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Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with high rates
of mortality and morbidity. ICH patients often suffer devastating and debilitating
neurological impairments, from which the majority of victims are unable to fully recover
to functional independence. Unfortunately, there is no established medical therapy for
ICH, which is partly attributed to the lack of understanding of the complex pathology
of the disorder. Despite advanced age being a major risk factor of ICH, most preclinical
studies on ICH employed young animal subjects. Due to this discrepancy, the molecular
level changes in the aging brain after ICH are largely unknown, limiting the translation
of preclinical studies into potential human treatments. The purpose of this review is to
highlight the effects of advanced age on ICH- induced brain injury and recovery and to
draw attention to current knowledge gaps, which warrant further investigation.
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INTRODUCTION

Intracerebral hemorrhage (ICH) is the second most common form of stroke, caused by blood vessel
rupture and subsequent bleeding into the surrounding brain tissue (Qureshi et al., 2009). ICH
accounts for 10–20% of stroke cases worldwide (Feigin et al., 2009; Sacco et al., 2009), with incidence
varying across different countries and ethnicities. For instance, its prevalence is much higher in low-
middle income countries, which have a higher proportion of fatal cases (Feigin et al., 2009). The
incidence of ICH in African Americans is twice as high compared to white Americans (Flaherty
et al., 2005). Notably, the worldwide incidence of ICH has risen by ∼47% over the last 20 years (An
et al., 2017), and hospital admissions have increased by 18% in the past 10 years (Qureshi et al.,
2007). Moreover, the United States population is aging at an unprecedented pace and the fastest-
growing age group in the United States is those over the age of 65 (Wasil and Lichtman, 2005). It
is projected that by 2030, 20% of the United States population will be over the age of 65, compared
to 2010, when this demographic only accounted for 13% of the population (Albright et al., 2016).
As the elderly population continues to grow, the prevalence of ICH could rise alongside it since
advanced age is a major risk factor of ICH. By 2030, nearly 4% of the United States population is
estimated to have had a stroke (Ovbiagele et al., 2013).

Intracerebral hemorrhage imposes a significant economic burden on society, contributing to an
estimated $17.2 billion in annual direct costs to the U.S. healthcare system associated with stroke

Abbreviations: BMDM, brain-infiltrating monocyte-derived macrophage; CAA, cerebral amyloid angiopathy; CMB,
cerebral microbleeds; CMH, cerebral microhemorrhages; ICH, intracerebral hemorrhage; IL-10, interleukin-10; IL-13,
interleukin-13; IL-1β, interleukin-1β; IL-4, interleukin-4; IL-6, interleukin-6; IL-8, interleukin-8; IL-33, interleukin-33; LDL-
C, LDL Cholestero; LPS, lipopolysaccharide; MAC, membrane attack complexes; MMP-9, matrix mettaloproteinase-9; MMP,
matrix metalloproteinase; TGF-β, transforming growth factor beta; TLR4, toll like receptor 4; TNF-α, tumor necrosis factor
alpha.
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(Taylor et al., 1996; Caro and Huybrechts, 1999; Reed et al., 2001;
Mozaffarian et al., 2015). The 30-day mortality rate of patients
suffering from ICH is high, about 40%, with only around 20%
of survivors achieving functional independence 6 months after
the onset of brain hemorrhage (Bonsack and Alleyne, 2016).
A critical barrier to improve patient outcomes after ICH is the
lack of effective treatment, partly attributed to the complexity
and the poorly defined pathophysiology of the disorder. Though
surgical approaches are offered for selected patients, elderly
patients, which comprise approximately one-third of the ICH
population, are less likely to undergo surgical treatment, perhaps
due to established end-of-life preferences. Taken together, the
current treatment option for ICH, even in dedicated stroke
centers, is limited to supportive care.

The risk factors of ICH include hypertension, cerebral amyloid
angiopathy, advanced age, cigarette smoking, diabetes, alcohol
abuse, drug abuse, Asian ethnicity, genetic factors, menopause,
and oral anticoagulant treatment (Feldmann et al., 2005; Morotti
and Goldstein, 2016). Also, there was a significant association
between lower LDL-C (Low-Density Lipoprotein-Cholesterol;
<70 mg/dL) and higher risk of ICH (Ma et al., 2019). However,
a recent meta-analysis reported that lipid-lowering therapy was
not associated with a significantly increased risk of ICH in
primary prevention trials (Judge et al., 2019), while a more recent
meta-analysis concluded that lipid-lowering therapy increased
the risk of ICH, but only at high doses that achieved ≥35%
reduction in LDL-cholesterol levels (Cheng et al., 2020). Due
to these discrepancies, further studies are highly required to
determine the precise role of LDL-C in the pathogenesis of
ICH. The most common risk factor of ICH is hypertension
(Morotti and Goldstein, 2016), which accounts for approximately
83% of ICH cases (Cheung and Zou, 2003). Hypertension
nearly doubles the risk of ICH (Jackson and Sudlow, 2006)
and usually leads to ruptures of vessels at the bifurcation of
small arteries within the brain (Qureshi et al., 2009). It is
believed that long-standing elevated blood pressure promotes
shear stress and degenerative changes to the walls of small-to-
medium penetrating vessels causing vascular ruptures and ICH
(Qureshi et al., 2009). Hypertension is also a key contributor
to aneurysmal rupture leading to ICH (van Asch et al., 2010b;
Jabbarli et al., 2016) and hypertensive ICH occurs mostly in
deep brain structures (Matsukawa et al., 2012). Another risk
factor that accounts for ∼20% of ICH cases is cerebral amyloid
angiopathy (CAA), which is prevalent in elderly patients (Morotti
and Goldstein, 2016; An et al., 2017). CAA is manifested
by the deposition of amyloid-β peptides in small-to-medium-
sized arteries and arterioles in the cortex and leptomeninges,
resulting in lobar hemorrhage (Matsukawa et al., 2012). CAA
accounts for approximately 12–15% of lobar ICH in the elderly
(Itoh et al., 1993; Mehndiratta et al., 2012), and the risk
of developing sporadic CAA-related ICH increases in carriers
of the ε4 and ε2 alleles of apolipoprotein E, the monogenic
risk factor of ICH (Nicoll et al., 1997; Sudlow et al., 2006;
Talha et al., 2020).

As a person gets older, the risk of developing ICH increases.
Elderly individuals have a fivefold higher risk of ICH as
opposed to their younger counterparts (van Asch et al., 2010a).

Age enhances the risk of chronic health conditions and
systemic conditions such as hypertension, diabetes and atrial
fibrillation (Ariesen et al., 2003), which can contribute to the
pathophysiology of ICH. Elderly patients make up a significant
portion of the ICH population, and as per a recent study ∼34%
of ICH patients were 80 years or older (Stein et al., 2012).
Studies have shown a steady increase of ICH cases per 100,000
individuals from 5.9 in 35–54 year-olds to 176.3 in 75–94 year-
olds (Wasil and Lichtman, 2005). Age increases not only the
prevalence of ICH exponentially (Broderick et al., 1993), but
also the 30-day mortality rate (Gonzalez-Perez et al., 2013). The
mortality rate in men raised from 23% in ICH patients under
75 years of age to 41% in those over 75 (Zia et al., 2009).
Furthermore, age is an independent predictor of poor functional
outcomes when measured via total Functional Independence
Measure (FIM) score and Motor FIM score (Bagg et al., 2002)
and age (>65 years) is an independent predictor for recurrent
ICH (Zia et al., 2009). The sex differences in outcomes have
not been fully characterized in the pathophysiology of ICH. For
younger patients, female sex was protective, but at age >60 years,
female sex was a risk factor for death or discharge to hospice
(Umeano et al., 2013; Craen et al., 2019). The mortality rate of
ICH increased from 20% in female patients under 75 to 26%
in those over 75 (Zia et al., 2009). However, the role of aging
in the pathophysiology of ICH remains largely understudied.
The lack of preclinical studies limits our understanding of the
intricate molecular mechanisms of ICH-induced brain injury
and the translation of preclinical studies into potential human
treatments. Although preclinical animal models of ICH are
potent tools for characterizing the disease pathology, most ICH
research has employed young animal subjects. This discrepancy
may be in part due to the increased amount of time and cost
that need to be invested for aging-related studies and the limited
commercial availability of aged animals. Given that the elderly
population accounts for approximately one-third of ICH patients
coupled with the possible increase in prevalence of ICH, herein
we provide an overview of the multifactorial effects of aging in
the pathophysiology of ICH and identify the knowledge gap,
which could help develop new research avenues to improve the
prognosis of ICH patients.

Cerebrovascular Circulation and
Intracerebral Hemorrhage
Aging is an intricate phenomenon and there are numerous
effects of aging on the body. Age-related changes in the cerebral
vasculature include vascular stiffness, decreased vascular density,
thickening of the vessel wall, endothelial dysfunction, and
increased blood-brain barrier permeability (Xu et al., 2017).
Overall, these age-induced changes to the vasculature can make
the brain parenchyma more susceptible to ICH-induced brain
damage apart from enhancing the risk of ICH. Consistently, aged
rats (18-months) exhibited significantly higher neurobehavioral
deficits after ICH than young rats (3-months) and this was
coupled with augmented brain edema in the aged group at
3 days post-ICH (Gong et al., 2005). Additionally, residual
brain lesion volume was significantly enhanced in the aged rats
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at 28-days post-ICH compared to their younger counterparts,
suggesting aging-associated impairment in lesion resolution
(Wasserman et al., 2008). However, it is largely unknown how
aging precisely modulates neurological deficits, cerebral edema
and lesion resolution after ICH, warranting investigation.

Age increases the prevalence of hypertension (Buford, 2016)
and CAA (Love et al., 2003), the common causatives of
ICH. Hypertension in the context of aging contributes to
arterial stiffening and remodeling (Sun, 2015), factors that could
predispose to ICH. The vasculopathic changes that are often
associated with CAA include loss of smooth muscle cells, vessel
wall thickening, lumenal narrowing, concentric splitting of the
vessel wall and microaneurysm formation (Viswanathan and
Greenberg, 2011). In addition, lobar cerebral microbleeds (CMB
or cerebral microhemorrhages: CMH), small focal intracerebral
hemorrhages and key contributors of cognitive decline and
dementia in older adults (Akoudad et al., 2015), are often
found in conjunction with CAA (Viswanathan and Greenberg,
2011). However, the mechanism of blood vessel rupture in CAA
is yet to be defined. It is assumed that replacement of the
smooth muscle cells of the media by amyloid deposits result
in vessel wall weakening and subsequently, vascular rupture
(Winkler et al., 2001). It remains largely unclear why some
CAA-associated vessel ruptures result in ICH, while others
culminate in microhemorrhages. Though the presence of cerebral
microbleeds is not significantly associated with the risk of ICH or
clinical outcome (Derraz et al., 2021), microbleeds may serve as
predictors of ICH recurrence (Tsushima et al., 2003; Greenberg
et al., 2004).

Hypertension is another risk factor for CMHs (Vernooij
et al., 2008) and aging promoted hypertension induced-
cerebral microhemorrhages in a mouse model that recapitulated
cerebromicrovascular alterations in elderly humans (Toth et al.,
2015). Mechanistically, age-induced reduction in IGF-1 (insulin-
like growth factor -1) signaling and reactive oxygen species-
mediated activation of MMPs (Matrix Metalloproteinases) in the
cerebrovasculature could make the cerebral blood vessels more
vulnerable to hypertension-induced rupture (Tarantini et al.,
2017). However, despite the association between increased MMP-
9 activation and the genesis of ICH in various experimental
murine models (Lee et al., 2003, 2007), genetic deletion of MMP-
9 did not attenuate neurological manifestations associated with
hypertension-induced ICH in aged mice (Tarantini et al., 2021).
Though this is an important observation, there is a possibility
that in MMP-9 null mice, other MMP isoforms could express in
dysregulated manner and overcompensate the effects of MMP-9
deletion (Tang et al., 2004) and hence, further studies are required
with selective pharmacological agents to determine the role of
MMP-9 in the pathogenesis of ICH.

Despite an emerging interest in elucidating the association
between cerebral microbleeds and ICH, the mechanisms of the
development of cerebral microbleeds are largely obscure and
complex. A recent study documented that induction of severe
systolic hypertension in mice could alter the neurovascular unit
resulting in microhemorrhages in the brain (de Montgolfier
et al., 2019). Moreover, cerebral venous congestion can contribute
to brain microhemorrhages in mice (Nyul-Toth et al., 2022),

implicating a novel role of venous circulation in the genesis of
cerebral microbleeds, requiring further studies.

Immune Response and Intracerebral
Hemorrhage
Aging is a complex process and the immune system experiences
significant changes with advanced age. Consistently, in the
healthy aged brain, the augmented activation of microglia, the
cells that play critical roles in innate immune response, has
been reported in diverse mammalian species, including humans
(Peters et al., 1991; Dickson et al., 1992; Ogura et al., 1994;
Sheffield and Berman, 1998). Furthermore, advanced age is
associated with neuronal death, a decline in cognitive function
(Ginaldi et al., 1999; Rawji et al., 2016), and a chronic low-grade
inflammatory state known as inflamm-aging that is characterized
by elevated levels of proinflammatory cytokines (Gabuzda and
Yankner, 2013). It is believed that senescence of immune cells
and age-dependent changes in macromolecules contribute to
inflamm-aging, which, in turn, could partly be responsible for
the impaired innate and adaptive immune responses seen in the
elderly (Deleidi et al., 2015; Frasca and Blomberg, 2016).

Similar to other bodily tissues, a direct injury to the brain will
result in the rapid release of local inflammatory factors and the
recruitment of immune cells (Carson et al., 2006). Consequently,
microglia undergo alterations in phenotypic, phagocytic, and
antigen presentation properties (Sheffield and Berman, 1998).
The activated microglia are regarded as the key cellular regulators
for neuroinflammation following ICH, owing to their ability
to secrete cytokines, chemokines, reactive oxygen species, and
prostaglandins (Aronowski and Hall, 2005; Wang and Dore,
2007). The release of these factors further exacerbates microglial
activation and recruit blood-derived monocytes/macrophages
into the brain, together modulating the inflammatory response
(Tessier et al., 1997; Melton et al., 2003; Nakanishi, 2003;
Shiratori et al., 2010; Starossom et al., 2012; Chang et al.,
2017) and contributing to ICH-induced brain injury (Platt
et al., 1998; Hickenbottom et al., 1999; Leira et al., 2004;
Zhao et al., 2007). ICH results in the release of a cascade of
stimuli that activate microglia/macrophages, which include blood
components such as thrombin, hemoglobin, plasma proteins,
and hemoglobin degradation products such as hemin and
iron (Bonsack and Alleyne, 2016). Several of these factors
interact with a class of pattern recognition receptors, Toll-
like receptors (TLRs), located on microglia/macrophages and
activate proinflammatory signaling such as NFkB or NLRP3
(Dasari et al., 2021). Along these lines, TLR-4 is a key regulator
of inflammatory brain damage after ICH (Lin et al., 2012;
Wang et al., 2013). Notably, the proinflammatory activation
of microglia/macrophage after ICH correlates with blood-brain
barrier damage, brain swelling/edema, hematoma expansion,
neurological deterioration, and poor functional recovery (Platt
et al., 1998; Hickenbottom et al., 1999; Leira et al., 2004; Zhao
et al., 2007), implicating microglia as a key contributor of ICH-
induced secondary brain injury and loss of neurological function.

Though microglia/macrophage characterization after ICH
has primarily been carried out in young animal subjects, it is
reported that the number of activated microglia/macrophages
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is significantly increased in elderly rats after ICH compared
to younger rats (Gong et al., 2004) in line with severe brain
injury observed in aged rats. Furthermore, microglia exhibited
widespread activation in the ipsilateral brain parenchyma in
aged rats after ICH (Wasserman et al., 2008). However, it
is largely understudied whether and how aging orchestrates
the microglial release of various inflammatory mediators and
brain injury after ICH. Studies carried out in young mice
have shown that microglia/macrophages undergo polarization
after ICH and exhibit pro-inflammatory M1 phenotype or
anti-inflammatory M2 phenotype (Bonsack and Alleyne, 2016).
The classical activation of microglia/macrophage that gears
toward M1 phenotype releases proinflammatory cytokines IL-
1β, IL-6, IL-8, and TNF-α and reactive oxygen species, thereby
contributing to brain damage (Wan et al., 2016; Zhang et al.,
2016; Lan et al., 2017). In contrast, an alternate activation of
microglia yields an anti-inflammatory M2 phenotype, releasing
anti-inflammatory cytokines such as IL-10, IL-4, IL-13, and
transforming growth factor β (TGFβ), culminating in brain
recovery (Ni et al., 2016). In line with the detrimental and
beneficial role of M1 and M2 microglia/macrophage, respectively,
a reduction of M1 or an increase of M2 microglia/macrophage
was associated with neuroprotection in the acute phase of ICH.
However, studies are yet to be conducted to elucidate how aging
alters classical or alternate activation of microglia after ICH
and whether microglial phenotypes are viable targets to improve
outcomes after ICH in the elderly (Spittau, 2017).

Microglia themselves show age-related changes in phenotype
and functionality. Aged microglia are described as dystrophic
or senescent (Candlish and Hefendehl, 2021), which exhibit
many phenotypic changes compared to young microglia, such
as increased soma volume and less arborization, meaning
fewer and shorter processes (Koellhoffer et al., 2017; Spittau,
2017). Dystrophic microglia, to some extent, are comparable
to activated microglia. Functionally, these dystrophic microglia
show reduced chemotaxis and process motility, suggesting
that they could respond differentially to neuropathology
(Spittau, 2017). Moreover, the number of dystrophic microglia
significantly increases as individuals age, especially in people
with neurodegenerative diseases (Shahidehpour et al., 2021).
A potential reason for the increased activation of microglia
in the aged brain could be aging-induced myelin breakdown
and subsequent activation of the microglia in response to the
changes in the brain microenvironment and as an attempt to
engulf myelin debris (Conde and Streit, 2006). In addition,
studies have shown that aging could shift microglia to a
constant low-grade inflammatory state (Pan et al., 2020;
Candlish and Hefendehl, 2021), suggesting that microglia
could play a critical role in “inflamm-aging,” which is partly
responsible for age-associated impairments such as decreased
remyelination, memory deficits, and gray matter loss (Koellhoffer
et al., 2017). Furthermore, aging could prime microglia to a
proinflammatory M1 phenotype. Consistently, microglia in aged
rats exhibited increased expression of MHC II (Henry et al.,
2009), a marker of M1 microglial phenotype. Moreover, aged
microglia were associated with enhanced mRNA expression
of proinflammatory cytokines such as TNFα, IL-1β, and IL-6

as well as anti-inflammatory cytokines, IL-10 and TGFβ1
(Sierra et al., 2007). Moreover, mixed glial cultures from aged
mice produced elevated levels of proinflammatory cytokines
upon lipopolysaccharide (LPS) treatment compared to those
established from young adult mice. Also, microglia from aged
mice retained a classically activated or M1 phenotype in the
presence of IL-4 (Fenn et al., 2012). In contrast, microglia
from young adult mice were responsive to anti-inflammatory
cytokine, IL-4 and its treatment shifted microglial phenotype
toward an alternatively activated M2 (Fenn et al., 2012). Overall,
an enhanced response to proinflammatory signals coupled
with a reduced microglial sensitivity to IL-4 could result
in exaggerated and prolonged neuroinflammation, amplifying
neurodegeneration in the aging brain upon a brain injury.
Consistently, it was demonstrated that the expression of IL-
1β protein after ICH was greater in aged rats than in young
rats (Lee et al., 2009). Altogether, the age-induced alterations
in inflammatory microglial responses could contribute to ICH-
induced brain injury and the disproportionate deficits and
recovery rates in older patients.

Intracerebral hemorrhage results in both primary and
secondary brain injury. The primary brain injury results
from the development and mass effect of the hematoma. In
contrast, the secondary brain injury, which persists for an
extended period and often results in long-term neurological
deficits, involves a multitude of mechanisms mostly induced by
hematoma components, such as neuroinflammation, oxidative
brain damage, and blood-brain damage. Importantly, the volume
of the initial hematoma correlates with morbidity and mortality
following ICH, and hematoma expansion was associated with
poor patient prognosis (Fujii et al., 1994). Altogether, the timely
removal of hematoma, the ongoing source of brain damage, is
critical for brain recovery after ICH. To this end, apart from
the role of microglia in inflammatory brain responses after
ICH, studies document that microglia and brain infiltrating
macrophages could regulate hematoma resolution and brain
recovery owing to their ability to phagocytose cellular debris
that accumulates in the brain after a brain injury. Moreover,
phagocytosis or removal of dying cells is necessary to prevent
the release of intracellular inflammatory agents such as damage-
associated molecular patterns (DAMPs) (Sims et al., 2010).
Therefore, identification and characterization of endogenous
molecular regulators of microglial or macrophage-mediated
phagocytosis could improve outcomes after ICH. Of note,
elderly subjects with ICH had a larger hematoma volume
with poorer outcomes than younger patients (Inoue et al.,
2018) partly due to age-mediated parenchymal degeneration
and subsequent reduction in the structural integrity of the
brain tissue, which could otherwise restrict hematoma growth.
Moreover, aged microglia exhibited reduced expression of
genes associated with phagocytosis (Orre et al., 2014) and
TGFβ-induced phagocytosis was abolished in aged microglia
compared to their younger counterparts (Tichauer et al., 2014).
Also, aging can enhance the infiltration of brain-infiltrating
monocyte-derived macrophage (macrophage/BMDM) after a
brain injury (Chou et al., 2018) and modulate its responses,
such as the release of inflammatory mediators and phagocytosis
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(Albright et al., 2016; Rawji et al., 2016). However, how aging
functionally alters microglial or BMDM-mediated inflammatory
responses, phagocytosis, and hematoma resolution after ICH
remains enigmatic, warranting studies.

Another hallmark of brain aging is increased oxidative stress
and lipid peroxidation. A prevailing hypothesis is that the
age-induced accumulation of free radical damage promotes
neuroinflammation. Consistently, there was an overall increase
in pro-oxidant and inflammatory genes, while there is a
reduction in anti-oxidant genes in the brain of older rodents
compared to adults (Lee et al., 1999; Godbout et al., 2005).
Furthermore, reactive oxygen species could drive persistent
microglial activation (Qin et al., 2013) and promoted M1
microglial activation (Taetzsch et al., 2015). Also, cells damaged
by oxidative stress could produce inflammatory factors (Shao
et al., 2020), further implicating a role of oxidative stress in
neuroimmune responses, warranting investigation. Moreover,
age-mediated alterations in the levels of circulating factors
such as cytokines could regulate brain injury (Huang et al.,
2020). Along these lines, plasma from young rodents could
alleviate acute brain injury post-ICH in aged rodents (Yuan
et al., 2019), lending support to the conclusion that circulating
factors contribute to neural deficits and increased injury after
ICH in the elderly.

Iron and Intracerebral Hemorrhage
Iron is a key contributor to both acute as well as delayed
brain damage after ICH (Nakamura et al., 2003). The brain
concentration of iron, a hemoglobin degradation product,
reaches very high levels post-ICH due to erythrocyte lysis
and subsequent release of hemoglobin into the extracellular
space. A threefold increase of brain non-heme iron after
intracerebral hemorrhage was observed in rats (Wu et al.,
2003). Iron accumulation in the brain triggers a cascade
of deleterious reactions such as free radical production,
mitochondria damage, and macrophage/microglial activation,
disrupting cellular homeostasis and culminating in neuronal
death, oxidative and inflammatory brain injury, and neurological
deficits after ICH (Dai et al., 2019). In the acute phase of
ICH, hemolysis-generated iron can potentiate thrombin-induced
neurotoxicity (Nakamura et al., 2005) and contribute to cerebral
edema (Xi et al., 2002b). Although the molecular mechanisms of
iron-induced neurotoxicity are not fully understood, iron levels
in the brain remain high for at least several weeks post-ICH (Wu
et al., 2003), which could contribute to long-term neurological
deficits. Importantly, aging is often associated with excess iron
accumulation in the substantia nigra, putamen, globus pallidus,
caudate nucleus, and cortices (Zecca et al., 2004; Ramos et al.,
2014; Ward et al., 2014), which could further modulate brain
damage after ICH. In addition, age-mediated enhancement in
erythrocyte fragility (Orbach et al., 2017), may alter the rate of
erythrocyte lysis subsequent to ICH, resulting in increased heme
or iron-induced brain damage. Consistently, the level of the iron-
regulatory protein, heme-oxygenase 1, was elevated in the aged
rat after ICH compared to young rats (Gong et al., 2004). Of note,
genetic overexpression of ferroportin 1, an iron exporter, led to
less iron accumulation, less neuronal apoptosis, and improved

neurological outcomes in aged mice (Bao et al., 2020), further
implicating a role of iron in ICH pathophysiology.

Evidence has been shown that advanced age is associated with
enhanced complement activation (Gong et al., 2008), which plays
a role in the formation of membrane attack complexes (MAC)
(Hua et al., 2000; Ducruet et al., 2009), resulting in erythrocyte
lysis and hence, hemoglobin or iron-mediated neurotoxicity
(Yuan et al., 2019) and cerebral edema development after
ICH (Xi et al., 2001, 2002a; Yang et al., 2006a,b). Moreover,
complement components such as C3a anaphylatoxin could also
contribute to ICH pathology by enhancing vascular permeability
(Foreman et al., 1996) and leukocyte infiltration. Consistent
with the role of complement activation in brain injury,
intracerebral administration of a complement inhibitor reduced
erythrolysis, iron accumulation, microglial activation, cerebral
edema, and neuronal death in aged rats after ICH (Yuan
et al., 2019). Furthermore, complement components may play
a role in the clearance of apoptotic cell bodies and contribute
to ischemic stroke-induced neurogenesis (Rahpeymai et al.,
2006), implicating its unexplored role in brain recovery after
ICH. Therefore, further studies are required to determine the
precise molecular mechanisms by which complement activation
modulate brain damage or recovery and whether systemic
administration of a complement inhibitor is a feasible strategy to
improve neurological outcomes in aged mice after ICH.

White matter injury is a frequent complication of ICH (Tao
et al., 2017) and as per a report, more than 77% of ICH
patients suffered white matter injury (Smith et al., 2004). White
matter injury is observed in both acute and chronic phases
of ICH and is characterized by demyelination, axonal damage
and oligodendrocyte death (Ni et al., 2015). Though the precise
mechanism of white matter injury after ICH is enigmatic, iron-
induced oxidative stress could culminate in white matter damage
(Li et al., 2021). In a rat model of ICH, white matter injury
correlated with brain edema and poor neurological outcomes
(Tao et al., 2016). Moreover, white matter injury is a major
cause of sensory-motor deficits commonly seen in ICH patients
(Li et al., 2021) and was associated with cognitive impairment
(Smith et al., 2004). Of note, aging is often associated with
cerebral white matter lesions characterized by demyelination,
gliosis, and capillary degeneration (Hoffman et al., 1985; Baltan
et al., 2008; Asdaghi et al., 2012). Also, aging can augment white
matter vulnerability to ICH-induced brain damage. Altogether,
additional studies are required to delineate the age-induced
changes in iron metabolism and molecular mechanisms of iron-
induced neurological deficits in the aging population after ICH.

Cognition and Intracerebral Hemorrhage
There is a high prevalence of dementia after ICH (ranging from
9 to 29% for pre-ICH and 14–88% for post-ICH) (Donnellan and
Werring, 2020) and dementia could be a predictor of mortality
in ICH survivors (Judge et al., 2019). After ICH, cognitive
deficits could arise from the acute hemorrhagic lesion or in
a progressive manner owing to slowly accumulating vascular
and non-vascular pathology (Xiong et al., 2016). Notably,
cognitive impairment after ICH remains largely understudied.
In a preclinical rodent model of ICH, no significant learning or
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FIGURE 1 | Schematic representation of possible mechanisms by which aging could modulate brain damage after ICH resulting in worse neurological outcomes.

memory deficits were observed 1–7 months post-ICH (MacLellan
et al., 2009). However, in another study using the same model,
there were significant learning deficits at 2 weeks post-ICH,
but the learning deficits reduced remarkably at 8 weeks post-
ICH (Hartman et al., 2009). These conflicting results warrant
additional investigation. Moreover, these studies were conducted
in young animal subjects, which lack underlying neuropathology,
which could otherwise be needed for the development of
cognitive impairment after ICH, apart from hemorrhage-induced
brain damage. To this end, employing aged animal subjects
could better establish the association between ICH and cognition,
which may improve the prognosis of ICH survivors.

Prognostic Factors and Intracerebral
Hemorrhage
Given the devastatingly high morbidity and mortality associated
with ICH, the predictors of patient prognosis carry high
clinical significance. The predictors of adverse patient outcome
include advanced age, enhanced ICH volume, presence of
intraventricular hemorrhage, low Glasgow Coma Scale score
(GCS score) and deep/infratentorial ICH location (Poon et al.,
2014). Evaluation of these prognostic factors helps establish
an ICH score or a risk stratification scale predicting 30-day
mortality (Hemphill et al., 2001). Of note, Yang et al. (2020)
found that the predictors of patient mortality differ between
young and aged ICH patients. To this end, brain herniation in
the young group, and low GCS scores, renal or heart disease,
and leukocytosis in the elderly were associated with higher 1-
month mortality (Yang et al., 2020). Also, studies on elderly
patients with age ≥75 years demonstrated that a hematoma
volume ≥30 ml, or a prior history of ICH was associated with a
higher likelihood of short-term death (Batista et al., 2021). Apart
from these, blood-derived inflammation markers could serve as
prognostic indicators. Along these lines, increased plasma level
of TNF-α was associated with mortality in ICH patients (Fang
et al., 2007). As per another study, elevated plasma level of
IL-6 is an independent predictor for early hematoma growth,
which, in turn, is associated with poor outcomes following ICH
(Silva et al., 2005). Though inflammatory biomarkers that could

predict better recovery after ICH are least characterized, as per a
recent report, increased serum levels of IL-33, a newly identified
member of the IL-1 family, were found in patients with improved
functional outcomes compared to those with poor outcomes
(Miao et al., 2021). It is important to highlight that these studies
investigating potential ICH biomarkers are not limited to the
elderly population, but often include any patient of adult age.
Therefore, further studies are needed to determine whether
these predictive markers are as effective when solely looking at
elderly patients.

CONCLUSION

Intracerebral hemorrhage is a complex disorder with no effective
treatment. Aging has a multifaceted effect on the development
and the progression of the disease (Figure 1). Therefore, aging
could impose a myriad of unique challenges to ICH treatment.
However, the molecular level changes that occur in the brain after
ICH remain largely unknown. Given that the aged population
is the most rapidly growing population in America and possible
increase in the incidence of ICH in the aging population, there is
a need to conduct additional preclinical studies with old animal
subjects for a better understanding of the role of aging in ICH
pathology, which in turn would aid in the development of novel
treatment strategies.
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