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Abstract
Numerous studies in airways, ileum, and urinary bladder have demonstrated that relaxation by β-adrenoceptor agonists has 
lower potency and/or efficacy when contraction was elicited by muscarinic receptor agonists as compared to other G-protein-
coupled receptors, KCl, or basal tone, but the molecular mechanisms behind this relative resistance remain unclear. A paper 
by Huang et al. in this issue demonstrates that NAV2729, an inhibitor of ADP ribosylation factor 6, inhibits contraction of 
isolated blood vessels elicited by muscarinic receptor agonists, but not by α1-adrenoceptor agonists or KCl. Against this 
background, we discuss the role of ADP ribosylation factor 6 in cellular responses to G-protein-coupled receptor stimulation. 
While ADP ribosylation factor 6 apparently is the only promising molecular explanation for the relative resistance of smooth 
muscle contraction elicited by muscarinic agonists, the existing data are insufficient for a robust conclusion.
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Muscarinic receptors are important mediators of smooth 
muscle contraction in various tissues including airways, gut, 
and urinary bladder; this largely involves the  M3 subtype but 
 M2 receptors can also affect smooth muscle tone (Hegde 
and Eglen 1999).  M3 receptors typically couple to G-pro-
teins of the  Gq/11 type leading to activation of a phospholi-
pase C (PLC) (Caulfield and Birdsall 1998). Surprisingly, 
 M3-mediated smooth muscle contraction is not explained 
by PLC activation, for instance in the bladder (Frazier 
et al. 2008), but alternative molecular mechanisms to elicit 
smooth muscle contraction have not been well-defined.

The potency and/or efficacy of β-adrenoceptor agonists 
to relax smooth muscle is lower when tested against mus-
carinic agonists such as carbachol than against agonists at 
other receptors, against passive tension or against receptor-
independent contraction elicited by KCl (Dale et al. 2014). 
Such observations have been made in airways (Russel 1984; 

Raffestin et al. 1985; Ostrom and Ehlert 1999; Sarria et al. 
2002; Naline et al. 2007), ileum (Ostrom and Ehlert 1999), 
and bladder (Longhurst and Levendusky 1999; Witte et al. 
2011; Kanie et al. 2012) of multiple species including rat 
(Longhurst and Levendusky 1999; Michel and Sand 2009; 
Witte et al. 2011; Cernecka et al. 2014), guinea pig (Ostrom 
and Ehlert 1999), dog (Russel 1984), and human (Raffestin 
et al. 1985; Sarria et al. 2002; Naline et al. 2007; Kanie 
et al. 2012) and with agonists acting at histamine (Rus-
sel 1984; Raffestin et al. 1985; Ostrom and Ehlert 1999; 
Naline et al. 2007), 5-hydroxytryptamine (5-HT) (Michel 
and Sand 2009; Cernecka et al. 2014), bradykinin (Michel 
and Sand 2009; Cernecka et al. 2014), prostanoid receptors 
(Sarria et al. 2002), passive tone (Naline et al. 2007; Michel 
and Sand 2009; Cernecka et al. 2014), or KCl (Longhurst 
and Levendusky 1999; Michel and Sand 2009; Kanie et al. 
2012). While most of the above studies have used general 
β-adrenoceptor agonists such as isoprenaline, similar find-
ings have also been obtained with agonists selective for β2-
adrenoceptors such as formoterol, indacaterol, salbutamol, 
and salmeterol in human bronchi (Naline et al. 2007) or 
fenoterol in rat bladder (Erdogan et al. 2021) or selective 
for β3-adrenoceptors such as TRK 380 in human bladder 
(Kanie et al. 2012) or KUC 7322 in rat bladder (Cernecka 
et al. 2014). However, it has remained elusive why smooth 
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muscle contraction elicited by muscarinic receptor agonists 
is more resistant to relaxation by β-adrenoceptor agonists 
than that elicited by other stimuli. It appears logical that 
such selective resistance should be related to a signaling 
pathway activated preferentially by muscarinic receptors as 
compared to other receptors, but we are not aware of such 
signaling pathways.

A paper in this issue of the journal demonstrates that 
NAV2729, an inhibitor of ADP ribosylation factor 6 (ARF6), 
inhibits coronary vascular smooth muscle contraction elic-
ited by the muscarinic agonists carbachol and methacholine 
but not that elicited by agonists at other receptors includ-
ing α1-adrenoceptors, 5-HT, endothelin-1, or prostanoid TP 
receptors or those elicited by KCl (Huang et al. 2022). The 
same group had previously shown the existence of ARF6 
expression human prostate smooth muscle tissue (Hennen-
berg et al. 2013) and that NAV2729 inhibited contraction in 
isolated human prostate strips by α1-adrenoceptor agonists, 
whereas that elicited by a prostanoid TP receptor agonist, 
endothelin-1 or by KCl, was not inhibited (Yu et al. 2019). 
Furthermore, NAV2729 inhibited contraction in human 
prostate smooth muscle cells, and this was also observed 
in ARF6 knockout cells (Wang et al. 2021). Inhibition of 
ARF6 by NAV2729 inhibited contraction elicited by α1-
adrenoceptor agonists in human prostate (Yu et al. 2019) 
but not porcine blood vessels (Huang et al. 2022). Interest-
ingly, the inhibition of contraction in human prostate was 
accompanied by an inhibition of ARF6 in pull-down assays, 
while ARF6 was not activated by noradrenaline, phenyle-
phrine, or methoxamine (Yu et al. 2019). The selective inhi-
bition of muscarinic receptor responses in the blood vessels 

(Huang et al. 2022) raises the possibility that coupling to 
ARF6 may be a mechanism that distinguishes inhibition by 
β-adrenoceptor agonists of responses to a muscarinic agonist 
as compared to those elicited by other means.

ARF6 is a small GTP-binding protein that contributes 
to several cellular processes including G-protein-coupled 
receptor (GPCR) trafficking, actin organization, and contrac-
tile response through diverse downstream component inter-
action (Fig. 1, Table 1). ARF6 function is modulated by two 
distinct components. Guanine nucleotide exchange factors 
(GEFs) mediate the activation of ARF6, whereas GTPase-
activating proteins (GAPs) mediate inhibition. NAV2729 
interferes in the formation of ARF6-GEF complex to inhibit 
the ARF6 activation (Yamauchi et al. 2017).

ARF6 was shown to be a prerequisite component fur-
ther promoting either clathrin- or caveolin-mediated path-
way in agonist-induced endocytosis of several GPCRs such 
as β-adrenoceptor in adipocytes (Liu et al. 2010) and β2-
adrenoceptor in HEK293 cells (Claing et al. 2001; Law-
rence et al. 2005; Macia et al. 2012);  M2 muscarinic recep-
tors in HeLa cells (Delaney et al. 2002), in JEG-3 human 
choriocarcinoma cells (Reiner and Nathanson 2008), and 
in HEK293 cells (Houndolo et al. 2005); the luteinizing 
hormone chorionic gonadotropin receptor in HEK 293 cells 
(Kanamarlapudi et al. 2012); angiotensin type 1 receptor 
(Houndolo et al. 2005; Cotton et al. 2007); μ-opioid recep-
tor (Rankovic et al. 2009); the vasopressin  V2 receptor; 
and endothelin type B receptor (Houndolo et al. 2005) in 
HEK293 cells. Upon agonist stimulation, GPCR endocytosis 
was found mostly activated via ARF6-dependent pathway 
with some exceptions which show inhibitor regulatory effect 

Fig. 1  Schematic drawing of 
ARF6-mediated cellular effects 
in GPCRs agonist stimulation. 
Dashed red arrow, negative 
regulatory effect; black arrow, 
positive regulatory effect; GAP, 
GTPase-activating proteins; 
GDP, guanosine diphosphate; 
GEF, guanine nucleotide 
exchange factors; GTP, guano-
sine triphosphate; ↑, increase; ↓, 
decrease; ↔ , no effect
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Table 1  ARF6-mediated responses through G-protein isoform/G-protein-coupled receptors

Reference Cell line/tissue preparation G-protein isoform/G-pro-
tein-coupled receptor

Main finding ARF6-mediated effect

Bose et al. (2001) 3T3-L1 adipocytes Gα11 Endothelin 1–induced 
GLUT4 translocation

↑

Bouschet et al. (2007) HEK cells Ca sensing receptor Plasma membrane ruffling ↑
Chakraborti et al. (2017) Human pulmonary artery 

smooth muscle cells
Prostanoid TP receptor PLD2 and NADPH oxidase 

activation
↑

Chakraborti et al. (2018) Human pulmonary artery 
smooth muscle cells

Endothelin receptor PLD and NADPH oxidase 
activation

↑

Claing et al. (2001) HEK293 cells β2-adrenoceptor Agonist-induced receptor 
endocytosis

↑

Cotton et al. (2007) HEK293 cells Angiotensin type 1 receptor Agonist-induced membrane 
ruffling and cell migration

↑

Daher et al. (2008) Endothelial cells Endothelin  ETB receptor Agonist-induced cell migra-
tion and angiogenesis

↑

Davies et al. (2014) 3T3-L1 adipocytes Endothelin  ETA receptor Agonist-induced lipolysis ↑
Delaney et al. (2002) HeLa cells M2 muscarinic receptor Agonist-induced receptor 

endocytosis
↓

Hennenberg et al. (2013) Human prostate smooth 
muscle tissue

α1-adrenoceptor Receptor desensitization ↑

Herlemann et al. (2018) Human prostate smooth 
muscle tissue

α-adrenoceptor
Prostanoid TP receptor
Endothelin receptor

Smooth muscle contraction ↑
↑
↑

Houndolo et al. (2005) HEK293 cells M2 muscarinic receptor
Angiotensin type 1 receptor
Vasopressin  V2 receptor 

Endothelin type B receptor
VIP receptor

Agonist-induced receptor 
endocytosis

↑
↑
↑
↑
No effect

Huang et al. (2022) Pig interlobar (ila) and coro-
nary (ca) artery smooth 
muscle

Muscarinic receptor
α1-Adrenoceptor
5-HT receptor
Endothelin receptor
Prostanoid TP receptor

Smooth muscle contraction ↑ (ca), no effect (ila)
No effect (ca and ila)
No effect (ca and ila)
No effect (ca and ila)
No effect (ca and ila)

Johnson et al. (2006) COS7 cells N376D mutant 5-HT2A 
receptor

WT 5-HT2A receptor
Purinergic  P2u receptor 

Thrombin PAR receptor 
Gonadotropin-releasing 
hormone receptor 

PLD activation ↑
No effect
↑
↑
↑

Kanamarlapudi et al. (2012) HEK 293 cells Luteinizing hormone chori-
onic gonadotropin receptor

Receptor internalization ↑

Lawrence et al. (2005) HEK293 cells β2-Adrenoceptor Receptor internalization ↑
Lawrence and Birnbaum 

(2001)
3T3-L1 adipocytes Gαq Endothelin 1–induced 

GLUT4 translocation
↑

Le Stunff et al. (2000) Female Wistar rat myome-
trium

Gβγ PLD activation ↓

Liu et al. (2010) 3T3-L1 adipocytes β-Adrenoceptor Agonist-induced lipolysis 
and endocytosis

↑

Macia et al. (2012) HEK293 cells β2-Adrenoceptor Recycling of receptor ↓
Madziva and Birnbaumer 

(2006)
HEK 293-T cells Vasopressin  V2 receptor Agonist-induced receptor 

endocytosis
No effect

Mitchell et al. (2003) COS7 cells M3 muscarinic receptors
Purinergic  P2U receptor
N376D mutant 5-HT2A 

receptor

PLD1/2 activation
PLD2 activation
PLD2 activation

↑
↑
No effect
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of ARF6 in  M2 muscarinic receptor (Delaney et al. 2002; 
Reiner and Nathanson 2008) and in β2-adrenoceptor (Macia 
et al. 2012) internalization. Furthermore, VIP receptor inter-
nalization was not affected by ARF6 depletion (Houndolo 
et al. 2005). ARF6 involvement in trafficking did not exist 
for some receptors such as  M4 muscarinic receptor (Reiner 
and Nathanson 2008) and vasopressin  V2 receptor (Madziva 
and Birnbaumer 2006). ARF6 requirement in endocytosis 
was mostly demonstrated in agonist-induced settings, which 
may not reflect the ARF6 function for basal condition for the 
same receptor (Cotton et al. 2007). Moreover, ARF6 involve-
ment of muscarinic receptor internalization has mostly been 
studied with the  M2 subtype because of the well-defined, 
clathrin-dependent pathway-mediated internalization of  M1, 
 M3, and  M4 receptors (Reiner and Nathanson 2008).

Phospholipase D (PLD) is known to be involved in 
smooth muscle contraction through PKC activation but its 
contribution in urinary bladder contraction was proposed to 
be minor (Frazier et al. 2008). ARF6-mediated PLD acti-
vation was reported by several researchers in in vivo ani-
mal (Le Stunff et al. 2000) and in vitro cultured cell line 
studies (Mitchell et al. 2003; Johnson et al. 2006; Rankovic 
et al. 2009; Chakraborti et al. 2017; Charles et al. 2018). In 
human pulmonary artery smooth muscle cells (HPASMCs), 
stimulation of prostanoid TP receptor stimulates cytohesin-1 
coupling to ARF6 which further leads to PLD2 isoform and 
subsequent NADPH oxidase activation (Chakraborti et al. 
2017). In HPASMCs, involvement of ARF6 in endothelin-
1-induced PLD and NADPH oxidase activation was shown 
by same study group (Chakraborti et al. 2018). ARF6 was 
shown to be involved in PLD activation in N376D mutant 
5-HT2A-stimulated PLD activation but not in mediated via 
WT 5-HT2A stimulation (Johnson et al. 2006). This study 
also showed the sensitivity of other class A GPCRs which 
contain DPxxY motif such as purinergic  P2u, thrombin PAR, 
and gonadotropin-releasing hormone receptor to ARF6 for 
further PLD activation in COS7 cells (Johnson et al. 2006). 
In the same cell line, agonist-stimulated  M3 activation 
induced both PLD1/2 activation through ARF6-mediated 
pathway, whereas PLD2 activation was found linked to PKC 

and ARF6 in purinergic  P2U receptor and to only PKC in 
N376D mutant 5-HT2a receptor (Mitchell et al. 2003). ARF6 
is involved in the promotion of prostate smooth muscle 
contraction. Inhibition of ARF6 activation by cytohesin (a 
GEF) inhibitor resulted in reduced noradrenaline, phenyle-
phrine-, thromboxane  A2-, and endothelin-1- and endothelin-
3-induced contraction (Herlemann et al. 2018). In vascular 
smooth muscle cell, both ARF1 and ARF6 are involved in 
actin polymerization which subsequently migrate and prolif-
erate but only ARF1 affected contractile responses (Charles 
et al. 2018). However, in a latter study, ARF6 was found 
to promote contraction and proliferation in human prostate 
stromal cells (WPMY-1) (Wang et al. 2021).

ARF6 activation interrupts the recycling of β2-
adrenoceptors and lead desensitization of receptor in 
HEK293 cells (Macia et al. 2012); similarly, it is postulated 
that ARF6 may involve in α1-adrenoceptor desensitization in 
human prostate tissue (Hennenberg et al. 2013). In contrast, 
ARF6-mediated endocytosis was suggested beneficial in 
development of opioid tolerance through preventing recep-
tor desensitization HEK293 cells (Rankovic et al. 2009).

Other effects of ARF6 include the calcium-sensing recep-
tor-mediated plasma membrane ruffling which is required 
for chemotaxis in HEK cells (Bouschet et  al. 2007). In 
endothelial cells, endothelin  ETB receptor stimulation by 
endothelin 1 results in ARF6 activation which facilitates 
cell migration via actin reorganization. Moreover, endothe-
lin 1 stimulation did not promote capillary tube formation in 
ARF6 depleted cells which indicates ARF6 involvement in 
angiogenesis (Daher et al. 2008). ARF6 also has regulatory 
effects on metabolic pathway. Depletion of ARF6 resulted 
in inhibition of isoproterenol-induced lipolysis in 3T3-L1 
adipocytes. ARF6 mRNA and protein level was found higher 
in WAT tissue of ob/ob mice compared to obesity resistance 
mice (Liu et al. 2010). In 3T3-L1 adipocytes, endothelin 
 ETA receptor-mediated lipolysis was found to be dependent 
downstream ARF6-ERK1/2 signaling (Davies et al. 2014). 
Additionally, endothelin 1 stimulated GLUT4 transloca-
tion through heterotrimetric  Gq protein signaling pathway 
activated by ARF6 in 3T3-L1 adipocytes (Bose et al. 2001; 

Table 1  (continued)

Reference Cell line/tissue preparation G-protein isoform/G-pro-
tein-coupled receptor

Main finding ARF6-mediated effect

Rankovic et al. (2009) HEK293 cells μ-Opioid receptor Agonist-induced receptor 
endocytosis

PLD2 activation

↑
↑

Reiner and Nathanson 
(2008)

JEG-3 human choriocarci-
noma cells

M2 muscarinic receptor
M4 muscarinic receptor

Agonist-induced receptor 
endocytosis

↓
No effect

Yu et al. (2019) Human prostate smooth 
muscle tissue

α1-adrenoceptor
Prostanoid TP receptor
Endothelin receptor

Smooth muscle contraction ↑
No effect
No effect
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Lawrence and Birnbaum 2001) and specifically  Gα11 isoform 
of  Gαq family.

Taken together, the above data demonstrate that ARF6 
is involved in cellular processes and is activated by cellu-
lar effects stimulated by various GPCR, including smooth 
muscle contraction. Within a given tissue, the involvement 
of ARF6 in pathways leading to smooth muscle contraction, 
e.g., in arteries or prostate, appears to be preferential for 
some GPCR (muscarinic receptors and α1-adrenoceptors, 
respectively) over others apparently coupling to the same 
G-proteins. Some of these data are in line with the hypothe-
sis that coupling to ARF6 may explain the relative resistance 
of smooth muscle contraction elicited by muscarinic recep-
tors as compared to other GPCR or receptor-independent 
contraction such as receptor desensitization to relaxation 
by β-adrenoceptor agonists. However, not all data support 
this hypothesis. Thus, the role of ARF6 in this phenomenon 
cannot be considered proven, but it remains as a reasonable 
molecular candidate to explain the resistance of muscarinic 
receptor-mediated smooth muscle contraction against relaxa-
tion. Further studies at the molecular level are required to 
further explore this, specifically studies in which the role of 
agonists at various GPCR is compared quantitatively.
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