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Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disor-
der. However, studies providing PAH-related gene expression profiles are scarce. To identify
hub genes involved in PAH, we investigate two microarray data sets from gene expression
omnibus (GEO). A total of 150 differentially expressed genes (DEGs) were identified by limma
package. Enriched Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways of DEGs mostly included mitotic nuclear division, ATPase ac-
tivity, and Herpes simplex virus one infection. Ten hub genes from three significant modules
were ascertained by Cytoscape (CytoHubba). Gene set enrichment analysis (GSEA) plots
showed that transcription elongation factor complex was the most significantly enriched
gene set positively correlated with the PAH group. At the same time, solute proton symporter
activity was the most significantly enriched gene set positively correlated with the con-
trol group. Correlation analysis between hub genes suggested that SMC4, TOP2A, SMC2,
KIF11, KIF23, ANLN, ARHGAP11A, SMC3, SMC6 and RAD50 may involve in the pathogen-
esis of PAH. Then, the miRNA-target genes regulation network was performed to unveil the
underlying complex association among them. Finally, RNA extracted from monocrotaline
(MCT)-induced Rat-PAH model lung artery tissues were to conduct quantitative real-time
PCR (qRT-PCR) to validate these hub genes. In conclusion, our study offers new evidence
for the underlying molecular mechanisms of PAH as well as attractive targets for diagnosis
and treatment of PAH.

Introduction
Pulmonary arterial hypertension (PAH) is a common disorder worldwide characterized by irreversible
remodeling of the distal pulmonary arteries, resulting in sustained rise pulmonary vascular resistance
and right ventricular failure, eventually, death [1,2]. Over the past decades, tremendous progress has been
made in understanding the basic pathobiological of PAH and its essential history, prognostic biomarkers,
and treatment options. However, studies providing PAH-related gene expression profiles remain rare. In
consequence, it is an urgent mission to identify clinical molecular biomarkers and investigate the under-
lying mechanisms involved in the PAH, that might help in developing novel scientific-based diagnostic
and adopt target-treatment methods in PAH patients.

In current years, bioinformatics analysis has been widely used to analyze microarray data to determine
differentially expressed genes (DEGs) and perform various analyses. However, on account of the small
sample size and high false-positive rate in single microarray analysis, it may be hard access to reliable
data-mining results. In our research, two messenger RNA (mRNA) microarray data sets acquired from
gene expression omnibus (GEO) were prepared for further analyses. DEGs between pulmonary arterial
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hypertension patients and healthy controls were screened to identify vital biomarkers. Possible differentially expressed
genes and hub genes involved in pulmonary arterial hypertension were investigated via Gene Ontology (GO) anno-
tation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein–protein interaction (PPI)
network analysis and Gene set enrichment analysis (GSEA). Eventually, a total of 150 DEGs and ten hub genes were
screened, which may be prospective diagnostic biomarkers and target-treatment for PAH.

Materials and methods
Microarray data acquisition
Microarray data were downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo), which is a public genomics
database that contains sufficient high-throughput gene expression data [3]. Series matrix files and platform infor-
mation of GSE113439 and GSE53408 were downloaded from the GEO database. GSE113439 is based on GPL6244
(Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]) platform and includes 15 pulmonary arterial hy-
pertension patients and 11 normal controls. GSE53408 is based on GPL6244 platform (Affymetrix Human Gene 1.0
ST Array [transcript (gene) version]) and collect 12 pulmonary arterial hypertension patients and 11 healthy controls.
To make this article better understand, the data processing procedure of our research was illustrated in the workflow
(see Figure 1).

Data processing and DEGs determining
Data preprocessing included transform gene probes into gene symbols, data consolidation, and batch normalization.
Probes without gene symbols or genes with more than one probe were deleted or averaged, respectively. The merged
data were prepossessed by SVA package in R software (version 4.0.0) to remove batch effects [4]. limma package in R
(version 4.0.0) software was utilized to screen DEGs between pulmonary arterial hypertension patients and normal
controls, followed by performing data normalization [5]. Then, adjusted P<0.05 and |log FC| (fold change) > 1.5
were considered statistically significant. Heatmap package in R software (version 4.0.0) was employed to map the
different profiles of DEGs.

GO annotation and KEGG pathway enrichment analysis
The database for annotation, KEGG analysis, visualization and integrated discovery was performed via Clusterpro-
filer package and AnnotationHub package as well as AnnotationDbi package in R software (version 4.0.0) that provide
systematic functional annotation information about genes and protein [6]. GO annotation, which includes biologi-
cal processes (BP), cellular component (CC), and molecular function (MF) analyses [7]. KEGG is a popular online
database used in pathway analysis [8]. Gene count >2 and P-value < 0.05 were recognized as the threshold. Both GO
annotation and KEGG pathway analyses of DEGs were performed via R software (version 4.0.0).

Gene set enrichment analysis
Gene set enrichment analysis (GSEA, Broad Institute, Inc., Massachusetts Institute of Technology, and Regents of the
University of California) is a computational method used to assesses whether a predefined a set of genes shows sta-
tistically significant and consistent differences between two biological states [9]. In our study, GSEA software(version
4.0.3) was used to perform GO analysis on all detected genes and false discovery rate (FDR) <25% and P<0.05 were
regarded as the cut-off criteria. The gene matrix in our analysis was c5.all.v7.1symbols.gmt[Gene ontology].

PPI network construction and hub gene identification
Search tool for the retrieval of interacting genes (STRING 11.0; http://string-db.org) was applied to create a PPI
network of DEGs [10]. Interaction with a combined score >0.7 was set as the cut-off point. Cytoscape (3.8.0) software
was used to visualize the PPI network [11]. Significant modules and hub genes in the PPI network were identified by
molecular complex detection (MCODE 1.6.1), a plug-in of Cytoscape (3.8.0) software that clusters a network based
on the topology to recognize closely connected regions automatically [12]. The parameters of DEGs clustering and
scoring were set as follows: MCODE score ≥ 4, degree cut-off = 2, node score cut-off = 0.2, max depth = 100, and
k-score = 2.

miRNA-gene network construction
The inter-regulated miRNA and ten hub genes were identified with the help of several open online tools, which in-
cluding miRWalk, miRDB, and TargetScan. Cytoscape tool was applied to construct the interaction network between
miRNA and target mRNA.
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Figure 1. The workflow of our research

GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–pro-

tein interaction.
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Table 1 GO and KEGG pathway enrichment analysis of DEGs in the PAH samples

Term Description Count P-value

Up-regulation

GO:0048285 Organelle fission 47 4.77E-15

GO:0000280 Mitotic nuclear division 44 5.72E-13

GO:0007059 Chromosome segregation 39 5.60E-13

GO:0005874 Microtubule 35 8.74E-08

GO:0005819 Spindle 33 1.10E-08

GO:0098687 Chromosomal region 32 3.82E-08

GO:0016887 ATPase activity 50 4.22E-15

GO:0050839 Cell adhesion molecule binding 38 8.53E-07

GO:0015631 Tubulin-binding 30 4.84E-07

hsa05168 Herpes simplex virus one infection 114 2.44E-07

hsa05412 Arrhythmogenic right ventricular
cardiomyopathy

25 7.28E-05

hsa01212 Fatty acid metabolism 20 0.000113535

Down-regulation

GO:0046777 Protein autophosphorylation 19 0.000180252

GO:0007051 Spindle organization 17 2.86E-05

GO:0090734 Site of DNA damage 8 0.001801353

GO:0097431 Mitotic spindle pole 5 0.001260684

GO:0005178 Integrin binding 14 9.05E-05

GO:0003725 Double-stranded RNA binding 9 0.000655078

hsa01212 Fatty acid metabolism 11 0.001127558

hsa01524 Platinum drug resistance 13 0.000232003

Abbreviations: DEG, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PAH, pulmonary arterial
hypertension.

Table 2 GO and KEGG pathway enrichment analysis of DEGs in the most significant module

Term Pathway description Count P-value

GO:0006996 Organelle organization 6 7.28E-05

GO:0000280 Nuclear division 5 5.88E-07

GO:0022402 Cell cycle process 5 5.62E-06

GO:0043229 Intracellular organelle 6 0.0219599139512363

GO:0043234 Protein complex 5 0.00510417758391666

GO:0005694 Chromosome 4 5.31E-04

GO:1901363 Heterocyclic compound binding 6 0.00719682984698825

GO:0032559 Adenyl ribonucleotide binding 5 5.57E-04

GO:0016887 ATPase activity 3 0.00687545528482454

hsa05168 Herpes simplex virus one infection 15 0.000113535

hsa01212 Fatty acid metabolism 19 0.000206574

hsa03013 RNA transport 10 0.000466728

Abbreviations: GO, Gene Ontology; DEG, differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes and Genomes; PAH, pulmonary arterial
hypertension.

Reverse transcription and quantitative real-time PCR (qRT-PCR)
Total RNA was isolated from MCT-induced Rats-PAH model (n=5) and control rats (n=5) lung artery tissues us-
ing TRIzol reagent (Invitrogen, U.S.A.), respectively. According to the manufacturer’s instructions, RNA quality and
quantity were measured by spectrophotometer. Then RNA was reverse-transcribed into cDNA using PrimeScript™RT
reagent kit (No. RR037A, TaKaRa, Japan). qRT-PCR was performed on a LightCycler 480 (Roche). The gene expres-
sion levels were analyzed using a TB Green Premix Ex Taq™ kit (No. RR420, TaKaRa, Japan). The relative expression
of the gene was calculated using the 2−��Ct method. Tubulin was viewed as an internal control. The thermal cycler
conditions were as follows: 30 s at 95.0◦C for cDNA denatured, 40 cycles of 95.0◦C for 5 s, 60◦C for 30 s and 1 min at
60.0◦C. Our experiment was conducted three biological replicates, and all primer sequences are listed in Table 4.

4 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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ConnectivityMap (CMap) analysis
To explore potential drugs that may ameliorate pulmonary arterial hypertension, we processed DEGs via CMap anal-
ysis (https://portals.broadinstitute.org/cmap), which integrated diseases, drugs, genes based on gene expression pro-
files. In our study, mean < − 0.4 and P<0.01 were set as the screening criteria.

Statistical method
Data are presented as mean +− standard. Graphs were drawn by using GraphPad Prism software (version 8.0, La Jolla,
CA, U.S.A.). PAH-rat versus healthy rat data were analyzed by Student t-test with Welch correction. P-value < 0.05
were considered statistically significant.

Results
Detection of DEGs related to PAH
To identify DEGs linked with PAH, we download two microarray expression profiles from GEO (GSE113439 and
GSE53408). About 150 DEGs involved in PAH were screened by limma package after consolidation and normalization
of the original microarray data (adjusted P-value < 0.05, |logFC| > 1.5). As was shown in the heatmap (Figure 2A),
among them, eight genes were down-regulated, and 142 genes were up-regulated (Figure 2B).

Gene set enrichment analysis
GSEA was performed to identify gene sets with a statistically significant difference between the PAH groups and
healthy controls. Most significant enriched gene sets positively correlated with the PAH group included transcription
elongation factor complex, inclusion body, and axon cytoplasm (Figure 3A–C). Most significant enriched gene sets
positively correlated with the control group included solute proton symporter activity, delayed rectifier potassium
channel activity, and carbohydrate cation symporter activity (Figure 3D–F).

PPI network analysis and hub genes recognition
To identify the most significant clusters of DEGs, the PPI network of DEGs was constructed by STRING and visualized
by Cytoscape (3.8.0). As was shown in Figure 4A, 101 nodes and 230 edged were contained in the PPI network. Three
most significant modules were recognized by MCODE, a plug-in of Cytoscape (Figure 4B–D). Then, ten hub genes
closely linked to pulmonary arterial hypertension were identified by using cytoHubba, a plug-in of Cytoscape (Figure
4E and Table 3).

GO enrichment analysis
To determine biological features of DEGs, GO annotation was accomplished by R software (4.0.0) as follows: Most sig-
nificant enrichment in Biological process (BP) of DEGs included mitotic nuclear division, organelle fission, chromo-
some segregation, and sister chromatid segregation. Primary enrichment in cell component (CC) of DEGs involved
mitotic spindle, spindle, chromosomal region, and microtubule. Primary enrichment in molecule function (MF) con-
sisted of ATPase activity, helicase activity, DNA-dependent ATPase activity, and DNA helicase activity (Figure 5A,B
and Tables 1 and 2 ).

KEGG enrichment analysis
To explore enriched pathways of DEGs, KEGG pathway analysis was done using R software (4.0.0). The result of
investigation revealed that DEGs were mainly enriched in Herpes simplex virus one infection, Arrhythmogenic right
ventricular cardiomyopathy (ARVC), fatty acid metabolism, RNA transport, and platinum drug resistance (Figure
6A,B).

miRNA–gene inter-regulation network
For further explore the mechanism of the ten core genes, we investigated the potential interaction network of these
genes and its response miRNA. An online platform, for instance, miRWalk, miRDB, and TargetScan were then to
predict miRNA–mRNA interaction network and visualized through Cytoscape software (Figure 7).

The analysis of qRT-PCR for hub genes
In our study, ten hub genes were identified using the PPI network, which is of the essence to the pathogenesis of PAH.
Among these genes, SMC2, SMC4, and RAD50 were well established by reports that they were overexpressed in

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 2. Heatmap and volcano plot of DEGs

(A) Heatmap of 150 DEGs screened by limma package. Red areas represent highly expressed genes and green areas represent

lowly expressed genes involved in PAH patients compared with healthy controls. (B) Volcano plot analysis and heatmap cluster

of DEGs. Red dots represent up-regulated genes and green dots represent down-regulated genes in PAH patients compared

with normal controls. Moreover, genes which log2FC>2 were marked; DEG, differentially expressed gene; PAH, pulmonary arterial

hypertension.
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Figure 3. GSEA plot showing most enriched gene sets in the PAH group and healthy controls

(A) The most significant enriched gene set positively correlated with the PAH group was transcription elongation factor complex.

(B) The second meaningful enriched gene set positively correlated with the PAH group was inclusion body. (C) The third signifi-

cant enriched gene set positively correlated with the PAH group was axon cytoplasm. (D) The most significant enriched gene set

positively associated with healthy controls was solute proton symporter activity. (E) The second meaningful enriched gene set

positively correlated with healthy controls was delayed rectifier potassium channel activity. (F) The third significant enriched gene

set positively associated with healthy controls was carbohydrate cation symporter activity; ES, enrichment score; GSEA, gene set

enrichment analysis; NES, normalized enrichment score; PAH, pulmonary arterial hypertension.

PAH patients or animal models compared with healthy cases. In consequence, SMC3, SMC6, KIF11, KIF23, TOP2A,
ARHGAP11A, and Anln were interested genes and were validated by qRT-PCR. As shown in Figure 8, the outcomes
that KIF23 and ARHGAP11A were lower expressed in PAH rat lung artery tissues than the healthy groups while
SMC3, SMC6, KIF11, TOP2A, and Anln were higher expression compared with the healthy group, which was con-
sistence with our predict results (Figure 8).

ConnectivityMap (CMap) analysis
To predict possible drugs or molecules that may mitigate PAH, CMap analysis was applied to find relevant molec-
ular compounds that can reverse the expression of DEGs in cell lines. As shown in Table 5, obviously, Trioxysalen,
Repaglinide, and Fluocinonide are the most significant three compounds.

Discussion
PAH is a chronic refractory disease characterized by arterial lesions in the small- to medium-sized distal pulmonary
artery associated with arterial muscularization, concentric endocardial thickening, and formation of plexiform le-
sions, leading to right ventricular hypertrophy and failure [2,13]. Even though extensive efforts have been made in
this field during recent years, the underlying pathological mechanism of PAH remains mostly unknown. The rea-
son may be related to the complexity and variety of human genes, and traditional PAH animal models cannot solve
this problem fundamentally. Due to the rapid progress of high-throughput microarray technology and bioinformatic
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License 4.0 (CC BY).

7



Bioscience Reports (2020) 40 BSR20202346
https://doi.org/10.1042/BSR20202346

Figure 4. PPI network and three significant modules of DEGs

(A) PPI network of DEGs created by STRING. Circles represent genes and lines represent PPIs. (B) The most significant module

identified by MCODE (score = 6.857). (C) The second significant module identified by MCODE (score = 5.600). (D) The third signif-

icant module identified by MCODE (score = 4.400). (E) The top ten genes identified by cytoHubba; DEG, differentially expressed

gene; PPI, protein–protein interaction.
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Figure 5. GO annotation results of DEGs

(A and B) The horizontal axis represents the enriched gene ratio. The vertical axis represents the corresponding annotations on the

most significantly enriched genes, including biological process, cellular component, and molecular function. The size of the circle

indicates the number of enriched genes. The adjusted P-values are presented with the color scales by the side; DEG, differentially

expressed gene; GO, Gene Ontology.
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Table 3 Features and functional roles of 10 hub genes screened from DEGs

No. Gene symbol Full name Function

1 SMC4 Structural maintenance of chromosomes 4 SMC4 potentially promote response to innate inflammatory
immune [23].

2 TOP2A DNA topoisomerase II alpha TOP2A decatenate intertwined DNA during anaphase to allow
chromosome segregation to occur before cell division [33].

3 SMC2 Structural maintenance of chromosomes 2 SMC2 involving in chromosome segregation and stability
chromosomal [20].

4 KIF11 Kinesin family member 11 Overexpression of KIF11during mitosis results in premature
separation of sister chromatids and an uneven distribution of
chromosomes [28].

5 KIF23 Kinesin family member 23 KIF23 plays an essential role in the bundling and transport of
microtubules to specific intracellular locations in different cells at
specific time points [34].

6 ANLN Anillin actin-binding protein ANLN is an F-actin binding protein that modulates podocyte cell
motility and interacts with the phosphoinositide 3-kinase (PI3K)
pathway via the slit diaphragm adaptor protein CD2-associated
protein (CD2AP) [32].

7 ARHGAP11A Rho GTPase activating protein 11A ARHGAP11A dynamically regulated colon cancer cell motility and
invasion and directly interacted with p53 tetramerization domain to
exhibit a Rho-independent role in cancer [27].

8 SMC3 Structural maintenance of chromosomes 3 Smc3 acetylation stabilizes cohesin association with
chromosomes, and its deacetylation by Hos1 in anaphase allows
reuse of Smc3 in the next cell cycle [35].

9 SMC6 Structural maintenance of chromosomes 6 Smc5–Smc6 play an essential role in cellular processes such as
genome replication, mitotic and meiotic chromosome segregation,
DNA repair [30].

10 RAD50 RAD50 double-strand break repair protein Homologs of Rad50 and Mre11 form Mre112-Rad50
hetero-tetramers, where two Rad50 ATP-binding cassette
nucleotide-binding domains and a Mre11 nuclease dimer
assemble as a catalytic head module that binds and cleaves DNA
[22].

Table 4 Primer sequences for qRT-PCR

No. Gene Primers sequences (5′to3′)

1 Rat-SMC6-91F TCTGATTGACATGCGGAGCA

2 Rat-SMC6-91R TTTGGGTGGCTTTTGGGACT

3 Rattus-Top2a-197 F CTGCCCATGCTCCCAAGTTA

4 Rattus-Top2a-197 R GGTGTCTTCTCGGTGCCATT

5 Rattus-Kif11-182F GGCAGCCAAAAGGACAACTG

6 Rattus-Kif11-182R CAGCTCCAGAACGCCCAATA

7 Rattus-Kif23-160F GGGGAAGGTTCGGATGATCG

8 Rattus-Kif23-160R GTTTCTGTACCGTCTCCCCG

9 Rattus-Anln-155F GACCCGTTCACCGAGAAGTT

10 Rattus-Anln-155 R GGCTGCTGCTGATTACTTGC

11 Rattus-Arhgap11a-83F TGCTAGACAACGGTCACTGG

12 Rattus-Arhgap11a-83R CAGAAACCTTCCCGTGCTCT

13 Rattus-Smc3-131 F AGGGACACTGCCTATCCTGA

14 Rattus-Smc3-131 R GAAACCTCCATGCTCCGACA

15 Rat-α-tubulin-132 F AGCGCCCAACCTACACTAACTTAAA

16 Rat-α-tubulin-132 R GAGGGTAGGGCACCAGGTTG

Note: Tubulin regard as the reference gene.

methods, we could make better insight into the critical genes associated with PAH and a deeper understanding of its
pathogenesis [14].

Here, we processed a total of 18837 genes. GSEA software could provide valuable information on large-scale genes
with a relatively smaller fold change. Then, we found that the PAH group was most positively correlated with enriched
gene sets like transcription elongation factor complex, inclusion body, and axon cytoplasm while compared with the
control group. Kuanghueih Chen et al. indicated that transcription elongation factor complex might be involved in the

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Table 5 Drugs or compounds screened by CMap analysis (Mean < −0.4 and P < 0.01)

CMap names Mean Enrichment P Specificity Percent non-null

Trioxysalen −0.578 −0.879 0.00052 0 100

Repaglinide −0.575 −0.849 0.00095 0 100

Fluocinonide −0.415 −0.726 0.0033 0.0112 80

Camptothecin −0.566 −0.852 0.00649 0.1818 100

Alfaxalone −0.56 −0.851 0.00661 0 100

Thioguanosine −0.567 −0.76 0.00682 0.0211 100

Procaine −0.461 −0.687 0.00693 0.0508 100

Trazodone −0.554 −0.84 0.00817 0.0562 100

GW-8510 −0.472 −0.746 0.00828 0.2672 100

Bephenium
hydroxynaphthoate

−0.453 −0.675 0.00845 0 100

Reserpine −0.606 −0.837 0.00863 0.0201 100

Mitoxantrone −0.514 −0.834 0.00903 0.0638 100

Medrysone −0.459 −0.62 0.00963 0.173 83

CMap: ConnectivityMap;
DEGs: Differentially Expressed Genes.

Figure 6. KEGG enrichment result of DEGs

(A and B) The size of circle represents gene count. KEGG enrichment analysis of DEGs showed that many of these genes were

mapped to Herpes simplex virus 1 infection, arrhythmogenic right ventricular cardiomyopathy (ARVC), fatty acid metabolism; DEG,

differentially expressed gene; FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes.

pathogenesis of PAH [15]. Besides, we identified 150 DEGs between the PAH patients and normal control based on
two mRNA microarray data sets. Protein–protein co-expression network showed closely linked genes among DEGs.
GO annotation result of DEGs demonstrated that organelle fission, nuclear division, and chromosome segregation
were significantly enriched, which is well consistent with current research findings [16]. KEGG enrichment analysis
of DEGs showed that many of these genes were mapped to Herpes simplex virus one infection, arrhythmogenic right

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. MiRNA–genes interaction network

(A and B) Circles represent target genes with green color, and triangles symbolize miRNA with brown color.

12 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 8. The results of qRT-PCR for top seven genes

(A–G) The expression of SMC3, SMC6, Arhgap11A, KIF23, KIF11, TOP2A, and Anln determined by qRT-PCR; PAH, pulmonary

arterial hypertension. **P<0.05, ***P<0.01, ****P<0.001.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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ventricular cardiomyopathy (ARVC) [2,17], and fatty acid metabolism [18], which suggested a critical role of immune
and inflammatory responses in pulmonary arterial hypertension [19].

A total of ten DEGs were identification as hub genes as follows: SMC4, TOP2A, SMC2, KIF11, KIF23, ANLN,
ARHGAP11A, SMC3, SMC6, and RAD50. Verónica Dávalos et al. suggested that high levels of structural mainte-
nance of chromosomes 2 (SMC2) may be required to allow WNT-driven cell proliferation which contribute a lot to
the development of PAH and that SMC2 down-regulate could lead to tumor cell apoptosis [20,21]. Li et al. showed the
physiological of peroxisome proliferator-activated receptor γ(PPARγ) and DNA damage response (DDR) by using
pulmonary arterial hypertension (PAH) as a model that impaired PPARγ signalling pathway related to endothelial cell
dysfunction and disrupted PPARγ-UBR5 (MRE11-RAD50-NBS1) interaction, heightened ATM interactor (ATMIN)
expression and DNA lesions. Therefore, PPARγ-DDR dysfunction may explain the genomic instability and loss of
endothelial homeostasis in PAH [22]. According to a study conducted by Qinlan Wang, Smc4, a core subunit of con-
densin, to potentially promote an inflammatory innate immune response. They suggested that knockdown of Smc4
inhibited Toll-like receptor-mediated production of proinflammatory cytokines such as IL-6, TNF-α in macrophages
[22,23]. HMGB1-TLR4 signaling axis has been shown to stimulate neutrophil NADPH oxidase (NOX2) in both neu-
trophils and lung microvascular endothelial cells, and NOX2 has played essential roles in the pathogenesis of PH.
HMGB1 induces macrophages to secrete proinflammatory cytokines in a TLR4-dependent way [24]. These literature
supported the importance of above-stated hub genes.

To date, there is no relevant publication on such hub genes as TOP2A, KIF11, KIF23, ANLN, ARHGAP11A, SMC3
and SMC6. Among them, KIF23 and ARHGAP11A were down-regulated in pulmonary arterial hypertension pa-
tients, which might have a protective role in PAH. KIF23 is a nuclear protein that localizes to the interzone of mitotic
spindles and acts as a plus-end-directed motor enzyme to control the cellular shape and biological processes such
as motility, mitosis, intracellular vesicle transport, organization, and positioning of membranous organelles [25,26].
ARHGAP11A localizes to the plasma membrane in early mitosis and the equatorial membrane in anaphase is known
as a regulator of cell cycle-dependent motility and directly interact with p53 tetramerization domain to exhibit a
Rho-independent role in cancer [27]. The up-regulation of remaining hub genes might exacerbate the PAH. KIF11
is an evolutionarily conserved microtubule motor protein that functions in centrosome and chromosome dynamics
in mitosis, KIF11 silencing induced increases in nuclear areas, micronucleus formation, DNA content and chro-
mosome numbers that may contribute to the pathogenesis of cancer [28,29]. The principal activity of the SMC5/6
complex is the maintenance of nuclear genome stability by resolving complex structures and possibly acting as an an-
tagonist of the cohesin complex TheSMC5/6complex exercise many functions, such as the control of unidirectional
rDNA replication, neutralizing toxic DNA intermediates during replication, preventing homologous recombination
between nonhomologous sequences [30,31]. Anillin actin-binding protein (ANLN) encodes an actin-binding protein
that plays a role in cell growth and migration and regulates actin cytoskeletal dynamics in podocytes [32]. All in all,
these predicted genes were experiment supported by qRT-PCR.

In summary, our study aimed to identify key molecules involved in the pathophysiology of pulmonary hyperten-
sion. About 150 DEGs and ten hub genes were screened via multiple-microarray analysis, which may become potential
targets clinical diagnosis and treatment of PAH in the near term. Our research embraces several merits. First, we ap-
plied GSEA to identify gene sets and GO enrichment (biological process, cell component, and molecular function)
with a statistically significant between the PAH groups and normal control. As a result, transcription elongation factor
complex, inclusion body, and axon cytoplasm were determined most positively linked with PAH. Second, we scru-
tinized 150 DEGs and finally screened ten essential genes from PPI network, the inter-regulation network between
ten target genes, and response miRNA was then performed to explore the potential mechanism of their biological
function thoroughly. More importantly, these predicted molecules were well consolidated by experiment. However,
owing to the lack of PAH patients’ detailed information, it is difficult to draw a clear association between selected
genes and the severity of PAH while using the same samples. The mechanisms of PAH are needed to further explore
in vitro or in vivo experiments.
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