Asadulina et al. BMC Bioinformatics (2015) 16:229
DOI 10.1186/512859-015-0652-7

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

Object-based representation and analysis

@ CrossMark

of light and electron microscopic volume

data using Blender

Albina Asadulina, Markus Conzelmann, Elizabeth A. Williams, Aurora Panzera and Gaspér Jékely”

Abstract

and analyze.

Background: Rapid improvements in light and electron microscopy imaging techniques and the development of
3D anatomical atlases necessitate new approaches for the visualization and analysis of image data. Pixel-based
representations of raw light microscopy data suffer from limitations in the number of channels that can be visualized
simultaneously. Complex electron microscopic reconstructions from large tissue volumes are also challenging to visualize

Results: Here we exploit the advanced visualization capabilities and flexibility of the open-source platform Blender to
visualize and analyze anatomical atlases. We use light-microscopy-based gene expression atlases and electron microscopy
connectome volume data from larval stages of the marine annelid Platynereis dumerilii. We build object-based larval gene
expression atlases in Blender and develop tools for annotation and coexpression analysis. We also represent and analyze
connectome data including neuronal reconstructions and underlying synaptic connectivity.

Conclusions: We demonstrate the power and flexibility of Blender for visualizing and exploring complex anatomical
atlases. The resources we have developed for Platynereis will facilitate data sharing and the standardization of anatomical
atlases for this species. The flexibility of Blender, particularly its embedded Python application programming interface,
means that our methods can be easily extended to other organisms.

Keywords: Platynereis, Gene expression atlas, Connectome, Surface representation, 3D model, Blender

Background

Recent advances in tissue labeling and light and electron
microscopy imaging techniques have greatly improved
our ability to acquire volume data from biological speci-
mens. Light microscopic volumes are commonly obtained
following specific tissue labeling protocols to highlight
transgene expression, gene expression patterns, or immu-
nolabels. The increasing use of anatomical atlases [1-7],
where the signal from different individuals is represented
in an average anatomical map, poses the challenge of visu-
alizing hundreds of channels simultaneously. Similarly,
electron microscopy serial reconstructions can generate
large volume data with hundreds of objects that are com-
putationally hard to visualize.

* Correspondence: gaspar.jekely@tuebingen.mpg.de
Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076
Tubingen, Germany

(BiolMed Central

Several general-purpose visualization tools, including
Amira [8], Imaris [9], 3D graphics software Maya [10],
Blender [11], and 3ds Max [12] are available for image
analysis. In addition, many tools are available that were
specifically developed for visualizing and analyzing bio-
medical images, such as VTK [13], ParaView, 3DSlicer [14],
InVesalius [15], MIA [16], and Vaa3D [17]. Some software
tools, including the Brain Explorer [18], CoCoMac [19],
and PointCloudXplore [14], focus on a particular species.

Visualization of connectome data is currently achieved
using software tools including 3D View in TrakEM2 [20],
3D Viewport in Knossos [21], Structure Viz in Viking [22]
and Rambo3D [23]. Connectome Viewer [24] was designed
for neuroimaging data and was applied to Magnetic reson-
ance imaging images. ConnectomeExplorer [25] provides
interactive visualization of electron microscopy image
stacks together with 3D volumes of the objects recon-
structed from that stack.

© 2015 Asadulina et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0652-7&domain=pdf
mailto:gaspar.jekely@tuebingen.mpg.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Asadulina et al. BMC Bioinformatics (2015) 16:229

The number of channels that can be displayed in tools
for visualizing light microscopy volume data is often
hardware-limited due to the large data sizes inherent to
pixel-based representations. For such volumes, segmen-
tation into a binary image, followed by surface represen-
tation, is a memory-efficient alternative. Similarly, serial
EM reconstructions that outline object borders or neur-
onal skeletons are binary and can be represented as sur-
faces or skeletons.

We were searching for a flexible, general-purpose tool
that would allow object-based 3D visualization and com-
putational analysis of gene expression patterns for an
unlimited number of genes, as well as the visualization
and analysis of large connectome datasets. The ideal tool
would allow efficient representation of volume data from
any source, be open source and supported by a broad com-
munity, and would support efficient functional extension.

For these reasons we chose to use the 3D graphics
software Blender, a free and open source 3D graphics
suite equipped with numerous options for visualization,
modeling and animation. Blender is easy to install,
memory-efficient, highly flexible and can be extended by
its embedded Python application-programming interface
(API). Multiple tutorials, extensive documentation and
community support forums make Blender easy to adopt
in any laboratory. Blender has already been exploited for
the visualization and analysis of neuronal reconstruc-
tions and functional Magnetic resonance imaging (fMRI)
data [26-28].

Here we demonstrate the potential of Blender for visu-
alizing and exploring scientific imaging data using the
example of the marine annelid worm Platynereis dumer-
ilii, a model organism for evolutionary developmental
biology, zooplankton behavior and neuronal connec-
tomics [29-32]. Due to its small and transparent body,
the Platynereis larva is well-suited for whole-body light
microscopic imaging following in situ hybridization or
other tissue staining protocols. Platynereis early larval
development is synchronous and stereotypic, following a
strict spiral cleavage pattern. This stereotypy enabled the
generation of gene expression atlases for several larval
stages [33, 34]. The Platynereis larva has also been used
for serial electron microscopy imaging and the neuronal
connectome of its visual circuit has recently been recon-
structed [35]. We used Blender to create surface models
of gene expression atlases for three Platynereis larval
stages. Blender enables the simultaneous visualization of
gene expression patterns using a surface-based approach,
which dramatically increases the number of genes that
can be visualized and analyzed simultaneously compared
to intensity-based approaches.

We also used Blender to model the neuroanatomy and
connectivity of the Platynereis visual circuit [35]. We
have extended the functionality of Blender to enable the

Page 2 of 9

exploration of connectomes. We provide scripts to im-
port TrakEM2 and Catmaid [36] connectome datasets.
We have added functionality to query connections and
to map parameters of network statistics onto a 3D
model. Blender supports standard file formats, enabling
transfer of the 3D models to different platforms, includ-
ing web and Android mobile applications. Due to the
flexibility of Blender, our approach can easily be extended
to other types of volume data and to other organisms.

Methods

Sample preparation and imaging

RNA in situ hybridization, immunochemistry, confocal
microscopy and image registration methods used for
generating the gene expression atlases were performed
as previously described [34]. Electron microscopy and
neuronal network reconstruction were carried out as
previously described [35].

Modeling of the gene expression atlases

Whole-body confocal scans of in-situ hybridization sam-
ples of Platynereis larvae were registered to a nuclear-
stain (4',6-diamidino-2-phenylindole, DAPI) reference, as
described previously [34]. For each gene expression pat-
tern, we averaged individual scans of 4-6 larvae. These
average gene expression patterns were then filtered
(Median 3D, 4 pixel radius) and manually thresholded.
The thresholded average gene expression patterns were
represented as surfaces using Image] 3D Viewer and
exported as .obj files. The surfaces were then imported
into Blender and broad gene expression domains were
smoothed with a Gaussian filter. An average acetylated-
tubulin immunostaining signal was also imported into
Blender as a surface to provide anatomical landmarks.
The 48 h post fertilization (hpf) atlas includes 19 genes
(ChAT, dimmed, DLamide, DOPAbHyd, FLamide, FMRFa
mide, FVamide, L11, LYamide, MIP, Phc, RGWamide,
RYamide, Tinman, TrpHyd, VAChT, VGlut, WLD, YFa
mide), the 72 hpf atlas 23 genes (ChAT, dimmed, DOPAb
Hyd, FVamide, FVRIamide, GAD, HisDec, L11, LYamide,
MIP, Phe, PitX, r-opsinl, RGWamide, SPY, Synapsin, Tin
man, TRPC, TrpHyd, TyrH, VACHT, VGlut, WLD) and the
6 dpf atlas 9 genes (AKH, enteropeptidase, FMRFamide,
FVRIamide, Legumain, MIP, RGWamide, Subtilisin-1, Sub
tilisin-2) [37].

Group-specific queries of the gene expression models

We used the Blender grouping option to assign gene
name, functionality and gene types (e.g. neuropeptide
precursor, enzymes) to the gene expression domains. Ex-
pression domains associated with the same gene, the
same gene type or the same functionality were grouped
together. The groups can overlap. The names of the
gene-type groups start with a hyphen ‘-, the names of

Asadulina et al. BMC Bioinformatics (2015) 16:229

¢

the gene-function groups start with an underscore ‘_
and gene names can start with any character.

Any Blender object can be extended with a custom
property, which can then be linked to the elements in
the user interface. The Blender class Group was ex-
tended with a custom Boolean property Visibility, which
enabled showing and hiding groups of objects according
to a user query.

Gene colocalization

Gene colocalization analysis was enabled using a Boolean
modifier in Blender, which creates a single compound out
of two objects using difference, union or intersection opera-
tions. For the colocalization analysis we used an intersection
operation. The expression domains of two user-specified
genes are examined for colocalization using the Boolean
modifier and the intersection volumes are then displayed.
For each gene pair we determine the overlapping regions
and define these as new objects. The volumes of these ob-
jects are determined using the Blender plugin MeshVolu-
meTools [38]. The colocalization is determined as a sum of
overlapping volumes for each domain of an expression pat-
tern. We defined a coexpression index as the ratio of the
volume of the overlapping regions relative to the volume of
the gene with the smaller total volume.

Modeling of neuronal circuitry

Neurons were segmented or traced as skeletons using
TrakEM2 or Catmaid. Synapses and cell body positions
were also annotated by expert neuroanatomists based on
the raw electron microscopy data, using established proce-
dures [20]. The raw traces were exported from TrakEM2
or Catmaid and imported into Blender and parsed. In the
Blender model, neuronal cell bodies were approximated
with a sphere. The center and radius of the sphere, ap-
proximately matching the size and position of the cell
nucleus, were defined during tracing in Catmaid. Skeleton
nodes were loaded in a graph-like structure (using the
Python dictionary class). The neurite branches were then
reconstructed using a depth-first search graph traversal
algorithm [39]. The branches were smoothed using the
Non Uniform Rational B-Splines (NURBS) curves func-
tion in Blender.

Branches smaller than 50 nodes were trimmed to sim-
plify neuron representations. The synaptic connections
were also imported and rendered in Blender as small
spheres in their respective anatomical positions. Anno-
tating with synaptic information was enabled using an
ID-property. ID-property in Blender is attributed to class
instances, rather than to the entire class. It is stored in
the source file and therefore remains accessible after
reopening a project. The imported neurons were extended
with Presynaptic and Postsynaptic ID-properties that con-
tained the respective lists of the pre- and postsynaptic

Page 3 of 9

sites for each cell. The Presynaptic and Postsynaptic
ID-properties were also created for each synapse and
contained the lists of pre- and postsynaptic sites re-
spectively [37].

Group specific queries and network queries of the
connectome model

The neuronal circuitry model was annotated with ana-
tomical classification, behavior and gene expression in-
formation associated with reconstructed networks. The
annotation was implemented using the grouping option
in Blender. The names of the groups denoting behavior
start with an underscore “_”, the names of the groups
denoting expressed genes start with a hyphen “-” and
the groups denoting anatomical classification start with
any other character. Querying across different groups was
enabled as described for the gene expression atlas.

We implemented a functionality to query neuronal con-
nectivity information for the neuronal circuitry model
using the ID-properties Postsynaptic and Presynaptic. We
enabled queries for the pre- or postsynaptic sites for a cell
of interest. Cells are displayed if they are listed in the ID-
property of the cell of interest, otherwise they are hidden.
To query for up- or downstream circuitry for a cell of
interest, we applied the depth-first search graph traversal
algorithm [39]. The neuronal network was considered as a
directed graph, where neurons are represented by vertices
and synapses are represented by directed edges. All up-
stream (or downstream) cells are highlighted and the
remaining cells are hidden. We also implemented queries
for synapses of an individual cell, between two cells or
between two groups of cells.

Centrality metric

The model was extended with a function for measuring
network centrality and mapping network centrality in
the 3D view. In- and out-degree centralities for each
element of the neuronal network were calculated as
follows:

CD(x) = deg(x),

where deg (x) is the number of edges for the node x.
All edges directed to the node were calculated for in-
degree centrality and all edges directed from the node
were calculated for out-degree centrality.

In- and out-closeness centralities were calculated for
the neurons in the neuronal circuitry as follows:

CC(x) = Zye(;y:x (@)7

where d (, y) is a length of the path from the node x
to the node y for out-closeness centrality and a length of
the path from y to «x for in-closeness centrality.

Asadulina et al. BMC Bioinformatics (2015) 16:229

In- and out-eigenvector centralities were calculated as
follows:

CX(x) =a ZyeG,ytx (ngy * CD(y))’

Where CD (y) is in- or out-degree centrality of the
node y for in- and out-eigenvector centrality respect-
ively, a is a constant, g, is equal to one if nodes x and y
are connected, otherwise g, is equal to zero.

Mobile and web application

The 3D models were exported from Blender using stand-
ard formats and visualized on different platforms, for ex-
ample, Android [40] mobile devices. Android applications
were developed using an Android Developer Tools Bundle
and Eclipse Integrated Development Environment [41].
The Blender models were exported in OBJ format, con-
verted in GD3D format using the FBX converter [42] and
then loaded in the mobile application using libGDX [43].
The manipulation of visibility settings was implemented
using the material BlendingAttribute. The web applica-
tions were developed using the HTML and JavaScript pro-
gramming languages and the Threejs library [44]. The
models were exported from Blender in the .js (java-
script) format and were subsequently loaded in the web
applications using the Three.js library that enabled 3D
visualization. Model manipulation was enabled using

Page 4 of 9

the OrbitControls library from Three.js. Material trans-
parency was used to enable the manipulation of the
visibility settings of the objects in the applications. Ex-
ploring the models using web applications requires
WebGL [45] enabled in the web browser [46].

Results

Surface models for Platynereis larval gene expression
atlases

Platynereis larvae are amenable to near cellular-resolution
expression profiling using in situ hybridization and gene
expression atlases [33, 34]. However, the number of genes
that can be simultaneously displayed in an atlas has been
limited. We used Blender to efficiently visualize and
analyze gene expression atlases for three Platynereis larval
stages (48 hours post fertilization (hpf), 72 hpf, 6 days post
fertilization (dpf)). The atlases were generated by register-
ing gene expression patterns to stage-specific average
nuclear-stain (DAPI) templates [34]. For each gene we cal-
culated an average expression pattern, which, following
thresholding, was imported into Blender (Fig. 1). To pro-
vide an anatomical reference, we also imported an average
acetylated tubulin immunostaining signal that labels cilia,
axons and dendrites within the larvae. The surface repre-
sentation used by Blender allows fast 3D visualization for
several channels, a feature that is limited in pixel-based
visualization methods (Fig. 2).

S e
Image registration
and averaging of
gene expression o w
patterns .
in ITK and FIJI acTubulin
Nuclear Average Thresholded
reference gene expression average
Import thresholded
average gene expressions
into Blender
Visualization
and analyses
in Blender
Expression Multi-gene Colocalization
volume atlas analyses
Fig. 1 Pipeline for generating a model of a gene expression atlas. An individual gene expression pattern is thresholded and converted into a
surface representation using the ImageJ plugin 3D Viewer. The surfaces are then exported from 3D Viewer in OBJ format and imported in
Blender. Scale bar 30 pm

Asadulina et al. BMC Bioinformatics (2015) 16:229 Page 5 of 9

ChAT dimmed
DLa
DOPAbHyd FVa
FMRFa e
FVa i X
L11 L11 E;\lnt;;oapeptldase -
e FVRIa
ek il Legumain
RGWa g
RGWa
Tinman SPY RGWa
Tinman Subtilisin-1
Tubulin TRPC ?ugnll.nsm-z
VAChT TrpHyd ubulin
Tubulin
e < TyrH
YFa VGlut

Fig. 2 Blender models of gene expression atlases for Platynereis larvae. Blender models based on registered and thresholded average gene expression
patterns for 48 hpf (a), 72 hpf (b), 6 dpf (c) Platynereis larvae. Scale bar 30 um

In the Blender models, the distinct expression domains larvae, the spinning glands and parapodial chaetae show a
for each gene are represented as separate objects. This al- consistent background signal during microscopy. This sig-
lows the manual curation of the data, for example the an- nal would bias downstream calculations (e.g. analysis of
notation of individual cells or expression domains for a coexpression) and the corresponding domains were there-
gene or the removal of background signal. In Platynereis fore manually removed from the gene expression models.

[

‘@ BTOoE c 3 c
o k S >0 « &= 2 ©
s Skoxfz.Ta%a5,.23_E <€
eSO a8EL S0 525a08-ESTE
SOLSOSAFLEFILOSHErIBIRE

phe)
Synapsin

FVa
VAChT
ChAT
WLD
PitX
FVRIa

P MIP
Colocalization volumes TrpHyd
G HisDec
r-opsini
GAD [
VGlut
SPY
RGWa
Tubulin
L11
dimmed
Lya
TyrH
Tinman

FVamide Phc Colocalization volumes

Fig. 3 Detection of gene colocalization in the gene expression model. (a, b, e, f) modeled gene expression patterns. (¢, g) Colocalization volumes
for the selected gene expression models. (d) Colocalization matrix for the gene expression models in 72 hpf Platynereis larvae. Scale bar 30 um

Asadulina et al. BMC Bioinformatics (2015) 16:229

Table 1 Performance of Blender. The performance of the
different Blender functionalities was evaluated on an iMac with
a 3.06 GHz Intel Core i3 processor and 8 Gb memory

Activity Time (ms)
Gene expression atlas model

Import gene surface representation 150-600
Find gene colocalization for a pair of genes 200-9000
Query metadata 1-2
Neuronal network model

Import a neuron 150-350
Import muscles (verts:346710 faces:681556) 17600
Import glia (verts:140041 faces:341738) 9200
Metadata query neuronal circuitry 10-30
Find up-/downstream neurons 20-60
Calculate centrality 250-500

Annotation of gene expression domains

The surface-based approach, together with the exten-
sive volume analysis tools available in Blender, allowed
us to treat gene expression domains as individual ob-
jects. These objects can be grouped and annotated. We
annotated gene expression domains with gene name,
type of gene product (e.g. receptor) and gene function.
These annotations allow flexible Python-based queries
(attribute queries) and enable the user to hide/show
gene expression patterns that share a common annota-
tion (Additional files 1 and 2).

Page 6 of 9

Exploring gene expression colocalization

Visual inspection for gene expression colocalization for
a large number of gene pairs in a gene expression atlas
containing dozens or hundreds of genes is a challenging
task. To facilitate this task, we provided a function that
enables querying colocalization of gene expression pat-
terns in the Blender model (Additional files 1 and 2).
For each gene pair in the model we determine the overlap-
ping volumes and define these as a new object (Fig. 3a, b).
Based on the overlap volume and the volume of the
two genes we then defined a coexpression index. We
also developed a script that determines a coexpression
matrix for all gene pairs. We demonstrate this method
using the 72 hpf atlas (Fig. 3d). We also measured the
performance of the functionalities we implemented in
Blender. Importing, colocalization analysis and query-
ing were all completed within the msec-sec range on a
standard desktop computer (Table 1).

Blender representation of neuronal connectomes

In addition to developing sophisticated gene expression
atlases, the advanced visualization and scripting tools
available in Blender allowed us to develop a platform for
the visualization and analysis of complex neural connec-
tomes. Neuronal connectome datasets combine complex
3D morphological information with information on
underlying neuronal networks. We focused on the visual
neuronal network of the Platynereis larva, reconstructed
from serial-section electron microscopy images of a 72
hpf specimen [35]. We developed this platform further

-

Serial EM
tracing in
TrakEM2 or
Catmaid

Raw traces

Raw skeletons

Annotated synapes

and connectivity

Import 3D skeletons
into Blender

Visualization
and analyses
in Blender

3D network model

Subcircuits Centrality measures

connections are subsequently integrated into the model

Fig. 4 Pipeline for generating a model of a neuronal network. Individual neurons are traced from the original electron microscopy images. The
tracings are then exported in OBJ format using 3D Viewer in TrakEM2. The neurons are modeled in Blender using Python scripts. Synaptic

Asadulina et al. BMC Bioinformatics (2015) 16:229

Table 2 Performance of Blender. The performance of the
different Blender functionalities on raw and modeled neuronal
reconstructions was evaluated on an iMac with a 3.06 GHz Intel
Core i3 processor and 8 Gb memory

Raw reconstructions Neuron models

File size with 10 neurons 22 Mb 963 Kb; (empty file, 429 Kb)
Rotation of a single cell 0.5 ms 0.2 ms
Hiding a single cell 0.03 ms 0.03 ms

by providing import functionality for TrackEM2 and
Catmaid connectome projects and further tools for
connectivity analysis (Additional files 1 and 2). In the
model, we represented the cell bodies of reconstructed
neurons as spheres, and the axons and dendrites as
smoothed tubes (Fig. 4). Complex anatomical shapes,
including glial cells and muscles, were modeled as sur-
faces or were manually approximated with built-in
geometric shapes (Fig. 4). The simplification of cell
morphologies led to a great decrease in file size, facili-
tating the sharing of the atlases (Table 2). The modeled
structures were annotated with anatomical terms (e.g.
photoreceptor) and gene expression information (e.g.
r-opsinl). These classifications can be further extended
by the user.

We also imported synaptic connectivity information
into the model. Each neuron is automatically annotated
with information on its pre- and postsynaptic sites and
all synapses are represented as spheres in their corre-
sponding positions in the 3D space. Each synapse is
also annotated with information on its pre- and post-
synaptic cells.

Page 7 of 9

To explore the neuronal circuitry, we implemented
functionalities to query different aspects of the synaptic
connections (Additional files 1 and 2). Users can high-
light all incoming or outgoing synapses for any neuron
and display all synapses between pairs of neurons. In
addition, the user can explore signal propagation by
highlighting direct pre- and postsynaptic partners or
complete down- and upstream circuitry for a neuron of
interest.

Blender also enables the calculation of statistical param-
eters and their visualization in a 3D model of a neuronal
network. We calculated network centrality measures for
the Platynereis eye connectome including degree, eigen-
vector and closeness centrality, and mapped these mea-
sures onto the 3D neuronal model (Fig. 5, Additional files
1 and 2). These centrality measures reflect various aspects
of connectivity of the nodes of a network and can there-
fore represent information flow or highlight the import-
ance of individual neurons in the network (Fig. 5).

Interactive Android and web applications for the Blender

models

3D models can be exported from Blender in different
standard formats (such as OBJ or STL) and subsequently
transferred onto different platforms. We exploited this
feature to represent our models in a web application
using the Three.js library [44]. Model elements (e.g. gene
names, anatomical terms, classifications) can also be
queried in the application. We also developed interactive
Android applications using the libGDX library to
visualize Blender models on mobile devices. The models
were scaled down to allow their effective visualization.

A

Photoreceptors, primary IN,
motorneurons, ciliary band

centrality (d, g) projected onto the 3D model of the neuronal network
.

Degree
centrality

Fig. 5 Measuring network centrality in Blender for the Platynereis visual neuronal network (a). Degree (b, e), eigenvector (c, f) and closeness

Cc D
..IN
F G
..OUT

Eigenvector Closeness
centrality centrality

Asadulina et al. BMC Bioinformatics (2015) 16:229

The web and Android applications provided an efficient
means of accessing and sharing the models without the
need to install Blender.

Discussion

We exploited the powerful visualization and computa-
tional capabilities of the free graphics software Blender
for visualizing and analyzing gene expression and con-
nectome volume data. Blender provides functionalities
for efficient and high-quality visualization, modeling,
rendering and animation of volume data, all of which
significantly enhance data representation. The flexible
grouping and annotation of objects in Blender enables
efficient representation and exploration of the data. For
example, the grouping option allows the annotation of
models with additional information, the option to ex-
tend objects with arbitrary properties allows the user to
store synaptic connectivity information in a neuronal
circuit. The embedded Python API makes Blender ex-
tremely adaptable to specific problems. We used the
Python API to develop scripts for importing volume
data, querying annotations and connectivity, exploring
gene colocalization and calculating network centrality
measures.

Since the majority of users have little or no program-
ming skills [47], it is essential that software tools for
analyzing biological images have user-friendly interfaces.
The installation of Blender is simple, as it is distributed
via binaries and can run immediately after downloading.
Blender does not require additional libraries or any ad-
justment of system settings. The models, with their em-
bedded scripts, can be distributed in Blender format and
directly opened in Blender. All functionalities required
to update the models or create new models are provided
in the Blender file.

Conclusions

Blender is an adaptable and efficient tool for the
visualization and analysis of large volume microscopic
data. Using volume-imaging data from the annelid
Platynereis, we demonstrated the flexibility of Blender
in performing microscopy data analysis. The presented
approach is not restricted to Platynereis and can be
extended to any other organism.

Availability of supporting data

The data sets supporting the results of this article are
available in the GitHub repository, https://github.com/
JekelyLab/BlenderAtlases, https://github.com/albina-a/
Web_and_Mobile_applications, and within the article
(Additional files 1 and 2).

Page 8 of 9

Additional files

Additional file 1: Instructions for creating and using Blender
models. The file provides instructions for creating and using Blender
models of a gene expression atlas or a neuronal network model.

Additional file 2: Python scripts for Blender. The archive provides
Python scripts enabling functionality for Blender models.

Abbreviations

AKH: Adipokinetic hormone; API: Application programming interface;
ChAT: Choline acetyltransferase; DAPI: 4',6-diamidino-2-phenylindole;
dpf: days post fertilization; DOPAbHyd: Dopamine beta hydroxylase;

EM: Electron microscopy; fMRI: Functional Magnetic resonance imaging;
GAD: Glutamate decarboxylase; HisDec: Histidine decarboxylase; hpf: Hours post
fertilization; HTML: HyperText Markup Language; MIP: Myonihibitory pepetide;
Phc: Prohormone convertase; STL: Standard Tessellation Language;
TrpHyd: Tryptophan hydroxylase; TyrH: Tyrosine hydroxylase;

VGIUT: Vesicular glutamate transporter; VTK: Visualization Toolkit..

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AA developed the Python scripts for creating and exploring 3D models in
Blender, created 3D models, performed confocal microscopy and wrote the
paper. MC, AP and EAW performed in situ hybridization, immunochemistry
and confocal microscopy. AA and GJ designed the project and wrote the
paper. All authors read and approved the final manuscript.

Acknowledgements

The research leading to these results received funding from the European
Research Council under the European Union's Seventh Framework Programme
(FP7/2007-2013)/European Research Council Grant Agreement 260821.

Received: 5 December 2014 Accepted: 29 June 2015
Published online: 25 July 2015

References

1. Wong MD, Dorr AE, Walls JR, Lerch JP, Henkelman RM. A novel 3D mouse
embryo atlas based on micro-CT. Development. 2012;139(17):3248-56.

2. Ronneberger O, Liu K, Rath M, Ruess D, Mueller T, Skibbe H, et al. ViBe-Z:
a framework for 3d virtual colocalization analysis in zebrafish larval
brains. Nat Methods. 2012;9(7):735-42.

3. Datta R, Lee J, Duda J, Avants BB, Vite CH, Tseng B, et al. A digital atlas of
the dog brain. PLoS ONE. 2012;7(12):52140.

4. ElJundi B, Heinze S, Lenschow C, Kurylas A, Rohlfing T, Homberg U. The
locust standard brain: a 3D standard of the central complex as a platform
for neural network analysis. Front Syst Neurosci. 2010;3(21):1-15.

5. Dreyer D, Vitt H, Dippel S, Goetz B, el Jundi B, Kollmann M, et al. 3D
standard brain of the red flour beetle Tribolium castaneum: a tool to study
metamorphic development and adult plasticity. Front Syst Neurosci.
2010:4:3.

6. Peng H, Chung P, Long F, Qu L, Jenett A, Seeds AM, et al. BrainAligner: 3D
registration atlases of Drosophila brains. Nat Meth. 2011,8(6):493-8.

7. Castro-Gonzdlez C, Luengo-Oroz MA, Duloquin L, Savy T, Rizzi B, Desnoulez S,
et al. A digital framework to build, visualize and analyze a gene expression
atlas with cellular resolution in zebrafish early embryogenesis. PLoS Comput
Biol. 2014;10(6):¢1003670.

8. Amira 3D Software for Life Sciences [http://www.fei.com/software/amira-3d-
for-life-sciences/].

9. Imaris 3D and 4D Real-Time Interactive Data Visualization [http.//www.bitplane.
com/imaris/imaris].

10. Maya 3D animation software [http://www.autodesk.com/products/maya/
overview].

11. Blender 3D animation suite [http://www.blender.org/.

12, 3ds Max 3D modeling software [http.//www.autodesk.com/products/3ds-max/
overview].

13. Schroeder W, Martin K, Lorensen B. The Visualization Toolkit, Third Edition.
Clifton Park, NY: {Kitware Inc}; 2006.

https://github.com/JekelyLab/BlenderAtlases
https://github.com/JekelyLab/BlenderAtlases
https://github.com/albina-a/Web_and_Mobile_applications
https://github.com/albina-a/Web_and_Mobile_applications
http://www.biomedcentral.com/content/supplementary/s12859-015-0652-7-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0652-7-s2.zip
http://www.fei.com/software/amira-3d-for-life-sciences/
http://www.fei.com/software/amira-3d-for-life-sciences/
http://www.bitplane.com/imaris/imaris
http://www.bitplane.com/imaris/imaris
http://www.autodesk.com/products/maya/overview
http://www.autodesk.com/products/maya/overview
http://www.blender.org/
http://www.autodesk.com/products/3ds-max/overview
http://www.autodesk.com/products/3ds-max/overview

Asadulina et al. BMC Bioinformatics (2015) 16:229

20.

21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34,

35.

36.

37.

38.
39.

40.

Ruebel O, Weber GH, Keraenen SVE, Fowlkes CC, Hendriks CLL, Simirenko L,
et al. Pointcloudxplore: Visual analysis of 3d gene expression data using
physical views and parallel coordinates. In: Eurographics/IEEE-VGTC
Symposium on Visualization Proceedings. 2006. p. 203-10.

Silva TFAMPHJAFdSAJVLA. InVesalius — An open-source imaging application.
In: Computational Vision and Medical Image Processing: 2011; Algarve,
Portugal. London: Taylor & Francis Group: 405-408.

Wollny G, Kellman P, Ledesma-Carbayo M-J, Skinner M, Hublin J-J, Hierl T.
MIA - A free and open source software for gray scale medical image analysis.
Source Code Biol Med. 2013;8(1):20.

Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D
visualization and quantitative analysis of large-scale biological image data
sets. Nat Biotechnol. 2010;28(4):348-53.

Lau G, Ng L, Thompson C, Pathak S, Kuan L, Jones A, et al. Exploration and
visualization of gene expression with neuroanatomy in the adult mouse
brain. BMC Bioinformatics. 2008;9(1):153.

Bezgin G, Reid A, Schubert D, Kétter R. Matching spatial with ontological
brain regions using java tools for visualization, database access, and
integrated data analysis. Neuroinform. 2009;7(1):7-22.

Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras |, Preibisch S, Longair M,
et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE.
2012;7(6):e38011.

Knossos visualization and annotation tool [http://knossostool.org/].
Anderson JRaM S, Grimm B, Jones BW, Koshevoy P, Tasdizen T, Whitaker R, et al.
The Viking viewer for connectomics: scalable multi-user annotation and
summarization of large volume data sets. J Microsc. 2011,241:13-28.

Rambo3D [https://github.com/openconnectome/Rambo3D].

Gerhard S, Daducci A, Lemkaddem A, Meuli R, Thiran J-P, Hagmann P. The
Connectome Viewer Toolkit: an open source framework to manage, analyze
and visualize connectomes. Front Neuroinformatics. 2011;5:3.

Beyer J, Al-Awami A, Kasthuri N, Lichtman JW, Pfister H, Hadwiger M.
ConnectomeExplorer: query-guided visual analysis of large volumetric
neuroscience data. IEEE Trans Vis Comput Graph. 2013;19(12):2868-77.
Aguiar P, Sousa M, Szucs P. Versatile morphometric analysis and
visualization of the three-dimensional structure of neurons. Neuroinform.
2013;11(4):393-403.

Pyka M, Hertog M, Fernandez R, Hauke S, Heider D, Dannlowski U, et al.
fMRI Data Visualization with BrainBlend and Blender. Neuroinform.
2010;8(1):21-31.

Jorstad A, Nigro B, Cali C, Wawrzyniak M, Fua P, Knott G. NeuroMorph: a
toolset for the morphometric analysis and visualization of 3D models
derived from electron microscopy image stacks. Neuroinform. 2014;13:1-10.
Fischer A, Henrich T, Arendt D. The normal development of Platynereis
dumerilii (Nereididae, Annelida). Front Zool. 2010;7(1):31.

Caspers H. C. Hauenschild und A. Fischer: Platynereis dumerilii.
Mikroskopische Anatomie, Fortpflanzung, Entwicklung. — Gro3es
Zoologisches Praktikum Heft 10b. Mit 37 Abb,, Stuttgart: Gustav Fischer
Verlag 1969. 55 S. DM 26. Int Rev Gesamten Hydrobiol Hydrographie.
1971,56(2):326-6.

Conzelmann M, Williams E, Krug K, Franz-Wachtel M, Macek B, Jekely G. The
neuropeptide complement of the marine annelid Platynereis dumerilii. BMC
Genomics. 2013;14(1):906.

Conzelmann M, Offenburger S-L, Asadulina A, Keller T, Miinch TA, Jékely G.
Neuropeptides regulate swimming depth of Platynereis larvae. Proc Natl
Acad Sci. 2011;108(46):E1174,AIE1183.

Tomer R, Denes AS, Tessmar-Raible K, Arendt D. Profiling by image registration
reveals common origin of annelid mushroom bodies and vertebrate pallium.
Cell. 2010;142(5):800-9.

Asadulina A, Panzera A, Veraszto C, Liebig C, Jekely G. Whole-body gene
expression pattern registration in Platynereis larvae. EvoDevo. 2012;3(1):27.
Randel N, Asadulina A, Bezares-Calderon LA, Veraszto C, Shahidi R, Jekely G.
Neuronal connectome of a sensory-motor circuit for visual navigation. Elife.
2014;3:e02730.

Catmaid, collaborative annotation toolkit for massive amounts of image
data [http:/catmaid.org/].

Blender files of the Platynereis atlases https://github.com/JekelyLab/
BlenderAtlases.
http://wikiblender.org/index.php/Extensions:2.6/Py/Scripts/Mesh/VolumeTools
Shimon E. Graph Algorithms (2nd ed.). Cambridge: Cambridge University
Press; 2011,

Android operating system [https:.//www.android.com/].

Page 9 of 9

41, Android SDK [https://developer.android.com/sdk/index.htmi?hl=i].

42. FBX Converter [http://fox-converter.software.informer.com/].

43. libGDX game development framework [http:/libgdx.badlogicgames.com/].

44, Threejs, JavaScript-based library for 3D graphics [http:/threejs.org/].

45. WebGL a standard for a 3D graphics API [https://www.khronos.org/webgl/].

46. The web and mobile applications to represent Platynereis atlases https://
github.com/albina-a/Web_and_Mobile_applications.

47. Carpenter AE, Kamentsky L, Eliceiri KW. A call for bioimaging software
usability. Nat Meth. 2012,9(7):666-70.

(7
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at -
www.biomedcentral.com/submit (BiolVed Central

- J

http://knossostool.org/
https://github.com/openconnectome/Rambo3D
http://catmaid.org/
https://github.com/JekelyLab/BlenderAtlases
https://github.com/JekelyLab/BlenderAtlases
http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Mesh/VolumeTools
https://www.android.com/
https://developer.android.com/sdk/index.html?hl=i
http://fbx-converter.software.informer.com/
http://libgdx.badlogicgames.com/
http://threejs.org/
https://www.khronos.org/webgl/
https://github.com/albina-a/Web_and_Mobile_applications
https://github.com/albina-a/Web_and_Mobile_applications

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Sample preparation and imaging
	Modeling of the gene expression atlases
	Group-specific queries of the gene expression models
	Gene colocalization
	Modeling of neuronal circuitry
	Group specific queries and network queries of the connectome model
	Centrality metric
	Mobile and web application

	Results
	Surface models for Platynereis larval gene expression atlases
	Annotation of gene expression domains
	Exploring gene expression colocalization
	Blender representation of neuronal connectomes
	Interactive Android and web applications for the Blender models

	Discussion
	Conclusions
	Availability of supporting data
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

