.psu.edu;
Barclay et al., 2007). Images were chosen to maximize
taxonomic breadth (48 species, 37 genera, 20 families)
and span the range of cell shapes and sizes (Appen-
dix S1). We generated CuticleTrace measurements
following the protocol outlined in the CuticleTrace User
Manual (see Data Availability Statement), with user
inputs specified in Table 2.

We compared CuticleTrace measurements (at the ±1MAD
and ±2MAD filtering levels) to hand‐traced outlines. An
expert (R.E.D.) and University of Wyoming undergraduates
(A.I.M., K.S.) each outlined 10 cells per image following Dunn
et al. (2015). Cells for each tracer were independently selected
based on their position relative to an arbitrarily positioned
sampling grid. We also compared CuticleTrace to measure-
ments generated by alternative automated segmentation
methods (LeafNet [Li et al., 2022] and PaCeQuant [Möller
et al., 2017]). PaCeQuant did not successfully segment our
light‐microscopy images (unsurprising, as it was developed for
confocal microscopy images) and was excluded from statistical
comparisons of segmentation methods.

F IGURE 3 Removal of unwanted ROIs by filtering using median statistics. (A–C) Ocotea tarapotana (Meisn.) Mez (Lauraceae, FLMNH00185); (D–F)
Acer skutchii Rehder (Aceraceae, FLMNH00714). ROI sets that are (A, D) unfiltered, (B, E) ±2MAD‐filtered, and (C, F) ±1MAD‐filtered. Yellow outlines
represent ROIs retained at each filtering level. Yellow‐shaded ROIs accurately characterize epidermal pavement cells. Red‐shaded ROIs do not accurately
characterize pavement cells and are thus not wanted in the final data set. Scale bars = 50 µm.
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Finally, we completed a one‐to‐one comparison of
CuticleTrace and expert measurements across all images. We
selected the CuticleTrace outlines that directly corresponded to
the subset of 10 expert hand‐traced outlines. A total of 447 cells
across all 50 images were shared between the two data sets.

Whole image comparison

The expert outlines served as our evaluation benchmark.
We ran a one‐way analysis of variance (ANOVA) with post‐
hoc nonparametric Games–Howell analysis for each shape

F IGURE 4 CuticleTrace‐generated ROI sets (yellow) compared to expert hand‐drawn ROI sets (cyan), with subsequent filtering using median statistics. Cells
with overlapping CuticleTrace and expert‐generated ROIs appear green. Columns show ROI sets that are (A, E, I) unfiltered, (B, F, J) ±2MAD, and
(C, G, K) ±1MAD overlain on the source images of (A–C) Nectandra oppositifolia Nees & Mart. (Lauraceae, FLMNH00260), (E–G) Guarea bijuga C. DC. (Meliaceae,
FLMNH00850), and (I–K) Anaxagorea petiolata R. E. Fr. (Annonaceae, FLMNH02589). (D, H, L) Probability density plots showing distributions of undulation index
values across all four data sets for each image; hand‐traced = cyan, unfiltered = dark orange, ±2MAD= light orange, ±1MAD= yellow. Scale bars = 50 µm.
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parameter for each image. We selected the Games–Howell
test due to differing sample sizes between the four sets of
measurements. We used CuticleTrace's “Batch Overlay”
macro to visually compare CuticleTrace and expert tracings
(Appendix S1).

Our analyses showed 100% statistical agreement
between CuticleTrace measurements (at both ±1MAD and
±2MAD filtering levels) and expert measurements of area,
perimeter, Feret's diameter, aspect ratio, and roundness
(Figure 5). We observed variability in circularity, solidity,
and UI measurements, which was expected due to their
sensitivity to small tracing differences. CuticleTrace mea-
surements consistently aligned more closely with expert
measurements than expert measurements did with student
and LeafNet measurements (Table 3).

Cell‐to‐cell comparison

Our cell‐to‐cell comparison of CuticleTrace and expert
measurements of individual cells (447 cells across all 50 images)
showed broad agreement across all shape parameters (Figure 6).
In only 11 of 400 image measurements (50 images, eight shape
parameters) were values significantly different at the 2‐sigma
level—a 2.75% error rate. Seven of the 11 significant differences
are concentrated in three images (identified in the Cuticle
Database by their Florida Museum of Natural History specimen
numbers)—FLMNH00178 (Damburneya salicifolia (Kunth)
Trofimov & Rohwer), FLMNH00561 (Gleditsia triacanthos
L.), and FLMNH05215 (Peteniodendron durlandii (Standl.)
Baehni) (Figure 6). However, overall, differences between expert
and CuticleTrace tracings of the same cells were small, and
CuticleTrace tracings were reasonable and consistent even when
they differed from expert tracings.

Accuracy of CuticleTrace measurements

Across the wide range of cell shapes and image qualities
encapsulated in our test data set (Appendix S1), CuticleTrace
produces cell shape measurements that are statistically identical
to expert measurements across all shape parameters in most
instances, at both the ±1MAD and ±2MAD filtering level. The
limited, often non‐significant, differences between expert and
CuticleTrace measurements may be attributed to two sources of
variation. First, the set of cells outlined by CuticleTrace may
differ from those traced by an expert in the same image.

TABLE 2 CuticleTrace batch‐processing inputs for our 50‐image test
data set.

Input parameter Value

Cell walls on background Dark on light

Gaussian blur σ 2 pixels

Thresholding algorithm Sauvola (Sauvola and Pietikäinen, 2000)

Initial thresholding radius 50 pixels

ROI size filter 500–50,000 pixels2

Smoothing value 5% of Fourier descriptors

F IGURE 5 Post‐hoc Games–Howell results for all 50 images, separated by shape parameter. Comparisons are all relative to the hand‐drawn expert
results (zero). Student data was also hand‐drawn; LeafNet and CuticleTrace are automated methods. Each small horizontal bar represents the 95%
confidence interval of the Games–Howell mean difference estimate applied to a single image in the comparative data set. The image position in the stack is
maintained for each shape parameter. Darker bars with center circles are the mean ±2σ for each of the comparative stacks of Games–Howell results. Yellow
center circles are non‐significant; red center circles are significantly different from the expert.
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However, CuticleTrace generates a much larger cell measure-
ment data set than is possible by hand. Therefore, provided the
cells selected by CuticleTrace are representative of the whole
image, the differences between the two methods were more
likely a result of bias in the hand‐drawn cells, as the grid‐
selection method of hand tracing results in smaller sample sizes
and tends to favor larger cells.

Second, CuticleTrace may emphasize different aspects of
cell morphology than an expert. Crenulated cells with obvious
three‐dimensional morphology showed the greatest number of
disagreements (Figure 6A, D). In these images, the expert chose
to outline the cell wall at an alternate focal level than the
CuticleTrace macros. The choice of focal level is somewhat
subjective, however, and CuticleTrace's interpretation of the cell
outline was largely reasonable and consistent. Our cell‐to‐cell
comparison of 447 individual cells across 50 images showed
that expert and CuticleTrace measurements are highly
correlated (Figure 6). For most images, CuticleTrace and expert
measurements were effectively interchangeable.

The ease of data visualization built into CuticleTrace
with the “Batch Overlay” and “Single Image Processor”
macros is an important feature for ensuring accurate cell
tracing and ROI filtering. Our design makes the qualitative
assessment of outputs easy, so that users can visually check
all CuticleTrace outputs—thresholded images, skeletonized
images, and filtered and unfiltered ROI sets—and modify
input parameters as necessary. Additionally, CuticleTrace
users may modify the “CuticleTrace Data Filtration” R
Notebook to suit their needs, and ROI sets may always be
manually revised in Fiji.

Slide preparation, image quality, and CuticleTrace input
parameters were the most important factors in ensuring
accuracy in automated measurements. While we intentionally
included a wide range of image qualities in our data set
(Appendix S1), we did not attempt to analyze Cuticle Database
images that were of very poor quality. CuticleTrace's flexibility
allows it to be fine‐tuned for a wide variety of image

preparations and resolutions, but that same flexibility may lead
to ineffective or inaccurate image characterization if users
neglect to carefully select input parameters (Figure 2). It is
imperative that users closely follow the instructions provided in
the CuticleTrace User Manual (see Data Availability Statement).

Comparison to other automated methods

CuticleTrace is a unique addition to the suite of available
methodologies for automatically segmenting and characterizing
leaf epidermal morphology. Other approaches—PaCeQuant
(Möller et al., 2017) and LeafNet (Li et al., 2022)—also
automate epidermal pavement cell segmentation, with some
limitations. Many other methods focus on stomata detection
and characterization (e.g., Fetter et al., 2019; Li et al., 2022),
while additional methods have been developed to trace cells
in other plant tissues (Wolny et al., 2020) and cell outlines
from a broad taxonomic training set of microscopic images
(Stringer et al., 2021).

Of these methods, CuticleTrace is the first to effectively
trace and measure epidermal pavement cells across a
wide variety of taxa, cell morphologies, and image qualities.
The customizability of the “Batch Generate ROIs” and
“Single Image Processor” Fiji macros allows users to tune
CuticleTrace's settings to work well for their images. Unlike
machine learning approaches to cell segmentation, Cuticle-
Trace does not require training images and can work with a
broad range of morphologies using existing Fiji tools. It can
therefore be more easily applied to studies involving diverse
samples, detrital cuticle, or extinct taxa.

CuticleTrace's current inability to detect and mask
stomata limits its use on stomata‐rich abaxial cuticle and
with other non‐pavement epidermal cells, e.g., trichome
bases and subsidiary cells. The toolkit is able to segment and
outline these cell types if the cell walls are in focus but will
not distinguish them from pavement cells. Users could

TABLE 3 Statistical evaluation of ±1MAD and ±2MAD CuticleTrace measurements, student measurements, and LeafNet measurements, in
comparison to expert measurements.

Average Games–Howell P value in comparison to expert % of measurements statistically identical to expert (P values > 0.05)
CuticleTrace CuticleTrace

Shape
parameter ± 1MAD ±2MAD

Cell
to cell Student LeafNet ±1MAD ±2MAD Cell to cell Student LeafNet

Area 0.85 0.89 0.56 0.74 0.55 100 100 100 94 84

Perimeter 0.82 0.82 0.68 0.54 0.60 100 100 100 86 82

Feret's diameter 0.85 0.88 0.64 0.66 0.72 100 100 100 94 88

Circularity 0.52 0.53 0.44 0.31 0.06 78 82 94 58 12

Aspect ratio 0.79 0.82 0.88 0.75 0.81 100 100 100 100 100

Roundness 0.78 0.82 0.88 0.81 0.78 100 100 100 100 100

Solidity 0.44 0.47 0.42 0.34 0.18 76 78 90 72 30

Undulation index 0.52 0.53 0.44 0.25 0.06 82 88 94 52 12

Mean 0.70 0.72 0.62 0.55 0.47 92.0 93.5 97.3 82.0 63.5
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potentially identify non‐pavement cells by their distinct
shape parameters and isolate their respective ROIs by
filtering by those parameters. CuticleTrace's ability to
visualize filtered ROIs provides an easy check of any
modifications to the filtering steps within the R Notebook.
Alternatively, specific ROIs can be removed manually
within Fiji. The toolkit's modular structure also allows for

the integration of machine learning–based methods for
stomatal recognition and masking (Fetter et al., 2019; Aono
et al., 2021; Li et al., 2022; Sai et al., 2023). With its potential
for integration with other methods and software, Cuticle-
Trace represents a robust foundation for image binarization,
ROI generation, and morphological analysis that may find
multiple applications in plant science.

A B C D

F IGURE 6 Cell‐to‐cell comparison of expert and CuticleTrace measurements. Upper panel: Correlation between expert (x‐axis) and CuticleTrace
(y‐axis) measurements across 447 cells and all relevant shape parameters, distributed between 50 images. Black lines have a slope of 1, indicating 100%
correlation. Shaded areas show 95% prediction intervals. Colored symbols correlate to the four images presented in the lower panel, which provides a visual
comparison of the difference between cell outlines hand drawn by an expert (cyan line) vs. the CuticleTrace automated procedure (yellow line). Lower panel:
(A) Gleditsia triacanthos L. (Fabaceae, FLMNH00081); (B) Toxicodendron striatum (Ruiz & Pav.) Kuntze (Anacardiaceae, FLMNH00510); (C) Oreopanax
capitatus (Jacq.) Decne. & Planch. (Araliaceae, FLMNH00767); (D) Peteniodendron durlandii (Stand.) Lundell (Sapotaceae, FLMNH05215). Scale bars
= 10 µm.
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CONCLUSIONS

The modularity and adaptability of the CuticleTrace toolkit
hold great potential for its use in applications beyond those
described here. CuticleTrace allows for the interchange of
different parts of its analysis pipeline for alternate applica-
tions, and we intend for the toolkit to remain in active
development. The local thresholding methods employed by
CuticleTrace are effective for segmenting epidermal pave-
ment cells in light microscopy images, but alternative
segmentation methods (Möller et al., 2017; Wolny et al., 2020;
Stringer et al., 2021; Li et al., 2022; Kirillov et al., 2023) can be
swapped into the CuticleTrace pipeline as needed for other
applications. Additional refinements and improvements to
image thresholding and skeletonization can also be incorpo-
rated as these functions are added by the ImageJ community.
Alternative approaches to the morphological analysis of
epidermal cells (e.g., Möller et al., 2017; Nowak et al., 2021;
Brown and Jordan, 2023) can also utilize CuticleTrace‐
generated ROIs to measure shape parameters beyond those
included within CuticleTrace.

The leaf epidermis contains a wealth of information about
the evolutionary history of plants and their growth environ-
ments, and CuticleTrace makes that information significantly
more accessible. In both living and fossil plants, epidermal
pavement morphology can be used to gain insight into plant
physiology, ecology, and evolution, and fossil evidence of
epidermal cells is integral to some paleoenvironmental studies.
The largest barrier to big‐data approaches to these questions is
the non‐trivial task of accurately segmenting epidermal cell
images. CuticleTrace represents a significant advance, greatly
lowering the barrier to high‐throughput studies of epidermal
morphology by increasing the consistency of epidermal cell
measurements and by vastly decreasing the labor investment
required to generate cell shape data sets.
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