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Abstract: Proteases are involved in the control of numerous physiological processes, and their
dysregulation has been identified in a wide range of pathologies, including cancer. Protease activity
is normally tightly regulated post-translationally and therefore cannot be accurately estimated based
on mRNA or protein expression alone. While several types of zymography approaches to estimate
protease activity exist, there remains a need for a robust and reliable technique to measure protease
activity in biological tissues. We present a novel quantitative ex vivo zymography (QZ) technology
based on Probody® therapeutics (Pb-Tx), a novel class of protease-activated cancer therapeutics
that contain a substrate linker cleavable by tumor-associated proteases. This approach enables the
measurement and comparison of protease activity in biological tissues via the detection of Pb-Tx
activation. By exploiting substrate specificity and selectivity, cataloguing and differentiating protease
activities is possible, with further refinement achieved using protease-specific inhibitors. Using the
QZ assay and human tumor xenografts, patient tumor tissues, and patient plasma, we characterized
protease activity in preclinical and clinical samples. The QZ assay offers the potential to increase our
understanding of protease activity in tissues and inform diagnostic and therapeutic development for
diseases, such as cancer, that are characterized by dysregulated proteolysis.

Keywords: protease activity; in situ zymography; Probody therapeutics; diagnostic; therapeutic; cancer

1. Introduction

Proteases, or proteolytic enzymes, catalyze the breakdown of proteins by hydrolysis
of peptide bonds. More than 500 proteases (≈2% of the genome) have been identified
using bioinformatic analysis of murine and human genomes [1,2] and can be categorized
in five distinct classes based on their catalytic mechanisms: serine, cysteine, aspartic,
metalloproteases, and threonine proteases [3]. Proteases are involved in the control of a
multitude of key physiological processes, such as hemostasis [4], immunity [5], fertility [6],
cell survival, proliferation and differentiation [7], and apoptosis [8].

Normally, protease activity is tightly regulated through multiple redundant mecha-
nisms, including gene expression, zymogen activation, endogenous inhibitors, subcellular
localization, and post-translational modifications [3]. Protease dysregulation has been
identified in a wide range of pathologies, including cardiovascular, neurodegenerative
and inflammatory diseases, infection, and cancer [2]. Notably, dysregulated proteolysis is
central to carcinogenesis by playing key roles in tumor progression-associated processes,
including growth, invasion, and metastasis [9–11]. Due to their involvement in multiple
pathologies, proteases represent attractive biomarkers or drug targets in wide-ranging
therapeutic areas, including cancer.

Protease expression levels can be measured using mRNA quantification, proteomics, or
by immunoassays, such as immunohistochemistry (IHC) or enzyme-linked immunosorbent
assays (ELISAs). However, because proteases are regulated by multiple post-translational
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mechanisms, mRNA expression and immunoassays are not necessarily predictive of pro-
tease activity levels. For example, mRNA expression and immunoassays are unable to
distinguish between active and inactive zymogen forms of proteases or those complexed
with endogenous protease inhibitors [12].

In contrast, zymography, which relies upon the visualization of enzymatic substrate
conversion, enables the direct measurement of protease activity through the detection of
cleavage product formation, or alternatively, substrate depletion [12]. The combined use of
molecular weight separation and zymography in the in-gel zymography approach provides
qualitative, as well as quantitative, information and allows for the differentiation of intact,
activated, and complexed proteases. However, the tissue homogenization process often
utilized for in-gel zymography may allow aberrant ex vivo proteolysis of substrates, which
would impact the assay outcome [13]. In addition, proteases can be denatured during the
electrophoresis process [14]. While in situ zymography of tissue sections obviates these
risks, these approaches generally rely on broad-spectrum, dye-quenched protein substrates
such as DQ-gelatin, DQ-collagen I, and DQ-collagen IV [15,16]. Recently, in situ zymogra-
phy approaches utilizing more selective protease substrates have been reported based on
targeted, internally quenched nanosensors or complexed poly-arginine peptides [17,18].
Additionally, an important advancement in this field was recently achieved by Poreba
et al. [19] through the development of a novel approach based on active site probes and
CyTOF methodology, which enabled the profiling of a subset of intracellular proteases in
cancer cell lines and PBMC cell populations [19]. There is also a potential for synchronous
evaluation of multiple proteases using active site-specific, anti-protease antibodies by IHC
methods [20–23]. Therefore, several types of zymography approaches exist, but there
remains an outstanding need for a robust, reliable, and widely applicable technique to
estimate physiological and pathological protease activity, especially in tissue samples.

Several protease activity-based diagnostic probes [17,18,24–30] and therapeutics [31–34]
have been recently developed by exploiting the characteristically dysregulated protease
activity seen in cancer [11,35]. For example, Probody® therapeutic(s) (Pb-Tx) are a novel
class of conditionally activated therapeutics consisting of a tumor-targeting antibody (or
antibody fragment) that is masked by a peptide blocking the antigen-binding domain that
is tethered via a protease-cleavable linker [31,36–39]. Therefore, the conditional activation
of a Pb-Tx by proteases at the tumor site can improve tumor specificity and reduce off-
tumor/on-target toxicity [36,40–42]. We previously reported an IHZ technology based
on the unique features of a Pb-Tx and IHC, which can be applied to profile and monitor
protease activity in any biological tissue [43]. This assay is based on Pb-Tx binding to the
target upon activation by tumor-associated proteases and thus requires target expression
for the visualization of protease activity. Here, we present an improved version of the assay,
which is based on Pb-Tx technology and capillary electrophoresis and does not require
target binding for protease activity assessment.

2. Materials and Methods
2.1. Biological Materials

Recombinant human membrane-type serine protease 1 (MT-SP1) (3946-SEB), urokinase-
type plasminogen activator (uPA) (1310-SE), and matrix metalloproteinase-2 (MMP-2)
(902-MP) were from R&D Systems (Minneapolis, MN, USA). Human tumor samples were
provided by the NCI Cooperative Human Tissue Network; other investigators may have re-
ceived samples from the same tissue specimens. The H292 cell line (CRL-1848) for xenograft
studies was acquired from the American Type Culture Collection. Plasma samples were
obtained from ProteoGenex (Inglewood, CA, USA).

2.2. Pb-Tx Labeling

The methods for the production of Pb-Tx have been described previously [43]. Pb-Tx
for assessment of tumor sections were conjugated with the far-red fluorescent Alexa Fluor
647 dye (A20006, ThermoFisher Scientific, Waltham, MA, USA) using N-hydroysuccinimide
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ester reaction. Pb-Tx were incubated with amine-reactive fluorescent dyes for 1 h at room
temperature, and the reaction was stopped with 1 M tris(hydroxymethyl)aminomethane hy-
drochloride (Tris-HCl) buffer, pH 8.5. After conjugation, free dye was removed using Zeba
desalting columns (87,768, ThermoFisher Scientific), according to manufacturer protocols.
Pb-Tx with a degree of labeling of 2 to 3, as determined by a NanoDrop spectrophotome-
ter (ThermoFisher Scientific), were used. Pb-Tx for assessment of plasma samples were
conjugated with Oregon Green dye (O6149, ThermoFisher Scientific).

2.3. QZ Assay Protocol

Assessment of activity in tumor sections using the QZ assay was performed on frozen
tissue sections that had been stored at −80 ◦C for long-term storage and at −20 ◦C shortly
before use. Slides were brought to room temperature and allowed to dry for 30 min before
the assay. A hydrophobic barrier was drawn around the tissue sample to maintain liquid on
the tissue using an ImmEdge Hydrophobic Barrier Pen (Vector Laboratories, Burlingame,
CA, USA), and then, the slides were incubated with buffer consisting of 150 mM Tris HCl
pH 7.4, 5 mM CaCl2 100 µM ZnCl2, and 0.005% Tween-20 (QZ assay buffer) for 30 min at
room temperature. Then, labeled Pb-Tx prepared in QZ buffer were added directly onto the
tissue containing the buffer and incubated at a concentration of 20 µg/mL in a humidified
chamber at 37 ◦C for 48 h. For inhibitor treatment assays utilizing binding-competent
C225 Pb-Tx, tissue sections were blocked for 30 min with 3X unlabeled C225 antibody
(60 µg/mL) and then preincubated for at least 30 min with 3X protease inhibitors before the
addition of 3X labeled C225 Pb-Tx (60 µg/mL) in QZ buffer. Protease inhibitors and their
final (1X) assay concentrations were as follows: 200 µg/mL aprotinin (78432, ThermoFisher
Scientific), 10 µM Galardin or GM 6001 (364,206, Calbiochem, Burlington, MA, USA), and
1X Halt Protease Inhibitor Cocktail (78,438, ThermoFisher Scientific).

Following 48 h of incubation, conditioned media from samples were collected into
96-well PCR plates. Samples were mixed with Pico Sample Buffer (Perkin Elmer, Waltham,
MA, USA) containing 2-beta-mercaptoethanol at four parts sample and one part of Pico
Sample Buffer and then heated at 95 ◦C for 10 min. Then, Pb-Tx activation was assessed
using the Caliper LabChip GXII or LabChip GXII Touch (Caliper Life Sciences, Waltham,
MA, USA) with the HT Pico Protein Express 100 protocol (Perkin Elmer). Protein Express
Assay LabChips (Perkin Elmer #760,499) were set up using the protocol of the Protein
Pico Assay Reagent Kit (Perkin Elmer #760,498). Activation of the Pb-Tx was assessed on
LabChip GX Reviewer software (Perkin Elmer), with relative activation determined by
dividing the activated light chain peak area by the total activated and intact light chain
peak area.

2.4. In Vivo Efficacy Study

Eight-week-old female Fox Chase severe combined immunodeficiency mice (Charles
River Laboratories, Wilmington, MA, USA) were implanted subcutaneously in the right
hind flank with 5 × 106 H292 cells. The implant medium contained a 1:1 mixture of
serum-free RPMI media and Matrigel (Corning, Corning, NY, USA). After tumors were
palpable, body weights and tumor volumes were collected twice weekly. Tumors were
measured using digital calipers and tumor volumes were calculated using the formula:
tumor length × (tumor width)2 × 0.52 = tumor volume. Eleven days after tumor cell
implantation, mice were assigned to treatment groups of eight mice each. Each treatment
group had an approximately equal mean tumor volume of 140 mm3. After assignment,
mice were treated with a single 10 mL/kg intraperitoneal dose of the test article.

2.5. QZ Assay of Human Plasma Samples to Assess the Stability of CX-188 in Plasma In Vitro

Oregon Green-labeled Pb-Tx in phosphate-buffered saline (PBS), pH 7.2, were added to
an equal volume of plasma from healthy donors (n = 5) or patients with lung cancer (n = 5)
or gastric cancer (n = 5) (ProteoGenex, Inglewood, CA, USA) to give a final concentration
of 714 µg/mL in a total volume of 10 µL. The Pb-Tx and plasma mixtures were incubated
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for 48 h at 37 ◦C in a humidified chamber; then, they were diluted 1:50 in PBS and
analyzed with Western capillary electrophoresis (Wes). Samples were separated for 33 min
to resolve activated and intact Pb-Tx and then incubated for 1 h with goat polyclonal
antibodies against Oregon Green Dye (1/40; A11095 ThermoFisher). Target proteins were
immunoprobed using a 30 min incubation with a horseradish peroxidase-conjugated
secondary antibody (1/40; 705-035-147, Jackson ImmunoResearch, West Grove, PA, USA)
and chemiluminescent substrate (PS-CS0; ProteinSimple Cat, San Jose, CA, USA). The
activation of the labeled Pb-Tx was calculated from the chemiluminescent signals of the
activated and intact light chain, as measured using the integrated Simple Western Compass
software (ProteinSimple). Only peaks with a signal-to-noise ratio of ≥5 were considered
positive. This signal-to-noise ratio was calculated by the Simple Western Compass software
(ProteinSimple).

2.6. Statistical Analysis

Data are presented as mean ± standard error. Statistical significance was analyzed
using the two-sided Student’s t-test (p ≤ 0.05 was considered statistically significant).

3. Results
3.1. Quantitative Zymography (QZ) Technology for Assessment of Protease Activity Ex Vivo

Pb-Tx consist of an active antibody (or antibody fragment), a prodomain containing a
unique masking peptide, and a protease-cleavable substrate linker. The mask, identified
by screening a peptide library [44], is fused to the amino terminus of the antibody light
chain and blocks antibody binding. The linker between the mask and antibody contains
a substrate that is cleaved by selected protease classes. Protease-specific substrates are
identified by screening a peptide library using a tagged bacterial display system that
enables positive and negative selection by fluorescence-activated cell sorting of peptides
cleaved by recombinant proteases of interest [45].

The QZ technique described here involves the incubation of labeled Pb-Tx with a
tissue sample (Figure 1). If the sample includes proteases that activate the Pb-Tx, the
substrate will be cleaved, leading to dissociation of the prodomain, which can be measured
in conditioned medium by capillary electrophoresis (Figure 2). By generating Pb-Tx with
differing protease specificities, the profile of specific protease activities can be characterized
in a semi-quantitative manner.

Figure 1. Overview of the in situ quantitative zymography (QZ) assay. Schematic demonstrating QZ
methodology for the assessment of in situ Probody therapeutic(s) (Pb-Tx) activation. Labeled Pb-Tx
are incubated with a tissue section, and the extent of Pb-Tx activation is measured in conditioned
medium using capillary electrophoresis (CE).
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Figure 2. Example of capillary electrophoresis (CE)-based Pb-Tx cleavage assessment. Electrophero-
grams of CE-based cleavage assessment of the C225-Sub1 Pb-Tx incubated with (A) recombinant
human membrane-type serine protease 1 (MT-SP1) and (B) matrix metalloproteinase-2 (MMP-2) for
4 h. LC, light chain; HC, heavy chain; Pb-Tx, Probody therapeutic.

To avoid potential binding of the activated Pb-Tx to the antigen, a non-binding anti-
body was designed by several mutations of the C225 anti-epidermal growth factor receptor
(EGFR) antibody heavy chain (HC) complementarity-determining regions (Figure S1). The
resulting mutant antibody (MC225) was not capable of binding to the EGFR antigen and
thus serves as a universal reagent for the QZ assay (Figure S1).

3.2. Optimization of QZ Assay Conditions

MC225 Pb-Tx containing protease substrates Sub1 or Sub2 were used to assess the
effect of experimental variables on QZ activity. Here, archival bladder cancer tissue from
patients or H292 human non-small cell lung cancer xenograft tumor sections were utilized.
Three human tumor serial sections were analyzed by leaving one whole and dividing the
other two into halves or quarters for tumor tissue correlation studies (Figure 3A). Using
the MC225 Sub1 Pb-Tx, the level of protease-activated Pb-Tx was found to be proportional
to tissue content in the tissue halves; however, the quarters showed some variability
(Figure 3B), indicating some degree of protease activity heterogeneity across the tumor
sample. Next, QZ activity assessment of tumor sections of the same size but with different
assay buffer volumes supported the correlation of activated Pb-Tx levels with the relative
concentration of protease activity (Figure 3C). Furthermore, the effect of tumor section
thickness was also explored, demonstrating that the Pb-Tx activation signal decreases with
reduced section thickness (Figure 3D). Protease zymography assays are performed on
fresh or frozen tissues that maintain endogenous protease activity; therefore, conditions of
tissue cryopreservation and storage were extensively evaluated. Specifically, assessment of
protease activity in fresh compared to frozen and stored tumor tissue samples showed that
Pb-Tx activation did not decrease with frozen storage at −80 ◦C for 4 months (Figure 3E).
Similarly, Pb-Tx activation was unaffected by freezing technique (liquid nitrogen or carbon
dioxide) or temperature (−80 ◦C or −20 ◦C; Figure 3F). The technical reproducibility of the
assay was confirmed in H292 xenograft tumor samples and patient tissues (Figure S2).
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Figure 3. The effect of experimental variables on the quantitative zymography (QZ) assay. (A) Diagram showing tissue
partitioning into halves and quarters prior to QZ activity assessment. (B) QZ assay of a tissue sample assessed at different
section sizes using a constant assay volume (100 µL). As the tissue was halved and quartered, decreased activity was
observed. (C) QZ assay of a tissue sample assessed in different assay volumes (100 µL and 300 µL) showing correlation of
assay volume with activity. (D) QZ assay of tissue sections of different thickness in a fixed volume showing correlation of
tissue thickness with activity. (E) QZ assay before and after tissue storage at −80 ◦C for 4 months showing preservation of
activity after storage. (F) QZ assay of tissue samples subjected to different freezing techniques and storage temperatures.
Samples frozen using dry ice (CO2), liquid nitrogen (LN), or −80 ◦C temperature were stored at −80 ◦C. Samples frozen
using −20 ◦C temperature were stored at −20 ◦C. Activity was similar regardless of freezing condition and storage
temperature. For data shown in panels (B–E), the Sub1 Probody therapeutic (Pb-Tx) was used, while for panel (F), the Sub2
Pb-Tx was used. The incubation time for data shown in panels (B–D) was 24 h. The incubation time was 48 h for data
shown in panels (E,F).

3.3. Assessment of Protease Activity of Different Specificities

To demonstrate the ability of the QZ assay to assess the activity of proteases with dif-
ferent specificities, we utilized Pb-Tx containing a serine protease substrate (LSGRSDNH,
C225-S01) cleavable by at least two serine proteases, MT-SP1 and urokinase-type plas-
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minogen activator (uPA), and a broad-spectrum matrix metalloproteinase (MMP)-specific
substrate (PLGL, C225-M01) (Figure S3). To evaluate the heterogeneity of protease activity
in tumor tissue, we measured the activation of C225-S01 and C225-M01 Pb-Tx in tumor sam-
ples from patients with different types of cancer: head and neck squamous cell carcinoma
(HNSCC), pancreatic cancer, and prostate cancer (Figure 4A–C). Protease inhibitors were
used to confirm the specificity of the protease activity measured by both Pb-Tx. Notably,
the HNSCC tumor sample revealed the presence of both serine and MMP protease activity.
As expected, the activation signal of both C225-S01 and C225-M01 Pb-Tx was inhibited
by pre-treatment of the tissues with a broad-spectrum protease inhibitor cocktail. How-
ever, whereas C225-S01 activation was abolished by the serine protease-specific inhibitor
aprotinin and not the MMP-specific inhibitor Galardin, a reverse inhibition pattern was
detected for C225-M01. Thus, these data demonstrate that the QZ assay can differentiate
between different protease specificities by exploiting substrate specificity and selectivity
and that further refinement can be achieved using protease-specific inhibitors. Additional
tissue samples of human pancreatic and prostate tumors were identified as examples of
tissues with predominant serine or MMP protease activity, respectively, using the Pb-Tx
and protease class-specific inhibitors (Figures 3C and 4B). Furthermore, to compare the QZ
assay to a traditional fluorescent probe approach, we have determined that the kcat/Km val-
ues of substrate S01 in the context of an internally quenched (IQ) probe versus a Pb-Tx for
uPA and MT-SP1 were 4.6 and 3.5 times higher, respectively (Figure S4), thus additionally
supporting the translational value of the QZ assay for the development of conditionally
activated therapeutics.

Figure 4. Validation of the quantitative zymography (QZ) assay for different protease specificities in human tumor tissue.
Serine protease and matrix metalloproteinase (MMP) activity were measured with 20 µg/mL Probody therapeutics (Pb-
Tx) C225-S01 and C225-M01, respectively, after incubation for 48 h at 37 ◦C with tissue sections. Protease activity was
characterized in cryopreserved sections of (A) head and neck squamous cell carcinoma, (B) pancreatic cancer, and (C)
prostate cancer in the presence of the following protease inhibitors: serine protease inhibitor aprotinin, MMP protease
inhibitor Galardin, and a broad-spectrum protease inhibitor cocktail (BSPI).

3.4. QZ Technology for Protease Characterization in H292 Xenograft Tumor Sections

To further investigate the correlation of protease activity measured in situ with the
QZ assay and in vivo Pb-Tx activity, we utilized the EGFR-responsive H292 xenograft
model. For these experiments, Pb-Tx containing the multi-specific protease substrates Sub1
and Sub2 were utilized. Based on the substrate designs, MC225 Sub1 is less cleavable by
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selected MMP proteases than MC225 Sub2 and therefore demonstrated a lower activation
rate in situ (Figure 5A). This finding was consistent across several H292 xenograft tumors
from different mice (n = 5). Notably, this in situ activation profile was corroborated by Pb-Tx
in vivo efficacy in the H292 xenograft tumor model (Figure 5B). While both the C225 Sub1
and C225 Sub2 Pb-Tx demonstrated significant efficacy at the 10-mg/kg dose, efficacy was
enhanced with C225 Sub2 compared with C225 Sub1. These data demonstrate translation
of the in situ QZ activation findings to the biological activity of Pb-Tx in in vivo models
and highlight a potential role for the QZ assay in the prediction of protease substrate
activation in biological systems. We further assessed the activation of these Pb-Tx in tissue
samples from four patients with cholangiocarcinoma (Figure 5C). Consistent with the
xenograft tumor results, a slightly higher activation rate was observed with MC225 Sub2
compared with MC255 Sub1. These results further demonstrate that the QZ technology
enables the assessment of protease activity in patient tissues and supports the design of
specific protease substrates that leverage the activities of tumor-associated proteases for
therapeutic activation.

Figure 5. Sub1 vs. Sub2 activation in xenograft models and human tumor tissue. (A) Quantitative zymography (QZ)
assessment of C225 Probody therapeutics (Pb-Tx) activation with H292 cell line-derived xenograft (CDX) tissue. A total of
20 µg/mL of MC225-Sub1 or MC225-Sub2 was incubated for 48 h at 37 ◦C with tissue sections from H292 CDX tumors
(n = 5). (B) In vivo efficacy at 10 mg/kg (mpk) of the C225 Pb-Tx with Sub1 or Sub2 substrates compared to cetuximab and
intravenous immunoglobulin therapy (IVIG) in the H292 xenograft model (n = 8 mice per group). (C) QZ assessment of
MC225-Sub1 and MC225-Sub2 Pb-Tx activation with cholangiocarcinoma patient tissues (n = 4). Statistical significance was
calculated by Student’s t-test.
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3.5. QZ Technology for Assessment of Protease Activity in Patient-Derived Plasma Samples

The QZ assay can be used for the detection of protease activity in liquid as well as in
solid biological samples. Here, we present an example of the assessment of a programmed
cell death 1 (PD-1) Pb-Tx (CX-188) in the plasma of heathy donors and patients with
cancer. We first established that a capillary electrophoresis immunoassay-based method
effectively differentiated the activated and intact CX-188 Pb-Tx. The lower limit of detection
of activated CX-188 was determined to be ≥1 µg/mL. After 48 h of incubation of CX-188
in plasma samples from normal healthy volunteers (n = 5) and patients with lung (n = 5) or
gastric cancer (n = 5), there was no evidence of CX-188 cleavage (Tables S1–S3, Figure S5),
demonstrating that the Pb-Tx are stable in patients’ plasma as designed.

4. Discussion

Proteases are increasingly recognized as integral regulatory components of numerous
biological mechanisms. Therefore, there is increasing interest in the potential utility of
proteases as biomarkers for diagnostics and targets for therapeutics in a wide range of
pathological conditions [2]. Consequently, reliable and robust methods are required to
better understand the physiological and pathological relevance of proteases and their
potential roles in the management of disease. As mRNA and protein expression assays are
generally unable to distinguish zymogens and active and degraded enzymes, these assays
are inappropriate for accurate estimation of protease activity. Some novel zymography
assays allow the evaluation of physiological and pathological protease activity, but zymog-
raphy remains a relatively immature field compared with protein and gene expression [12].
Consequently, there remains an outstanding need for effective, reliable, and reproducible
methods for the estimation of functional protease activity in biological samples.

Representing a novel in situ zymography approach, the results reported here demon-
strate that the QZ assay enables the detection of specific protease activity in preclinical
and clinical samples. After exposure of a labeled, protease-activatable Pb-Tx to the sample,
endogenous protease activity can be assessed by capillary electrophoresis to identify intact
and cleaved Pb-Tx levels. Earlier in situ zymography techniques, which relied on the
direct visualization of fluorescein-tagged substrates, commonly used non-specific sub-
strates, such as DQ collagen [15]. Furthermore, while active site-specific anti-protease
antibodies have been investigated, they are limited to a few antibodies for a small subset
of proteases [20–23]. In contrast, the QZ assay can be adapted to virtually all proteases,
provided that selective substrates and the optimal conditions for individual proteases
are available and applied. In cases in which substrates are not sufficiently selective to
distinguish between individual proteases due to overlapping protease specificities, the QZ
assay can be complemented with the use of inhibitors, individually or in combination, to
characterize the different protease activity levels.

In contrast to an earlier Pb-Tx-based in situ zymography technique we reported, called
IHZ, which relies on the detection of activated Pb-Tx binding to the target [43], the QZ assay
leverages capillary electrophoresis for the detection of activated Pb-Tx in a target-agnostic
manner. Therefore, the QZ assay more specifically measures protease activity compared
with the IHZ assay, which addresses therapeutic activation and target binding. Further-
more, IHC-based techniques have long been associated with multiple challenges in staining
and scoring, although these have been largely addressed by digital IHC analysis, which
was introduced to overcome these limitations and allow high-resolution, high-contrast,
whole-slide imaging [46]. Conversely, capillary electrophoresis gained considerable interest
in the field of study of monoclonal antibodies due to its high resolution and efficiency
of separation of monoclonal antibodies and their derivatives [47,48], and it offers rapid,
reproducible, and objective assessment that does not require antigen binding for signal de-
tection. Other in situ zymography approaches have been introduced utilizing a quenched
protease substrate conjugated to an integrin-targeted nanoparticle [17] or contained within
a complexed poly-arginine probe for cell surface staining upon activation [49]. In contrast
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to QZ, these approaches are also limited by the requirement for target engagement or cell
surface labeling for fluorescence-based staining detection of protease activity.

To interrogate the effects of specific assay variables on QZ activation, an extensive
evaluation of assay conditions was performed. These data indicate that variables, such as
tissue size and assay volume, can affect the activation readout and that controlling for these
factors enables more direct comparison between samples. Of note, protease activity was not
affected by prolonged sample storage at −80 ◦C (Figure 3E) and did not vary substantially
when different freezing techniques and temperatures were utilized (Figure 3F), suggesting
that the assay can be widely used across different laboratories and is applicable for the
evaluation of archival as well as fresh tumor tissue. In addition, the QZ assay was shown
to be applicable to the interrogation of protease activity in liquid biospecimens. As such,
we have applied the QZ assay principle to evaluate protease activity in plasma of healthy
donors and cancer patients. No activation of Pb-Tx was detected in patient plasma samples,
which is consistent with the specificity of Pb-Tx for tumor-associated proteases and clinical
data, demonstrating that Pb-Tx are activated in tumor sites but remain predominantly
intact in plasma in vivo [50]. Notably, protease activity is expected to be low in plasma
in vitro due to the abundance of endogenous protease inhibitors that represent nearly 10%
of the total protein in plasma and by weight, constitute the third largest group of functional
proteins after albumin and the immunoglobulins [51,52]. Together, these findings suggest
that the QZ assay represents a robust protease activity measuring technology that may
have expanded utility compared with IHC-based methods.

Assessment of protease activity in H292 tumor xenograft tissue demonstrated that Pb-
Tx molecules differing only in protease substrate were differentially activated by xenograft
tumors derived from a single tumor cell line (Figure 5A). QZ-assessed protease activity
was increased with the Sub2 substrate compared with the Sub1 substrate due to the specific
design elements of the former substrate associated with increased cleavability by MMP
proteases. Furthermore, an in vivo study assessing Pb-Tx with Sub1 and Sub2 showed
increased efficacy for C225 Sub2 compared to C225 Sub1 (Figure 5B), thus agreeing with
the in situ QZ assessment of these two constructs. These findings demonstrate that the QZ
assay can be predictive of in vivo activity and can differentiate between substrates with
different protease cleavability profiles.

The application of the QZ technique to the evaluation of clinical tissue specimens was
also assessed and showed that the assay was suitable for the measurement of protease
activity in patient tumor samples (Figures 4 and 5C). Evaluation of human tumor tissue
sections demonstrated the presence of detectable protease activity in most tumors across
multiple indications. Moreover, the QZ assay can also be used for cataloging and differenti-
ating protease specificity in human tissue with the use of more selective substrates and/or
specific protease inhibitors.

The current Pb-Tx technology has been used to develop a range of conditionally
activated therapeutics with a diverse profile of target antigens and demonstrated clinical
benefit [36,41,42]. Pb-Tx-based assays have been used to inform therapeutic development
and further validate the Pb-Tx platform [39,50]. Notably, the cleavability of a given protease
substrate can be affected by the scaffold and format of the probe. For example, the increased
cleavability of a conventional small peptide probe was observed compared to a Pb-Tx
containing the same substrate, which is likely due to differences in protease accessibility
(Figure S4). Therefore, the assessment of substrate activation in biological tissues using
surrogate small molecules or fluorescent probes can potentially overestimate the degree
of substrate cleavage and might have limited predictive value for the development of
conditionally activated therapeutics.

Taken together, the current study shows that the QZ assay is a robust and reliable
method for in situ assessment of protease activity in clinical, as well as in preclinical,
samples and has the potential to be applied to a wide range of clinical sample types,
including plasma, cerebrospinal fluid, bone marrow, synovial fluid, and tissue samples.
With the ability to tailor Pb-Tx substrate specificity for diverse proteases, the QZ assay offers
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the potential to enhance our current understanding of the role of proteases in numerous
biological processes. The assay is also well positioned to inform the development of
therapeutics for the wide range of diseases in which dysregulated protease activity has
been implicated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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selectivity, Figure S4: Substrate protease cleavability in an internally quenched (IQ) probe vs. Pb-Tx
format, Figure S5: Electropherogram images of CX-188 incubated in plasma.
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