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Abstract

New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the
quest for common and rare variant discovery and in the search for ’’missing heritability.’’ However, the optimal analytic
strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress.
Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-
based microarray platforms (i.e., GWAS), alternative approaches robust to detection of low-frequency (1–5% MAF) and rare
(,1%) variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data
collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that
end, we compare results from two different linkage meta-analysis methods—GSMA and MSP—applied to the same set of 13
bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely
non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of
these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may
reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA) may be used to optimize low-
frequency and rare variant discovery in the modern genomic era.
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Introduction

The genetic architectures of many major neuropsychiatric

disorders remain unresolved despite decades of linkage, fine

mapping, genomewide linkage (GWLS), candidate gene associa-

tion and genomewide association studies (GWAS). This lack of

resolution is not due to categorical failures of any one of these

methods as many independent investigations of each type have

produced strong evidence of linkage or genetic association for

many neuropsychiatric disorders. Rather, the apparent breakdown

lies in the general lack of replication within and across methods.

Importantly, although replication is the cornerstone of scientific

validation, the lack of replication may be wholly consistent with

the underlying genetic architectures of neuropsychiatric disorders.

Each genetic method has known strengths and liabilities. Thus,

rather than serving as an impediment to progress, contradictory

results across studies and methods may offer valuable insights into

the genetic architecture of these disorders. Our investigation

focuses on bipolar disorder (BP) and schizophrenia (SCZ), which

have particular public health significance due to their high

heritability and prevalence, frequent treatment resistance and

morbidity.

A Note on Genetic Architecture
Thornton-Wells, et al (2004) [1] provide a critical conceptual

framework for studies aiming to address genetic architecture by

reviewing factors that contribute to the statistical difficulties of

studying complex genetic disorders, including: allelic heterogene-

ity, locus heterogeneity, trait heterogeneity, phenocopy, pheno-

typic variability, gene-gene interactions and gene-environment

interactions. They note that each of these factors complicates

statistical analyses in one of two ways: 1) by creating heteroge-

neous, or competing, disease models or 2) by creating a

multifactorial, interacting disease model. (The second model is

often referred to as a ‘polygenic’ model and this term will be used

hereafter.) Their definitions of allelic and locus heterogeneity and

of gene-gene-interactions, in particular, are most relevant to our

study.

The presence of allelic or locus heterogeneity creates heteroge-

neous disease models because two or more genetic variants (i.e., at

two or more alleles or genes, respectively) are independently

associated with the same trait in the affected population. By

contrast, the presence of gene-gene interactions creates a polygenic

model because two or more genetic variations interact directly or

indirectly, in the individual affected persons, to alter disease risk
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separate from any independent effect of either variant. Thus, the

former refers, implicitly, to a population-level phenomenon while

the latter refers to individual-level phenomena. The authors are

careful to note that each model may be relevant to different subsets

of subjects affected by the same disorder and that these models are

not mutually exclusive. Finally, each model will have distinct

implications for the nature of the involved variants.

Heterogeneous Models. The degree of population-level

heterogeneity and the extent of individual-level polygenicity each

have implications for the expected frequencies and penetrances of

the pathogenic or susceptibility variants. The population

frequencies of pathogenic variants for a given disease will be

inversely proportional to the extent of heterogeneity in the

population. Under a model of robust genetic heterogeneity,

then, the frequency of any single variant (e.g., allele, CNV) in the

population will necessarily be low (i.e., will be a low-frequency or

rare variant). Furthermore, penetrances are expected to be higher

for low-frequency variants in order to give rise to a common

disease in the population. (If frequencies were low and penetrances

were weak, then the simultaneous expression of several rare

variants would be required for disease expression in each

individual and disease would necessarily be extremely rare.) The

lower the frequencies of each contributing pathogenic variant in

the population, the greater the number of variants necessary in the

population to mediate risk for a common disease. Thus, a disorder

dominated by a heterogeneous model is one in which many

relatively rare but more highly-penetrant pathogenic variants

mediate risk for the disease in the affected population.

Polygenic Model. The frequencies of pathogenic variants

will, on the other hand, be directly proportional to the extent of

polygenicity required for individual disease expression. Under a

common disease model of robust polygenicity, the frequencies of

the contributing variants in the population will need to be

relatively high in order to fulfill the necessity that each affected

individual carries multiple such variants. Furthermore, by virtue of

their persistence in the species, common variants are expected to

have low disease penetrances. Moreover, we expect that common

variants of large effect would have been identified and replicated

over previous decades of genetic investigation, including GWAS.

Therefore, a disorder dominated by a polygenic model will be one

in which several common variants of modest effect contribute to

risk for disease in each affected individual.

A Brief Comparison of Genetic Methods
Genetic Association. Genetic association studies, by design,

select polymorphic markers within candidate genes or regions and

measure the extent of allelic association with disease at those

markers within a case-control or family-based design. GWAS, a

much larger-scale design, agnostic with regard to candidate genes

or regions, uses hundreds of thousands of tag SNPs to identify

relatively small regions (tens of thousands of basepairs) likely to

harbor susceptibility variants. By using common SNPs, GWAS are

optimized for detection of common disease-associated alleles of

modest effect.

Linkage Analysis. By contrast, linkage studies are family-

based studies that measure the cosegregation of trait loci with

genetic markers within each family. Genome-wide linkage studies

(GWLS), by extension, use a large set (hundreds to thousands) of

relatively evenly spaced DNA markers across the genome to detect

broad regions (millions of base pairs) likely to harbor disease

susceptibility loci, based on the pattern of within-family

correlations between marker alleles and disease. Linkage analysis

is most robust to the detection of regions harboring loci of large

effect or regional clusters of uncommon/rare risk-associated loci

[2,3]. That said, the extent to which linkage analysis will produce

consistent evidence of linkage across GWLS depends upon the

underlying architecture of the disorder. Under a rare or private

functional variant model with extensive locus heterogeneity,

linkage evidence will (by definition) be modest and generally

inconsistent [4,5]).

Relative Power
Current GWAS are optimally powered to find variants

conferring relative risks of .1.1. However, as GWAS are

conducted using commercial genotyping arrays designed to tag

common variants, these studies are underpowered to identify low

frequency risk variants even if these variants confer large (2.0)

relative risks [6]. By contrast, linkage analysis is not sufficiently

powered to identify alleles conferring small relative risk (i.e., 1.1–

1.5) [6,7]. However, when odds ratios at individual loci are $3, or

there are many independent risk variants, linkage is more powerful

than association [7].

Summary of Previously Published GWAS Findings
To date, there have been 12 published GWAS

[8,9,10,11,12,13,14,15,16,17,18,19] and two GWAS meta-analy-

ses [20,21] that included subjects with bipolar disorder and 13

GWAS [9,22,23,24,25,26,27,28,29,30,31,32,33] and 3 GWAS

meta-analysis [21,29,31] that included schizophrenic subjects.

Some of these studies included mixtures of subjects with bipolar

disorder, schizophrenia and/or major depressive disorder

[9,13,20,21].

Thus far, two independent, primary GWAS in bipolar disorder

have each reported one SNP association exceeding genomewide

(GW) significance (i.e., after multiple hypothesis testing correc-

tions). First, Baum, et al [8] found GW association evidence for

rs1012053, within the DGKH gene, yielding an association p-

value = 1.50E-08, which exceeded a priori significance thresholds.

Second, the Wellcome Trust Case Control Consortium (WTCCC)

GWAS [14] reported association at rs420259, in the PALB2 gene,

with p = 6.23E-08 exceeding the investigators’ a priori threshold of

p,5E-07. Though single marker results exceeding GW signifi-

cance thresholds are rare, and despite minimal apparent

convergence in suggestive findings across independent GWAS,

four GWAS meta-analyses in bipolar (or mixed samples) have

provided GW evidence for SNP association. Baum et al (2008)

[34] conducted a meta-analysis of 76 SNPs with individual

genotypes available from two bipolar studies [8,14] and identified

2 SNPs (rs10791345 in JAM3, p = 1E-06; rs4806874 in SLC39A3,

p = 5E-06) exceeding the study a priori GW significance threshold

(p,7E-05). Ferreira et al (2008) [11], performed a BP meta-

analysis combining their own BP sample with previously analyzed

[14,17] samples, identifying one SNP (rs10994336 in ANK3,

p = 9.1E-09) that exceeded and one SNP (rs1705236 in CAC-

NA1C, p = 7E-08) that nearly exceeded their GW threshold

(p,5E-08). Wang et al (2010) [21], performed a combined BP [18]

and SCZ [27,29,35] GWAS meta-analysis and produced 3 SNP

associations (rs11789399 and rs11789407, both flanking ASTN2

gene, p = 5.56E-09 and p = 1.55E-08, respectively; and

rs12201676, between GABRR1 and GABBR2 genes, p = 3.88E-

08) exceeding their GW significance threshold (p,7.20E-08).

Finally, Liu et al (2011) [20] performed a combined BP [14,17]

and MDD [36] GWAS meta-analysis, which identified two SNPs

(rs1006737 and rs7297582, both in CACNA1C gene, p = 3.1E-08

and p = 3.4E-08, respectively) exceeding GW significance thresh-

old (p,5E-08).

In schizophrenia, one primary GWAS [27] has reported a SNP

association (rs1344706 in ZNF804A, p = 1.61E-07) exceeding the

Meta-Analysis and Genetic Architectures

PLoS ONE | www.plosone.org 2 April 2011 | Volume 6 | Issue 4 | e19073



investigators’ a priori GW significance threshold (p,5E-07). In

addition to the combined BP and SCZ meta-analysis by Wang,

et al [21] described above, three additional GWAS meta-analyses

incorporating schizophrenic GWAS samples have produced SNP-

level findings exceeding GW significance. First, Shi et al (2009)

[29], performed a meta-analysis of 3 independent SCZ GWAS

samples [29,31,37] and identified 7 GW significant SNPs spanning

209 kb on 6p22.1, and in strong LD, that contains several genes of

potential biological significance. The authors could not ascertain

whether the signal in this large region was driven by one or several

genes, intergenic elements or by longer haplotypes that include

susceptibility alleles in many genes. Second, Stefansson et al (2009)

[31] performed an extended follow-up analysis to their primary

GWAS (GWAS+FU) and a meta-analysis (Meta) combining results

across 4 samples, finding 3 and 4 GW significant (p .1.6E-07)

SNPs, respectively. Of the 7 markers attaining GW significance in

either analysis, 5 (rs6913660, rs13219354, rs6932590, rs13211507,

rs3131296) were located within the extended MHC region on 6p

(within/near HIST1H2BJ, PRSS16, PRSS16, PGBD1, NOTCH4

genes, respectively), one (rs12807809) was 3457 bp upstream of

NRGN and the other (rs9960767) was within the TCF4 gene.

Finally, Athanasiu et al (2010) [22] performed a GWAS, an

independent replication analysis of their top 1000 GWAS markers

in another sample [38], and a combined analysis of the primary and

replication samples. Their replication study produced one GW

significant (a priori threshold, p,0.00024) SNP (rs7045881)

association in the PLAA gene (p = 1.96E-04). Their combined

analysis produced three GW significant (p,5E-05) SNP

(rs7045881, rs433598, rs10761482) associations in PLAA

(p = 2.2E-06), ACSM1 (p = 3.27E-06) and ANK3 (p = 7.68E-06),

respectively.

In summary, then, there are several important points regarding

extant bipolar and schizophrenia GWAS. First, primary GWAS in

each disease have produced very few GW significant SNP findings

(2 in bipolar, 1 in schizophrenia). Second, while GWAS meta-

analyses in each disease have identified SNPs (8 in bipolar, 20 in

schizophrenia) reaching GW significance thresholds in/near a

handful of genes (6 genes in bipolar, 11 in schizophrenia), no two

meta-analyses in a single disorder have found the same SNP (nor

two SNPs within the same gene) to exceed GW significance

threshold. Third, two different SNPs within the ANK3 gene

(rs10994336- Ferreira et al, 2008 and rs10761482-Athanasiu et al,

2010) have produced GW significant meta-analytic evidence of

association with bipolar disorder and schizophrenia, respectively.

Fourth, two SNPs in the CACNA1C gene (rs1006737 and

rs7297582) reached GW significance in a combined bipolar and

MDD meta-analysis [20], one of which (rs1006737) surpassed GW

significance, but only in the expanded reference group analysis by

Ferreira et al (2008) [11].

Thus, while a small number of common variants have shown

evidence for genetic association with bipolar disorder and/or

schizophrenia, the vast majority of the heritability for these

disorders remains unexplained by GWAS studies to date.

Therefore, we suggest that extant linkage data may be an

untapped and cost-efficient source of valuable information about

the regional genomic architecture of low-frequency and rare

variants underlying complex disorders.

Challenges Facing Linkage Analysis
With that said, we are still left with the problem of evaluating

and interpreting linkage findings in the context of the unresolved,

but certainly complex, genetic architectures of neuropsychiatric

disease. Generally speaking, linkage studies present two funda-

mental statistical barriers to replication: 1) high dimensionality

relative to sample size, which may result in a significant number of

false positive results and insufficient power, and 2) small effect size,

likely due to a disease being caused by multiple mutations in

different regions, across or within families (i.e, allelic or locus

heterogeneity) [39,40,41]. For complex genetic diseases in

particular, these problems lead to generally low linkage scores

and poor agreement between different linkage studies. One

approach to this problem is to use meta-analytic methods to

combine the data from multiple studies. A well-constructed meta-

analysis objectively integrates the results between studies, increas-

ing power when the results are in agreement with each other

[40,41,42,43].

Study Objectives: Comparative Linkage Meta-Analysis &
Examination of Architectural Implications

Here we look at two meta-analytic methods: Badner and

Gershon’s multiple scan probability (MSP) method [41,44] and

the genome scan meta-analysis (GSMA) method [40,45,46]. MSP

is known to have higher power to detect large effects that may

have high variance (i.e., it is more dependent on effect size), while

GSMA has higher power to detect effects with small variance (i.e.,

is more dependent on consistency of results) across independent

studies [43]. A previous review of meta-analytic results derived

across these methods [5] found modest consistency of results for

schizophrenia and an absence of replication for bipolar, and

discrepant results were attributed to differences in the datasets

being analyzed by the two methods. We were interested in identifying

differences in results produced by these two methods using the same set of data

as we believe that such differences may be especially useful in untangling the

genetic architectures of these complex disorders. The primary objectives of

our investigation, rather than to complete comprehensive meta-

analyses for these disorders, were 1) to compare the meta-analytic

findings obtained under two different methods using results from

the most recent published GWLS, and 2) to examine the potential

implications of convergent and discrepant results for the

underlying genetic architectures of bipolar disorder and schizo-

phrenia given other genetic evidence (e.g., GWAS) available for

these disorders.

Extrapolating from its methodologic strengths and weaknesses,

we expect that MSP will identify relatively strong effect loci that

are likely relevant to a smaller number of affected individuals. As

such, we expect MSP to implicate regions likely to harbor a genetic

architecture most befitting models of genetic heterogeneity. This

implication should be strongest for regions in which MSP, alone,

finds significant evidence of linkage.

GSMA, by contrast, is expected to identify genomic regions that

most consistently harbor one or more loci related to disease across

the included GWLS. Importantly, then, GSMA may implicate a

region via two different mechanisms, either 1) the same locus is

responsible for the region’s significance or 2) separate disease-

linked, low-frequency loci co-localize to the same region across

GWLS samples (heretofore referred to as the single locus vs.

multiple loci mechanisms, respectively). If the single locus

mechanism pertains, the implicated locus will necessarily be

reasonably common and, thus, be more likely to mediate smaller

(i.e., modest to moderate) effects. In this case, significant GSMA

findings are most likely to implicate polygenic models. If the

multiple loci mechanism pertains, then the convergence of several

distinct loci would have been necessary to produce regional

significance, and thus, each implicated locus will be of relatively

low-frequency in the sampled families and more likely of moderate

to larger effect. Under the multiple loci mechanism, significant

GSMA findings may be more consistent with heterogeneous

models of genetic architecture. Co-localization of MSP and/or

Meta-Analysis and Genetic Architectures
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GWAS results in a significant GSMA region may then inform the

relative likelihood of the two mechanisms (see Discussion).

Hypotheses
While full testing of our more specific architectural hypotheses

must await sequencing and functional investigations of genes

within these regions, examining our results in light of extant

genetic literature may provide additional evidence (for or against)

these hypotheses. If the two meta-analytic methods are truly

implicating regions with distinct architectures, we expect to find: 1)

little overlap between GSMA and MSP findings for either disease;

2) relatively more agreement between the regions implicated by

GWAS and those implicated by GSMA (as opposed to by MSP),

particularly if the GSMA significance derives from the single locus

mechanism. That said, there are caveats to the standard

interpretation of GWAS that provide for an alternative expecta-

tion of agreement between GWAS and MSP findings. As will be

elaborated in the Discussion, we also expect 3) more agreement

between MSP and GWAS when regional clustering of rare

variants creates synthetic association signals at GWAS SNP

markers.

Materials And Methods

Data Collection
Given our comparative objectives, studies included were limited

to English-language GWLS of bipolar disorder and schizophrenia

catalogued in PubMed and published between 2000 and 2010.

Relevant articles were obtained by searching PubMed and from

the relevant references cited by authors of previous meta-analyses.

(See File S1 for more detailed description of data collection,

literature search screening procedures, comparison of included

studies to previous GWLS meta-analyses, ethnic composition of

original GWLS, marker mapping and inclusion procedures, data

preprocessing, and procedures for handling missing marker data).

Multiple-Scan Probability (MSP)
In this study we apply and contrast the results of two different

methods of combining linkage studies. The first method, MSP,

developed by Badner and Gershon [41,44], modifies Fisher’s

method [47]. Fisher’s method combines p-values from multiple

tests about the same hypothesis to obtain a single test statistic:

Y 2 ~ {2
Xk

i~1
ln (pi) ð1Þ

Y2 has a chi-square distribution (with degrees of freedom equal to

twice the number of studies) under the null hypothesis and

therefore yields an overall p-value that incorporates information

from each individual test. When using the MSP method, this value

is referred to, simply, as the MSP. Large p-values do not

contribute significantly to the sum and inflate the number of

degrees of freedom of the chi-square distribution, therefore

increasing the MSP. As such, Fisher’s method is conservative in

that it takes into account evidence both for and against the null

hypothesis by design. However, Fisher’s method cannot be directly

applied to linkage studies, because linkage evidence is often

observed for broad regions and not single points [41]. This occurs

as a result of association between loci which are close together on

the chromosome and because studies may use different marker

sets.

The modification used by MSP allows for the analysis of linkage

regions by accounting (correcting) for the effects of crossover,

marker spacing, family structure and original linkage methods

used. After all original GWLS results are assembled, ‘corrected’ p-

values (p*) are derived from each original p-value:

p �~Cpz2lGZ(p)Q (Z(p)) v ½Z(p) sqrt(4lD)� ð2Þ

p is the raw p-value, C is the number of chromosomes spanned by

the region (in this case, all regions are on a single chromosome), l
is the crossover rate per Morgan, G is the region size in Morgans,

Z(.) is the standard normal inverse, w(.) is the normal density, and

D is the marker spacing in Morgans. Next, candidate regions are

identified by searching for markers with a p-value below a fixed

threshold in at least one original study. Once such a marker is

identified, a ‘window’ of pre-determined length is opened around

that marker. The minimum observed p* falling within that

window for each study is then included in the MSP calculation:

MSP~P(x2 with2k degrees of freedomwY2) ð3Þ

by substituting p* for pi in Equation 1. In this study, for the size of

the linkage window and p-value threshold, we use values of 30 cM

(615 cM from triggering marker) and 0.01, respectively, following

the example of Badner and Gershon (2002) [41].

Several studies utilize multiple diagnostic models. For example,

a study of bipolar disorder may yield one set of linkage scores by

counting only patients with bipolar I disorder as affected (narrow

model), and another by counting patients with either bipolar I

disorder or bipolar II disorder (broad model). This can be dealt

with in MSP either by analyzing only the results based on the

broadest diagnostic model used in the study (MSP-Single) or by

incorporating only the most significant model’s p-value and

including a penalty for multiple testing (MSP-Best). We elected to

complete the MSP analysis using both the MSP-Single and MSP-

Best approaches in order to also evaluate and compare the results

obtained with each.

It is theoretically possible for MSP to find significance because

evidence for linkage was present in only one of the included

studies. However, even if this is the case, the conservative design of

the method allows it to provide more robust statistical evidence of

linkage than that provided by the original GWLS. Discrepant

linkage evidence between studies does not necessarily invalidate a

finding as evidence for linkage can vary considerably depending

(among other factors) on the degree of genetic heterogeneity, the

proportion of parents homozygous for the susceptibility gene,

ethnic stratification within the pedigree sample and ascertainment

methods employed [41].

Genome Scan Meta-Analysis (GSMA)
The GSMA method for meta-analysis of linkage studies divides

each chromosome into segments of fixed length, called ’bins‘. In

this study, we use 30 cM bins, following Levinson et al [40]. For

each included study, bins are ranked based on the lowest p-value

among markers they contain, with the bin containing the lowest p-

value for that study attaining a rank of 1. Bins with tied p-values

are assigned the average of their ranks [40]. The rank of each bin

is summed across all studies, with studies weighted by sample size,

producing a summed-rank (SR) statistic and corresponding SR p-

value. Bins that consistently contain relatively low p-values will

have a low SR, so that the SR p-value is a measure of the

consistency of linkage evidence in that bin. Simulation studies

demonstrate that SR p-values have the standard interpretation of

type 1 error rate under the null hypothesis [40]. For comparability

to MSP results, we conducted both GSMA-Broad and GSMA-
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Best analyses for each disorder. For GSMA-Broad, the lowest p-

value obtained under the broadest diagnostic model employed in

each original GWLS was used for determining the rank of each

bin. For GSMA-Best, the best result, regardless of model, was used

to determine rank.

Because GSMA is rank-based, the magnitude of a detected

effect is used only to determine its rank, so that if a very large effect

is observed only rarely across studies within a particular bin,

GSMA will have low power to detect it. This can occur if strong

linkage is only found in a region for certain populations or pertains

to only one sub-phenotype. Since meta-analyses typically incor-

porate data from a variety of populations, it is possible to miss

regions of importance to only a segment of the affected population

when relying solely on GSMA. By design, GSMA will reliably fail

to implicate regions in which marker rank is highly variable across

[46] independent GWLS, prioritizing signal consistency over

signal intensity. Additionally, GSMA relies on pre-assigned bins,

and has reduced power to detect signals that fall near their

boundaries, as the effect may be split between two bins. Increasing

bin size may allow the effect to be captured in a single bin in

specific cases, but reduces overall power, as a consistent linkage

signal is unlikely to be found over a large region. For consistency,

we modified the GSMA bin definitions employed by Wise et al

(1999) [46] by remapping the start and end markers for each bin to

deCODE.

In contrast, MSP has higher power to detect such effects, but

may fail to detect small signals, even if they occur consistently. For

MSP, regions of potential interest are identified based on locations

of strong linkage signals from individual studies and not fixed in

advance.

Hypothesis Testing Corrections
In our results tables, we report all GSMA bins and MSP

windows for which nominally-significant results were obtained on

meta-analysis and indicate those results retaining significance after

conservative multiple testing corrections. For the GSMA analyses,

we applied standard Bonferroni corrections for 120 bins, following

the example of Levinson et al (2003) [40]. For the MSP analyses,

we employed the most widely-used conservative thresholds,

originally proposed by Lander and Kruglyak (1995) [48] (LK-

significant = 2.2E-05, LK-suggestive = 7.0E-04). Badner & Ger-

shon (2002) [41] tested these thresholds using simulations and

showed that they are conservative when using corrected

probabilities (p*) and nonzero window size.

Results

A total of 35 English-language GWLS published between 2000

and 2010 were identified through PubMed literature search.

Twenty-nine were included in disease-specific MSP and GSMA

analyses, including 13 for bipolar disorder [49,50,51,52,53,54,55,

56,57,58,59,60,61] and 16 for schizophrenia [62,63,64,65,66,67,

68,69,70,71,72,73,74,75,76,77] (See Table S1 & Table S2 for full

descriptions of included GWLS). The total number of studies

identified, number of studies included and corresponding number

of marker instances included in the meta-analyses are reported in

Table 1. Multiple marker instances may occur for a single marker

if the marker is used in more than one original study and/or is

used to test more than one disease model in a single study.

Results in Tables 2 and 3 display the chromosome region for the

MSP window or GSMA bin, linkage window midpoint marker

(MSP) or bin number (GSMA), results from MSP-Single, MSP-

Best, GSMA SR (narrow model) and GSMA SR (broad model) for

all windows/bins found to reach nominal significance threshold

(p = 0.05) for bipolar (Table 2) and schizophrenia (Table 3)

analyses. The final column in each table contains a list of the

significant bipolar and schizophrenia GWAS findings, if any, for

that region as reported in the Catalog of Published Genome-Wide

Association Studies [78], accessed 11/17/10). Any MSP window

instances with the same start/end locations necessarily produce the

same results (because they are combining the same set of markers).

The set of windows with non-identical start/end locations are

referred to as ‘unique windows’ or, simply, ‘windows’ (as opposed

to ‘window instances’).

MSP Results
Bipolar Disorder. Of the original 4640 Bipolar GWLS

marker instances subjected to our meta-analyses, 18 window

instances, representing 16 unique windows, yielded at least

nominally-significant findings (p,0.05) in one or both MSP

meta-analysis (Table 2). Significant MSP results were found on 10

different chromosomes. A slightly greater number of windows

were significant under MSP-Best (16) than MSP-Single model (13)

and no windows were significant for MSP-Single (broad model)

only. Additionally, results for MSP-Best were consistently equal to

or more significant than results for MSP-Single, but in only one

case (8q24.13-q24.3) was the difference large.

The most significant MSP results for both MSP-single and

MSP-best (p = 4.61E-08) was found at 5q14.3-q23.3. Two

additional windows retained significance under LK-significance

criteria for both MSP-Single and MSP-Best: 14q11.2-q13.1

(p = 6.02E-08) and 5p13.3-q13.3 (p = 3.63E-07). Finally, two

additional windows met LK-suggestive criteria under both models:

14q12-q22.3 (MSP-Single & MSP-Best p = 1.41E-04) and 6p23-

p21.1 (MSP-Single p = 4.68E-04, MSP-Best p = 1.35E-04). Of the

16 nominally-significant MSP windows, 14 were MSP-only

windows. Nine of 14 (64%) significant MSP-only windows

contained 13 significant GWAS SNP and/or GWAS meta-

analysis associations [11,13,14,16,21]. Of the three unique MSP

windows meeting LK-significance criteria, the two most significant

contained seven SNP associations from four GWAS or GWAS

meta-analyses [11,13,16,21] (Table 2).

Schizophrenia. Of the original 12395 schizophrenia GWLS

marker instances subjected to meta-analyses, 22 window instances

(representing 16 unique windows) yielded nominally-significant

findings (p,0.05) on MSP-Best analysis. Significant MSP results

were found on 5 different chromosomes. In contrast to the bipolar

results, the schizophrenia MSP-Single results were dramatically

weaker than those for MSP-Best and no MSP-Single result

approached nominal significance (Table 3). The most significant

window on MSP-Best analysis was at 1q23.2-q25.3 (p = 1.94E-03),

just under LK-suggestive criteria, providing nominal evidence for

linkage within the window. No schizophrenia window retained

significance under LK criterion. Of the 16 nominally-significant

MSP windows, 15 were MSP-only windows. Within seven of 15

(47%) MSP-only windows were three significant GWAS meta-

Table 1. GWLS Studies and Marker Counts Included in Meta-
analyses.

ss

Original
GWLS
Identified

Original
GWLS
Included

Marker Instances
from Included
GWLS

Bipolar Disorder 17 13 4640

Schizophrenia 18 16 12395

doi:10.1371/journal.pone.0019073.t001
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analysis SNP associations, all of which were from the combined

bipolar-schizophrenia meta-analysis by Wang, et al (2010) [21],

and there was no overlap with any primary schizophrenia GWAS

findings.

GSMA Results
While several bins reached a nominal significance threshold of

p,0.05 in each disorder, no bin’s significance survived Bonferroni

correction for 120 hypothesis tests in either disorder. That said, a

pair of adjacent bins in bipolar disorder (10.2 and 10.3) and 2 pairs

of adjacent bins in schizophrenia (3.4 and 3.5, 6.5 and 6.6) were

implicated by nominally significant GSMA findings. As demon-

strated by simulations conducted by Levinson, et al (2003) [5,40]

when adjacent clusters of bins meet GSMA significance criteria,

they are unlikely to represent false positives. Furthermore, since

the Bonferroni correction assumes complete independence of all

tests, it is conservative in the present context.

Bipolar Disorder. Six of 120 bins on 4 chromosomes

reached nominal significance in the bipolar GSMA analysis,

under one or both models. In contrast to the bipolar MSP results,

the GSMA-Broad results were consistently (though modestly) more

significant than the GSMA-narrow results. The most significant

bin under both broad (p = 0.0060) and narrow (p = 0.0099)

analyses was bin 3.2, spanning 3p25.3-3p22.1. The second most

significant bin under both broad (p = 0.0127) and narrow

(p = 0.0172) models was bin 10.2, spanning 10p14-q11.21.

Adjacent bin 10.3 (10q11.21-q22.1) was also nominally

significant. Of the 5 nominally-significant GSMA bins, 4 (80%)

were GSMA-only bins. Four of 4 (100%) significant GSMA-only

bins in bipolar analysis contained 10 unique GWAS SNP

associations (Table 2).

Schizophrenia. Seven of the 120 bins reached nominal

significance in the schizophrenia analysis. In contrast to the

bipolar GSMA results, some GSMA bins produced more

significant findings under the GSMA-broad (3 bins) model and

others under the GSMA-narrow model (4 bins). The most

significant bin under both broad (p = 0.00267) and narrow

(p = 0.011058) GSMA models was bin 6.6 at 6q25.3-qter. This is

adjacent to another bin significant under both models: 6.5 at

6q23.2-q25.3. Additionally, adjacent bins 3.5 (3q12.3-q22.1) and

3.4 (3p14.1-q12.3) are also both significant under the narrow

GSMA model. Of the 7 nominally-significant GSMA bins, 6

(85%) were GSMA-only bins. Only 2 of 6 (33%) GSMA-only bins

contained 3 nominally-significant SNP associations (all from [21]).

Additionally, the three bins within which these significant GWAS

SNPs resided were those in which the GSMA-broad model was

superior to the GSMA-narrow model.

MSP-GSMA Overlap
Bipolar Disorder. Of the twenty unique genomic regions

representing a significant window instance, bin or the overlap

thereof (Table 2), only two regions on chromosome 10 produced

partially-overlapping MSP-GSMA results. The 10p11.21-q22.1

MSP window is contained completely within the boundaries of two

GSMA bins (10.2 and 10.3). Notably, this region of MSP-GSMA

overlap in bipolar disorder contains the most highly-replicated

gene finding in bipolar disorder to date (see Discussion). A second,

nearby MSP window, 10q22.1-q24.1, also overlaps marginally

with GSMA bin 10.3 at band 10q22.1.

Schizophrenia. Of twenty-two unique genomic regions with

significant meta-analytic findings, only one region on chromosome

6 contained partially-overlapping nominally-significant MSP-

GSMA results. One MSP window (6q22.31-q24.3) overlapped

with a GSMA bin (6q23.2-q25.3), creating one distinct region of

MSP-GSMA overlap: 6q23.2-q24.3. Interestingly, no schizophrenia

GWAS has implicated this region, but a GWAS in a combined

bipolar and major depressive disorder sample implicated a SNP

within the non-overlapping portion of this GSMA bin (6q25.2,

rs17082664-G in SYNE1) [20].

For both disorders, the observed absence of MSP-GSMA

overlap among the significant results is further supported by the

fact that most significant findings under one method did not even

approach significance under the other method (See Table S3 &

Table S4 for further details.).

Discussion

Notably, 5 MSP windows retained significance after multiple

testing correction in the bipolar analysis. Additionally, nominally-

significant evidence for linkage was found in all primary analyses

in MSP and GSMA for both disorders and several sets of

adjacent bins were implicated in the GSMA analyses. The failure

of GSMA (in either disease) or of MSP (in schizophrenia) to

detect evidence of linkage that withstood multiple testing

corrections has several potential explanations. First, there may

be no true linkage for these disorders. While theoretically

possible, the accumulated evidence for heritability is strong, with

heritability estimates of approximately 80–85% [4,79], making

true absence of genetic linkage within families unlikely. Second,

linkage (and therefore linkage meta-analysis) failed to detect

robust signals because the majority of the actual contributory loci

are of modest effect. In this case, linkage studies would not the

method of choice for detection. We would also submit that this

explanation is unlikely; while modest effect variants certainly

contribute to disease susceptibility, if these were the sole

contributors, we would have expected much more robust findings

from studies designed especially to detect such a risk architecture

(i.e., GWAS).

A third potential explanation is that the substitution of neutral

p-values for missing data effectively drowned out more substantial

trends in the data that would have been apparent if all marker

information had been available. Thus, we would expect that the

inclusion of all marker information would, by and large, lead to

the preservation, and possible enhancement, of significance of the

bins implicated by our GSMA analysis. This expectation bore out

in our bipolar reduced (RED) post-hoc analysis wherein the

identical set of 6 bins was implicated as in the full analysis, with

only one change to the rank order (i.e., flipping of bins 7.4 and

12.4 between 3rd and 4th position). (See File S1 and Table S5 for

further details on Reduced Post-Hoc Analysis.) Similarly, we

expect that the inclusion of many neutral p-values in the MSP

calculations is also a conservative approximation of the distribu-

tion of p-values likely to reside within a window. The RED

analysis, again, demonstrated the neutralizing effect of removing

studies with missing data from the analysis.

Finally, failure of most results to withstand multiple testing

correction may also be the result of extensive genetic heteroge-

neity and contributions by rare variants in these disorders. If

disease risk is largely mediated by rare or private causative

variants, then individual linkage studies and conservative meta-

analytic approaches may fail to produce findings exceeding

standard significance thresholds, even in the presence of

substantial heritability and true linkage [4]. Under such a model,

only large, extended pedigrees with ‘Mendelian-like’ structures

(and statistical accounting for heterogeneity) may be capable of

producing robust linkage signals [80] (also see Baron, 2001 [81]

for an overview of the relative merits of various sample

characteristics and analytic approaches to linkage). This may,
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in fact, be why our strongest results were produced through MSP

and by the inclusion of the Marcheco-Teruel study [57] which

was conducted using a very large, extended pedigree and

nonparametric methods that can account for intrafamilial

heterogeneity.

Pattern of Findings across Methods
Perhaps our most compelling finding is the unique distribution

of significant regions produced by each method for each disorder

(Tables 2 & 3). Given the number of MSP window-triggering

marker instances in the original GWLS (SCZ = 133, BP = 56, full

Table 2. Linkage Meta-Analyses Results for Bipolar Disorder.

p-values

ChrBAND for MSP
Window/GSMA Bin

Midpoint
Marker/
Bin # MSP single MSP best

GSMA
narrow

GSMA
broad

Schizophrenia (SCZ) and Bipolar Disorder (BP) GWAS Findings
Overlap

2p25.3-p25.1 rs726342 0.00564 0.00268

2p22.2-p13.3 rs195573 0.02377 0.00832 SCZ: 2p16.1 (VRK2): Stefansson - OR = 1.09, p = 3E-07

2p16.2-p11.2 rs1396798 0.01815 0.00348 BP: 2p12 (CTNNA2): Scott - OR = 1.2, p = 3E-06; SCZ:2p16.1
(VRK2): Stefansson – OR = 1.09, p = 3E-07

2p16.1-q11.2 D2S99 0.07683 0.01821 BP: 2p12 (CTNNA2): Scott -OR = 1.2, p = 3E-06; SCZ:2p16.1
(VRK2): Stefansson – OR = 1.09, p = 3E-07

3p25.3-p22.1 3.2 0.00994 0.00601 BP: 3p22.3 (NR): Ferreira - OR = 1.18, p = 4E-06; BP: 3p24.3 (2,
NR): Ferreira - OR = 1.23, p = 5E-06 & OR = 1.15, p-5E-06; BP:
3p24.3 (RFTN1): Sklar - OR = 0.79, p = 3.47E-05; SCZ&BP (meta):
3p24.2 (NR): Wang-OR = 1.28, p-1E-06)

5p13.3-q13.3 (3
window instances)

rs336081;
rs831818;
rs831791

3.63E-07** 3.63E-07**

5q14.3-q23.3 rs417670 4.62E-08** 4.61E-08** BP: 5q15 (MCTP1): Scott - OR = 1.21, p = 1E-07; SCZ&BP (meta):
5q21.3 (NR): Wang - OR = 1.24, p = 2E-06); SCZ: 5q21.1 (SLCO6A1):
Stefansson - 1.09, p = 1E-06

6p23-p21.1 rs2064524 0.000501 0.000132 BP: 6p21 (NR): WTCCC - OR = 1.19, p = 4E-06; SCZ: 6p21.32 (MHC,
NOTCH): Stefansson - OR = 1.19, p = 2E-10; SCZ: 6p21.32(HLA-DQA1): Shi
- OR = 1.14, p = 7E-08; SCZ: 6p22.1 (2, NR): Shi- OR = 1.28, p = 1E-08 & ISC-
OR = 1.22, p = 1E-08); SCZ: 6p22.1 (MHC, PRSS16): Stefansson - OR = 1.16,
p = 1E-12

7pter-p21.1 7.1 0.05266 0.03724 SCZ&BP (meta): 7p22.3 (2, NR): Wang- OR = 1.25, p = 4E-06 &
OR = 1.24, p = 2E-06; BP: 7p21.1 (SP8): Lee-OR = 1.44,p = 5E-07

7q12.11-q31.1 7.4 0.04438 0.03032 BP&MDD: 7q21.12 (C7orf23, DMTF1): Liu - p = 1E-06; SCZ:
7q22.1 (RELN): Shifman - OR = 1.58, p = 9E-07

8p11.21-q21.13 rs684872 0.02212 0.01304 SCZ&BP (meta): 8q12.1 (FAM110B):Wang - OR = 1.56, p = 2E-07

8q12.1-q22.1 rs1364616 0.02829 0.01688 SCZ&BP (meta): 8q12.1 (FAM110B):Wang - OR = 1.56, p = 2E-07

8q24.13-q24.3 D8S256 0.85627 0.03603 SCZ&BP (meta): 8q24.3 (NR):Wang - OR = 1.56, p = 2E-07

MSP: 10p11.21-q22.1;
GSMA (10.2): 10p14-
q11.21; GSMA(10.3):
10q11.21-q22.1 (see
p-values below)

rs1459990;
10.2

0.01274 0.01274 0.01723 0.01266 BP&MDD: 10q21.2 (ANK3): Liu – p = 5E-07; BP: 10q21.2 (ANK3):
Ferreira - OR = 1.45, p = 9E-09; SCZ&BP (meta): 10q11.21 (NR):
Wang - OR = 1.23, p = 3E-06; SCZ: 10q21.2 (ANK3): Athanasiu -
OR = 1.16, p = 8E-06

MSP: 10q22.1-q24.1;
GSMA: 10q11.21-q22.1

rs2344769;
10.3

0.00389 0.000433 0.04708 0.03254 BP&MDD: 10q21.2 (ANK3): Liu – p = 5E-07; BP: 10q21.2 (ANK3):
Ferreira - OR = 1.45, p = 9E-09; BP: 10q22.3 (NR): Ferreira -
OR = 1.15, p = 8E-06; SCZ&BP (meta): 10q11.21 (NR): Wang -
OR = 1.23, p = 3E-06; SCZ: 10q21.2 (ANK3): Athanasiu - OR = 1.16,
p = 8E-06

12q15-q23.2 12.4 0.04389 0.03093 BP: 12q21.1 (TSPAN8): Sklar - OR = 0.58, p = 6.11E-07

14q11.2-q13.1 rs1241620 6.02E-08** 6.02E-08** BP: 14q11.2 (NR): Ferreira - OR = 1.3, p = 5E-06; BP: 14q13.1
(NR): Ferreira - OR = 1.59, p = 5E-06; SCZ&BP (meta): 14q12 (2,
NR): Wang- OR = 2.41, p-3E-06 & OR = 1.23, p = 2E-06;
SCZ,BP&MDD: 14q13.1 (NPAS3): Huang - p = 4E-06

14q12-q22.3 rs2415438 0.00014 0.00014 BP: 14q13.1 (NR): Ferreira - OR = 1.59, p = 5E-06; SCZ,BP&MDD:
14q13.1 (NPAS3): Huang - p = 4E-06

21q11.2-q21.3 rs12034 0.07500 0.04112

22q12.3-q13.33 rs1473953 0.01685 0.01685

**p,2.2E-05 (LK-significant).
*p,7.0E-04 (LK-suggestive).
p-values in bold font indicate at least nominal significance was reached.
GWAS overlap in bold font indicates the overlap was with bipolar GWAS.
doi:10.1371/journal.pone.0019073.t002

Meta-Analysis and Genetic Architectures

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e19073



results not shown) included in our analyses and the full genomic

coverage employed by GSMA, a substantial amount of chance

overlap between methods may have been expected. However, we

found minimal overlap for either disease. In fact, the vast majority

of regions significant by one method did not approach significance

by the other method. These findings are in keeping with the fact

that the methods are robust to different types of susceptibility loci

and, therefore, expected to be largely non-redundant. As we

expect distinct susceptibility architectures to emerge by different

genetic mechanisms and over different evolutionary timescales, we

may also expect that distinct types of susceptibility loci may,

largely, reside in separate genomic regions. This is consistent with

our findings.

The relative dominance of MSP findings over GSMA in both

disorders suggests that most linkage regions identified by our

analyses likely contain low frequency or rare susceptibility loci of

larger effect size while fewer contain relatively more common (i.e.,

low-frequency) loci of more modest effect. As most MSP regions

were not implicated by GSMA, the susceptibility loci residing in

these regions are likely uncommon or rare. And, to the extent that

the larger effect sizes necessary for MSP detection implicate higher

penetrance loci, substantial individual-level polygenicity would not

be necessary for disease expression for loci in these regions. Thus,

for the GWLS samples examined, the genetic architecture

suggested for both disorders is one dominated by heterogeneous

models, via the involvement of many low frequency or rare loci,

each relevant to a subset of affected families.

A proliferation of recent genetic investigations and reviews

suggest that multiple rare allelic and/or structural variants—and

therefore an architecture characterized by substantial locus and

allelic heterogeneity—may explain a substantial proportion of

susceptibility to major neuropsychiatric disorders [3,4,79,82,

83,84,85]. Furthermore, Cirulli & Goldstein (2010) [4] note that

the diversity of linkage regions implicated across different families

securely confirms high locus heterogeneity for many common

diseases. In fact, their review of genetic results over the past several

Table 3. Linkage Meta-Analyses Results for Schizophrenia.

p-values

ChrBAND for
MSP Window/
GSMA Bin

Midpoint
Marker/
Bin #

MSP
single

MSP
best

GSMA
narrow

GSMA
broad

Schizophrenia (SCZ) GWAS, Bipolar Disorder (BP) GWAS and GWAS
Meta-Analysis (meta) Overlap

1p13.1-q24.1# D1S1653 0.49120 0.00505

1q21.3-q24.3# D1S1679 0.78591 0.00233

1q21.3-q25.1 D1S1677 0.76803 0.00209

1q23.2-q25.3 D1S196 0.75513 0.00194

2p25.1-p23.2 2.2 0.02161 0.01552 SCZ&BP (meta): 2p24.3 (NR): Wang - OR = 1.37, p = 4E-06

2p12-q22.1 2.5 0.03488 0.01497 SCZ&BP (meta): 2q21.2 (NAP5): Wang - OR = 1.39, p = 7E-07; BP: 2p12
(CTNNA2): Scott - OR = 1.2, p = 3E-06 ; BP: 2q11.2 (intergenic): Scott - OR = 1.17,
p = 3E-06; BP: 2q11.2 (intergenic): Ferreira - OR = 1.17, p = 3E-06

2q36.1-q37.3 D2S427 0.46951 0.01064 BP: 2q37.3 (NR): WTCCC - OR = 1.84, p = 7E-06

2q36.3-q37.3 D2S345 0.53986 0.00860 BP: 2q37.3 (NR): WTCCC - OR = 1.84, p = 7E-06

3p14.1-q12.3 3.4 0.03722 0.21419

3q12.3-q22.1 3.5 0.01405 0.04055

4p14-q13.3 4.3 0.04692 0.03987 BP: 4q12 (KIT): Scott- OR = 1.16, p = 4E-06

5p14.3-q11.2 D5S1470 0.83170 0.02874

5p14.2-q11.2# D5S426 0.83170 0.02989

5q31.3-q34 D5S820 0.65163 0.01176 SCZ&BP (meta): 5q33.3 (NR): Wang - OR = 1.56, p = 1E-06

5q32-q35.1 D5S422 0.67042 0.01599 SCZ&BP (meta): 5q33.3 (NR): Wang - OR = 1.56, p = 1E-06

MSP: 6q22.31-q24.3;
GSMA: 6q23.2-q25.3

D6S292; 6.5 0.92453 0.02617 0.03742 0.02070 BP&MDD: 6q25.2 (SYNE1): Liu - p = 1E-06; BP: 6q25.2 (NR): Ferreira - OR = 1.22,
p = 4E-06

6q25.3-qter 6.6 0.00267 0.01106

8p23.1-p21.1 D8S1145 0.44879 0.01525 SCZ&BP (meta): 8p21.3 (NR): Wang - OR = 1.34, p = 4E-06

8p23.1-p12 D8S560 0.38511 0.01849 SCZ&BP (meta): 8p21.3 (NR): Wang - OR = 1.34, p = 4E-06; BP: 8p12 (NR):
Scott - OR = 1.33, p = 6E-06

8p22-p12 D8S136 0.38511 0.01849 SCZ&BP (meta): 8p21.3 (NR): Wang - OR = 1.34, p = 4E-06; BP: 8p12 (NR):
Scott - OR = 1.33, p = 6E-06

8p22-p11.21# D8S1771 0.36015 0.01632 SCZ&BP (meta): 8p21.3 (NR): Wang - OR = 1.34, p = 4E-06; BP: 8p12 (NR):
Scott - OR = 1.33, p = 6E-06

8p21.3-q12.1 D8S1477 0.21596 0.00678 SCZ&BP (meta): 8p21.3 (NR): Wang - OR = 1.34, p = 4E-06; SCZ&BP
(meta): 8q12.1 (FAM110B): Wang - OR = 1.56, p = 2E-07; BP: 8p12 (NR):
Scott - OR = 1.33, p = 6E-06

#indicates two MSP window instances occurred.
p-values in bold font indicate at least nominal significance was reached.
GWAS overlap in bold font indicates the overlap was with schizophrenia GWAS.
doi:10.1371/journal.pone.0019073.t003
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years suggests that common diseases may, in fact, be more similar

to Mendelian diseases than is postulated by the common disease-

common variant model.

Diagnostic Models Implicated Across Meta-Analytic
Methods

Interestingly, our MSP-Best analysis consistently produced

stronger results than MSP-Single for both disorders. In the case

of schizophrenia, in fact, all significant results were found under

MSP-Best analysis only. This suggests that the regions implicated

by MSP may be more likely to mediate risk for narrower

diagnostic models tested across GWLS. For the GSMA analyses,

the best-fitting models differed somewhat across disorders. For

bipolar disorder, GSMA-Broad produced consistently stronger

results than the GSMA-Best model; for schizophrenia, significance

was split between GSMA-Broad (4 bins) and GSMA-Best (3 bins).

Thus, across disorders, regions implicated by GSMA may be more

likely to harbor loci contributing to risk for the broadest

phenotypic characteristics. Again, this is consistent with our

architectural hypotheses. We generally expect the most clearly

defined phenotypes to be the most highly-penetrant and, therefore,

more detectable by MSP. On the other hand, loci mediating

broader phenotypic characteristics are expected to be less

penetrant, perhaps representing common, modifier genes, best

detected through GSMA.

Comparative Linkage Meta-Analysis: Overlap with
Previous Association Evidence

Short of fine mapping or, ultimately, deep sequencing of regions

implicated by each method, further evidence for the architectural

implications proposed here may be sought in the extant genetic

literature. If differential evidence from MSP and GSMA implicates

distinct genetic architectures, we may expect differences in the

consistency of candidate gene association evidence within the

regions implicated under each method (See File S1 for further

discussion.) That said, candidate gene selection is subjective and

not genomewide in scope, so such studies are certainly insufficient

as a means of verifying linkage meta-analytic findings. Thus,

comparison with previous GWAS findings may be most useful.

As noted in the introduction, GWAS are expected to identify

regions likely to harbor common variants of modest effect. More

specifically, under standard design and interpretation of GWAS

methods, disease-associated GWAS SNPs are expected to be in

linkage disequilibrium (LD) with, and therefore in relatively close

proximity to, the putative common, functional variant. This

generally accepted interpretation, however, has at least three

caveats that may be relevant when comparing GWAS findings to

linkage meta-analysis. First, the correlation between the strength of

GWAS association signals and the extent of actual disease

association at the risk locus will depend on the allele frequency

of the relevant variant, degree of LD with the incorporated marker

and the power of the study. Thus, modest GWAS evidence could

implicate moderately-common loci and/or moderately-large effect

sizes at the actual risk locus. Under these circumstances, we might

expect to find regional overlap between GSMA and GWAS

findings.

There are also at least two situations in which low-frequency

or rare loci of relatively large effect may produce significant

GWAS signals. The first would be chance oversampling of cases

with the same uncommon pathogenic locus (e.g., latent family

substructure). Under such circumstances, considerable inconsis-

tencies between independent GWAS would be expected and

overlap with MSP would be possible, but not predictable. The

second, and perhaps more likely, situation would be cases in

which signals at common SNPs were produced by ‘synthetic’

effects at multiple rare loci. As most recently discussed by

Dickson, et al (2010) [86] ‘‘variants much less common than the

associated one may create ‘synthetic associations’ by occurring,

stochastically, more often in association with one of the alleles at

the common site versus the other allele.’’ (p. 1) The authors

systematically explore this possibility, through simulated and real

GWAS data, and conclude that such synthetic associations, when

present, are likely to represent effects across extremely large (i.e.,

2.5 Mb) genomic intervals. Thus, if GWAS signals are

attributable to such synthetic associations, we might expect

overlap with MSP findings.

Regions implicated by MSP only: GWAS overlap
Given the methodologic distinctions between MSP and GSMA,

regions implicated by MSP only suggest the presence of one or

more loci that are uncommon or rare in the sampled populations

and of relatively large effect. Under standard assumptions of

GWAS study design, we would also expect that such loci would

not produce positive evidence of association in GWAS studies. In

light of the above-noted caveats to standard GWAS interpretation,

however, regions implicated by both MSP and GWAS (assuming

both findings are true positives), in the absence of positive GSMA

findings, have at least two alternative explanations. First, the

regions may be implicated by both methods due to independent

effects of two distinct types of loci within the region–both rare loci

of large effect (+MSP) and other common, loci of modest effect

(+GWAS). Second, the regions may be implicated by both

methods non-independently—that is, a single locus or proximal

cluster of loci that are uncommon to rare and of relatively large

effect are creating both linkage and association signals (the latter

via the mechanism as described above [86]).

Bipolar Disorder. Although overlap between GSMA with

GWAS was found more consistently in bipolar disorder, there is

still substantial overlap between MSP-only regions and previous

GWAS findings. Additionally, other than the 5p13.3-q13.3

window, which met LK-significance criteria and did not contain

a GWAS associated SNP, there appeared to be a general trend for

regions with stronger MSP evidence to be more likely to overlap

with previous GWAS evidence. If MSP-GWAS overlap is due

primarily to independent effects at distinct locus types, then we

might not expect to observe a relationship between the strength of

MSP findings and the likelihood of GWAS findings. On the other

hand, if the overlap is due primarily, or at least partially, to

synthetic associations of rare variants, then we might predict

regions with stronger MSP signals to be more likely to also contain

GWAS associations, which is largely consistent with our results.

The resolution of the mechanisms underlying such colocalization

must await further genetic and functional analyses, but raises

interesting questions about the architectures represented within

regions of MSP-GWAS overlap.

Schizophrenia. Our finding of less MSP-GWAS overlap for

schizophrenia, relative to that found in bipolar, may be somewhat

surprising if only because there are more published reports of

GWAS in schizophrenia than in bipolar. Three additional factors

may contribute to this finding. First, smaller average population

sample sizes used in schizophrenia GWAS to date will reduce

power to detect association and likely contributed to the lower

reported number of SNP associations for schizophrenia ([78],

accessed 11/27/10). Second, the likelihood of finding GWAS

overlap in schizophrenia may have been reduced by the fact

that the schizophrenia GWAS samples were primarily of

European ancestry, while the ethnic composition of the included
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schizophrenia GWLS was much more varied (See File S1 for

further discussion of GWAS and GWLS characteristics).

Third, a substantial recent literature suggests that the genetic

architecture of schizophrenia may be characterized by more

pronounced genetic heterogeneity (via both single nucleotide and

copy number variations) and contributions from rare variants

[4,26,37,38,87,88]. As noted above, GWAS is not expected to be

especially robust under such an architecture. In addition, the

degree to which synthetic associations of rare variants are

detectable by tag SNPs used in GWAS will also depend on the

MAF of the causal alleles. As demonstrated by Wang, et al (2010)

[89] in their analyses of simulated and real datasets, tag SNPs

significantly underestimate the true effect sizes of causal alleles and

the degree of expected underestimation increases with decreasing

causal MAF. Thus, regions containing only very rare causal

variants are unlikely to produce GWAS signals that reach even

nominal significance thresholds for reporting.

Regions Implicated by GSMA only: GWAS overlap
Given the two alternative mechanisms by which GSMA bin

significance can arise (see Introduction), the specific architectural

implications of GSMA-only findings may be further refined by

considering the presence (vs. absence) of co-localized GWAS

findings. GSMA-only signals that overlap with positive GWAS

evidence are more likely to result via the single locus mechanism,

and suggest a regional architecture contributing to polygenic

models. In other words, a single common locus will contribute

modestly to the disease risk and, thereby, require the simultaneous

effects of other loci (i.e., polygenicity) for disease expression.

GSMA-GWAS overlap was found in 100% of bipolar GSMA-only

bins and 33% of schizophrenia GSMA-only bins.) Moreover, in

schizophrenia, GSMA-GWAS overlap was produced only by the

most recent combined bipolar-schizophrenia meta-analysis [21].

GSMA-only regions without co-localized GWAS evidence may

be more likely to harbor low-frequency loci of ‘moderate’ effect

(i.e., variant frequencies below the GWAS detection threshold and

variant penetrances below the MSP threshold.) In addition to the

possible architectural causes, less frequent GSMA-GWAS overlap

in schizophrenia may also result from the missing marker data for

many of our included GWLS, ethnic differences between samples,

or low power of the schizophrenia GWAS to date.

Regions Implicated by both MSP & GSMA: GWAS Overlap
The regional colocalization of GSMA and MSP evidence

suggests either the presence of an admixture of locus types (i.e.,

some low-frequency/moderate effect, others rare/strong effect) or

of loci that are relatively common and relatively large in effect.

Bipolar Disorder. Though the two MSP windows that

overlapped with significant GSMA bins were not among the

bipolar windows meeting LK-significance or -suggestive criterion,

their significance under both MSP models (broad and narrow),

their overlap with two adjacent GSMA bins and the presence of

GWAS SNP association evidence therein provides a strong

complement of evidence for the localization of at least one

strongly disease-linked variant. Moreover, the fact that a bipolar

GWAS [15], a bipolar GWAS meta-analysis [11], a combined

bipolar and MDD GWAS [20] and the recent combined GWAS

meta-analysis [21] found evidence for association within the ANK3

gene suggests that this gene is very likely among the contributors to

the linkage signals. Though the convergence of MSP, GSMA and

GWAS data may suggest the presence of a single, common locus

of relatively large effect size, there is also evidence to support an

alternate architecture at this locus.

First, at least three different SNP markers (rs9804190 [8],

rs1094336 [11], and rs109433 [20]) have been implicated across

bipolar (or combined) GWAS and GWAS meta-analyses, making

a single common variant somewhat less unlikely. Additionally,

Schulze, et al (2008) [90] performed an association analysis of two

ANK3 markers (rs9804190 and rs1094336) across three indepen-

dent samples and found strong evidence supporting ANK3 as a

bipolar susceptibility locus with true, independent allelic hetero-

geneity; their data did not support an interacting model at these

two alleles. Given our significant MSP findings in this region, and

the fact that linkage is robust to allelic heterogeneity, the low

GWAS odds ratio (OR) estimates for the ANK3 gene most likely

derive from the fact that genotyped tag SNPs in GWAS studies are

not the actual functional variants mediating disease risk and are

likely not in complete LD with the true variant(s). Additionally, the

population-based design of GWAS will produce low OR estimates

if disease in only a small portion of the sampled population is

mediated by this locus, even if the functional variant were

genotyped. Hence, the ORs produced by GWAS are unlikely to

represent the true effect sizes of the functional variant(s) which are

only approximated, in both location and effect, by the tagSNPs

genotyped in GWAS [4,89].

Schizophrenia. One significant MSP window (6q22.31-

q24.3) overlapped with a significant GSMA bin (6q23.2-q25.3),

creating one distinct region of MSP-GSMA overlap: 6q23.2-q24.3.

Although neither the MSP window nor the GSMA bin reached

LK evidence criteria, the likelihood that the GSMA results

represent false positives are diminished by the fact that bin 6.6,

adjacent to the overlapping bin 6.5, was also significant. Together,

these findings provide a strong complement of evidence for the

localization of at least one variant strongly-linked to schizophrenia.

Further characterization of the true functional variant and follow-

up family and population-based studies will clarify the best

architectural model befitting this linked region.

Conclusions
Our meta-analyses produced nominal evidence of linkage for

bipolar disorder and schizophrenia in several genomic regions.

While only windows in the bipolar MSP analysis produced

evidence meeting the stringent LK-significance (3 windows) or

LK-suggestive (5 windows) criteria, several other aspects of our

results lend weight to our nominally-significant regions. First, we

expect our results to be conservative given the likely neutralizing

effects of missing data in both GSMA and MSP analyses, as

suggested by comparison of full to RED bipolar analysis results in

both GSMA and MSP. Second, in both bipolar disorder and

schizophrenia, adjacent pairs of bins were implicated by GSMA.

As noted by previous authors [45], such results are less likely to

represent false positives. Third, for many of the regions implicated

in our bipolar analyses (and for some implicated in the

schizophrenia analyses), we found previous evidence of SNP

associations from GWAS in the respective disorder. Fourth, from

even a cursory review of the candidate gene literature [91], it is

apparent that genes in many of our implicated regions have

previous association evidence. (See File S1 for further discussion of

genes within implicated regions).

Our most interesting finding is that our analysis of an identical

set of marker results implicated almost entirely distinct genomic

regions under the two methods. As MSP is most robust to the

identification of relatively rare loci of strong effect, we expect that

the regions implicated by positive findings in MSP only are most

likely to harbor a genetic architecture most befitting models of

genetic heterogeneity. As GSMA is most robust to the detection of

genomic bins that most consistently harbor disease-related locus(i)
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across GWLS, we expect that the regions implicated by positive

findings on GSMA only will be more likely to contain loci befitting

polygenic, interacting models. Furthermore, we found a greater

number of significant MSP windows than GSMA bins, suggesting

that a greater number of genomic regions are likely to mediate

heterogeneous architectural models while fewer are likely to

mediate polygenic risk architecture.

Future Directions
Despite strong heritability, further large scale linkage studies are

unlikely to be completed given the costs of ascertaining large

numbers of families and the failure of results to converge

convincingly to date. Discussion abounds in the literature as to

the most appropriate direction for current and upcoming genetic

investigations. Some have advocated larger GWAS (i.e., with tens

of thousands of cases and controls) in order to map the common

variants with very small effect sizes. Advocates on the other end of

the variant frequency spectrum propose the use of whole genome

sequencing as the ultimate, model-free method to identify rare,

highly-penetrant, functional variants. Approaches in between the

extremes include: candidate gene and regulatory region sequenc-

ing, population-based approaches to linkage analysis using IBD

sharing [92], using long-range haplotype phasing to select cases for

sequencing near tagSNPs [86,89], targeted re-sequencing under

linkage peaks [79] and whole-exome sequencing [4]. While whole

genome sequencing will soon be both feasible and affordable, the

analytic burden inherent to such data may far outweigh its

potential to yield meaningful discovery until further progress is

made in understanding more basic aspects of risk architecture and

the likely pathophysiology of these complex disorders. Interesting-

ly, our finding may suggest that results from comparative linkage

meta-analyses (CLMA) of extant data may serve to guide selection

of the most appropriate type of follow-up analyses. For example, if

regions mediating a heterogeneous architecture are consistently

implicated across large portions of the genome, a bioinformati-

cally-informed, whole-exome sequencing approach (e.g., one using

dimensionality reduction based on genomic conservation, gene

ontology or pathway involvement to prioritize likely functional

variants) may be optimal for identification of rare functional

variants. On the other hand, if regions likely to mediate polygenic

architecture are relatively confined, denser SNP arrays and/or

more targeted sequencing may be indicated.

Our analysis represents a pilot investigation to explore the use of

complementary meta-analysis to illuminate genetic architecture in

complex neuropsychiatric disorders. As suggested by the present

results, this approach may help to prioritize regions for further

analysis, depending upon the objectives of the investigators. While

the identification of loci contributing modestly to population-level

risk may be of greater epidemiologic relevance (i.e., contribute

more to population attributable risk), the identification of disease-

associated rare variants, which are much more likely to be

functional, will be more helpful in elucidating underlying

pathophysiological mechanisms. For these reasons, we would

encourage research collaboratives and consortia with access to

large numbers of full GWLS results to conduct comparative

linkage meta-analyses on their own troves of linkage data.

Supporting Information

File S1 Supporting Information (text).

(DOCX)

Table S1 Included Bipolar Disorder Genome-wide
Linkage Scan Characteristics.

(DOCX)

Table S2 Included Schizophrenia Genome-wide Link-
age Scan Characteristics.

(DOCX)

Table S3 Average and Range of GSMA Bin Ranks for
Significant MSP-Only Windows.

(DOCX)

Table S4 Average and Range of MSP Window Ranks for
Significant GSMA-Only Bins.

(DOCX)

Table S5 Reduced Analysis Results for Bipolar Disor-
der.

(DOCX)

Acknowledgments

We thank Cynthia N. Read, M.A. for her valuable assistance with

manuscript editing. We also thank Jason Moore, Ph.D., for his mentorship,

advice and assistance in the manuscript submission process.

Author Contributions

Conceived and designed the experiments: KDA BT. Performed the

experiments: BT KDA TT-W. Analyzed the data: BT KDA TT-W.

Contributed reagents/materials/analysis tools: KDA BT TT-W. Wrote the

paper: KDA BT TT-W. Data collection: BT.

References

1. Thornton-Wells TA, Moore JH, Haines JL (2004) Genetics, statistics and human

disease: analytical retooling for complexity. Trends Genet 20: 640–647.

2. Borecki IB, Province MA (2008) Linkage and association: basic concepts. Adv

Genet 60: 51–74.

3. Holmans PA, Riley B, Pulver AE, Owen MJ, Wildenauer DB, et al. (2009)

Genomewide linkage scan of schizophrenia in a large multicenter pedigree

sample using single nucleotide polymorphisms. Mol Psychiatry 14: 786–795.

4. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in

common disease through whole-genome sequencing. Nat Rev Genet 11:

415–425.

5. Levinson DF (2005) Meta-analysis in psychiatric genetics. Curr Psychiatry Rep

7: 143–151.

6. Hosking FJ, Dobbins SE, Houlston RS (2011) Genome-wide association studies

for detecting cancer susceptibility. Br Med Bull 97: 27–46.

7. Anderson CA, Soranzo N, Zeggini E, Barrett JC (2011) Synthetic associations

are unlikely to account for many common disease genome-wide association

signals. PLoS Biol 9: e1000580.

8. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, et al. (2008) A genome-

wide association study implicates diacylglycerol kinase eta (DGKH) and several

other genes in the etiology of bipolar disorder. Mol Psychiatry 13: 197–207.

9. Curtis D, Vine AE, McQuillin A, Bass NJ, Pereira A, et al. (2011) Case-case

genome-wide association analysis shows markers differentially associated with

schizophrenia and bipolar disorder and implicates calcium channel genes.

Psychiatr Genet 21: 1–4.

10. Djurovic S, Gustafsson O, Mattingsdal M, Athanasiu L, Bjella T, et al. (2010) A

genome-wide association study of bipolar disorder in Norwegian individuals,

followed by replication in Icelandic sample. J Affect Disord 126: 312–

316.

11. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, et al. (2008)

Collaborative genome-wide association analysis supports a role for ANK3 and

CACNA1C in bipolar disorder. Nat Genet 40: 1056–1058.

12. Hattori E, Toyota T, Ishitsuka Y, Iwayama Y, Yamada K, et al. (2009)

Preliminary genome-wide association study of bipolar disorder in the Japanese

population. Am J Med Genet B Neuropsychiatr Genet 150B: 1110–

1117.

13. Huang J, Perlis RH, Lee PH, Rush AJ, Fava M, et al. (2010) Cross-disorder

genomewide analysis of schizophrenia, bipolar disorder, and depression.

Am J Psychiatry 167: 1254–1263.

14. WTCCC (2007) Genome-wide association study of 14,000 cases of seven

common diseases and 3,000 shared controls. Nature 447: 661–678.

Meta-Analysis and Genetic Architectures

PLoS ONE | www.plosone.org 11 April 2011 | Volume 6 | Issue 4 | e19073



15. Lee MT, Chen CH, Lee CS, Chen CC, Chong MY, et al. (2010) Genome-wide

association study of bipolar I disorder in the Han Chinese population. Mol

Psychiatry;Available: doi:10.1038/mp.2010.43.

16. Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, et al. (2009) Genome-

wide association and meta-analysis of bipolar disorder in individuals of

European ancestry. Proc Natl Acad Sci U S A 106: 7501–7506.

17. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, et al. (2008) Whole-genome

association study of bipolar disorder. Mol Psychiatry 13: 558–569.

18. Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, et al. (2009) Genome-
wide association study of bipolar disorder in European American and African

American individuals. Mol Psychiatry 14: 755–763.

19. Zhang D, Cheng L, Qian Y, Alliey-Rodriguez N, Kelsoe JR, et al. (2009)

Singleton deletions throughout the genome increase risk of bipolar disorder. Mol

Psychiatry 14: 376–380.

20. Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, et al. (2011) Meta-

analysis of genome-wide association data of bipolar disorder and major

depressive disorder. Mol Psychiatry 16: 2–4.

21. Wang KS, Liu XF, Aragam N (2010) A genome-wide meta-analysis identifies

novel loci associated with schizophrenia and bipolar disorder. Schizophr Res

124: 192–199.

22. Athanasiu L, Mattingsdal M, Kahler AK, Brown A, Gustafsson O, et al. (2010)

Gene variants associated with schizophrenia in a Norwegian genome-wide study

are replicated in a large European cohort. J Psychiatr Res 44: 748–753.

23. Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, et al. (2011)

Genome-wide association study of schizophrenia in a Japanese population. Biol

Psychiatry 69: 472–478.

24. Kirov G, Zaharieva I, Georgieva L, Moskvina V, Nikolov I, et al. (2009) A

genome-wide association study in 574 schizophrenia trios using DNA pooling.

Mol Psychiatry 14: 796–803.

25. Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, et al. (2007)

Converging evidence for a pseudoautosomal cytokine receptor gene locus in
schizophrenia. Mol Psychiatry 12: 572–580.

26. Need AC, Ge D, Weale ME, Maia J, Feng S, et al. (2009) A genome-wide

investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5: e1000373.

27. O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, et al. (2008)

Identification of loci associated with schizophrenia by genome-wide association

and follow-up. Nat Genet 40: 1053–1055.

28. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. (2009)

Common polygenic variation contributes to risk of schizophrenia and bipolar

disorder. Nature 460: 748–752.

29. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, et al. (2009) Common

variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:

753–757.

30. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, et al. (2008)

Genome-wide association identifies a common variant in the reelin gene that

increases the risk of schizophrenia only in women. PLoS Genet 4: e28.

31. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, et al. (2009)

Common variants conferring risk of schizophrenia. Nature 460: 744–747.

32. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, et al. (2008)

Genomewide association for schizophrenia in the CATIE study: results of stage

1. Mol Psychiatry 13: 570–584.

33. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, et al. (2008)

Rare structural variants disrupt multiple genes in neurodevelopmental pathways

in schizophrenia. Science 320: 539–543.

34. Baum AE, Hamshere M, Green E, Cichon S, Rietschel M, et al. (2008) Meta-

analysis of two genome-wide association studies of bipolar disorder reveals

important points of agreement. Mol Psychiatry 13: 466–467.

35. Sanders AR, Duan J, Levinson DF, Shi J, He D, et al. (2008) No significant

association of 14 candidate genes with schizophrenia in a large European

ancestry sample: implications for psychiatric genetics. Am J Psychiatry 165:

497–506.

36. Penninx BW, Beekman AT, Smit JH, Zitman FG, Nolen WA, et al. (2008) The

Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives

and methods. Int J Methods Psychiatr Res 17: 121–140.

37. ISC (2008) Rare chromosomal deletions and duplications increase risk of

schizophrenia. Nature 455: 237–241.

38. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, et al. (2008)

Large recurrent microdeletions associated with schizophrenia. Nature 455:

232–236.

39. Clark AG, Boerwinkle E, Hixson J, Sing CF (2005) Determinants of the success

of whole-genome association testing. Genome Res 15: 1463–1467.

40. Levinson DF, Levinson MD, Segurado R, Lewis CM (2003) Genome scan meta-

analysis of schizophrenia and bipolar disorder, part I: Methods and power

analysis. Am J Hum Genet 73: 17–33.

41. Badner JA, Gershon ES (2002) Meta-analysis of whole-genome linkage scans of

bipolar disorder and schizophrenia. Mol Psychiatry 7: 405–411.

42. Egger M, Smith GD (1997) Meta-Analysis. Potentials and promise. BMJ 315:

1371–1374.

43. Guerra R, Goldstein DR, eds (2010) Meta-analysis and combining information

in genetics and genomics. Boca RatonFL: CRC Press.

44. Badner JA, Gershon ES (2002) Regional meta-analysis of published data

supports linkage of autism with markers on chromosome 7. Mol Psychiatry 7:

56–66.

45. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, et al. (2003) Genome

scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia.

Am J Hum Genet 73: 34–48.

46. Wise LH, Lanchbury JS, Lewis CM (1999) Meta-analysis of genome searches.

Ann Hum Genet 63: 263–272.

47. Province MA (2001) The significance of not finding a gene. Am J Hum Genet

69: 660–663.

48. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for

interpreting and reporting linkage results. Nat Genet 11: 241–247.

49. Badenhop RF, Moses MJ, Scimone A, Mitchell PB, Ewen-White KR, et al.

(2002) A genome screen of 13 bipolar affective disorder pedigrees provides

evidence for susceptibility loci on chromosome 3 as well as chromosomes 9, 13

and 19. Mol Psychiatry 7: 851–859.

50. Bennett P, Segurado R, Jones I, Bort S, McCandless F, et al. (2002) The

Wellcome trust UK-Irish bipolar affective disorder sibling-pair genome screen:

first stage report. Mol Psychiatry 7: 189–200.

51. Cassidy F, Zhao C, Badger J, Claffey E, Dobrin S, et al. (2007) Genome-wide

scan of bipolar disorder and investigation of population stratification effects on

linkage: support for susceptibility loci at 4q21, 7q36, 9p21, 12q24, 14q24, and

16p13. Am J Med Genet B Neuropsychiatr Genet 144B: 791–801.

52. Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, et al. (2006) Genome-wide linkage

scan in a large bipolar disorder sample from the National Institute of Mental

Health genetics initiative suggests putative loci for bipolar disorder, psychosis,

suicide, and panic disorder. Mol Psychiatry 11: 252–260.

53. Etain B, Mathieu F, Rietschel M, Maier W, Albus M, et al. (2006) Genome-wide

scan for genes involved in bipolar affective disorder in 70 European families

ascertained through a bipolar type I early-onset proband: supportive evidence

for linkage at 3p14. Mol Psychiatry 11: 685–694.

54. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, et al. (2004)

Genomewide linkage scan for bipolar-disorder susceptibility loci among

Ashkenazi Jewish families. Am J Hum Genet 75: 204–219.

55. Friddle C, Koskela R, Ranade K, Hebert J, Cargill M, et al. (2000) Full-genome

scan for linkage in 50 families segregating the bipolar affective disease

phenotype. Am J Hum Genet 66: 205–215.

56. Herzberg I, Jasinska A, Garcia J, Jawaheer D, Service S, et al. (2006)

Convergent linkage evidence from two Latin-American population isolates

supports the presence of a susceptibility locus for bipolar disorder in 5q31-34.

Hum Mol Genet 15: 3146–3153.

57. Marcheco-Teruel B, Flint TJ, Wikman FP, Torralbas M, Gonzalez L, et al.

(2006) A genome-wide linkage search for bipolar disorder susceptibility loci in a

large and complex pedigree from the eastern part of Cuba. Am J Med

Genet B Neuropsychiatr Genet 141B: 833–843.

58. McInnis MG, Lan TH, Willour VL, McMahon FJ, Simpson SG, et al. (2003)

Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for

linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. Mol Psychiatry 8: 288–298.

59. Park N, Juo SH, Cheng R, Liu J, Loth JE, et al. (2004) Linkage analysis of

psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder

and shared susceptibility with schizophrenia. Mol Psychiatry 9: 1091–1099.

60. Service S, Molina J, Deyoung J, Jawaheer D, Aldana I, et al. (2006) Results of a

SNP genome screen in a large Costa Rican pedigree segregating for severe

bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B: 367–373.

61. Zandi PP, Badner JA, Steele J, Willour VL, Miao K, et al. (2007) Genome-wide

linkage scan of 98 bipolar pedigrees and analysis of clinical covariates. Mol

Psychiatry 12: 630–639.

62. JSSLG (2003) Initial genome-wide scan for linkage with schizophrenia in the

Japanese Schizophrenia Sib-Pair Linkage Group (JSSLG) families. Am J Med

Genet B Neuropsychiatr Genet 120B: 22–28.

63. Cooper-Casey K, Mesen-Fainardi A, Galke-Rollins B, Llach M, Laprade B,

et al. (2005) Suggestive linkage of schizophrenia to 5p13 in Costa Rica. Mol

Psychiatry 10: 651–656.

64. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, et al. (2002) A genome-

wide scan for linkage to chromosomal regions in 382 sibling pairs with

schizophrenia or schizoaffective disorder. Am J Psychiatry 159: 803–812.

65. Faraone SV, Hwu HG, Liu CM, Chen WJ, Tsuang MM, et al. (2006) Genome

scan of Han Chinese schizophrenia families from Taiwan: confirmation of

linkage to 10q22.3. Am J Psychiatry 163: 1760–1766.

66. Lerer B, Segman RH, Hamdan A, Kanyas K, Karni O, et al. (2003) Genome

scan of Arab Israeli families maps a schizophrenia susceptibility gene to

chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry

8: 488–498.

67. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, et al. (2001) Genome-wide

scan in a nationwide study sample of schizophrenia families in Finland reveals

susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 10: 3037–3048.

68. Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, et al. (2002)

Genome-wide scans of three independent sets of 90 Irish multiplex schizophre-

nia families and follow-up of selected regions in all families provides evidence for

multiple susceptibility genes. Mol Psychiatry 7: 542–559.

69. Suarez BK, Duan J, Sanders AR, Hinrichs AL, Jin CH, et al. (2006)

Genomewide linkage scan of 409 European-ancestry and African American

families with schizophrenia: suggestive evidence of linkage at 8p23.3-p21.2 and

11p13.1-q14.1 in the combined sample. Am J Hum Genet 78: 315–333.

70. Teltsh O, Kanyas K, Karni O, Levi A, Korner M, et al. (2008) Genome-wide

linkage scan, fine mapping, and haplotype analysis in a large, inbred, Arab

Meta-Analysis and Genetic Architectures

PLoS ONE | www.plosone.org 12 April 2011 | Volume 6 | Issue 4 | e19073



Israeli pedigree suggest a schizophrenia susceptibility locus on chromosome

20p13. Am J Med Genet B Neuropsychiatr Genet 147B: 209–215.
71. Wijsman EM, Rosenthal EA, Hall D, Blundell ML, Sobin C, et al. (2003)

Genome-wide scan in a large complex pedigree with predominantly male

schizophrenics from the island of Kosrae: evidence for linkage to chromosome
2q. Mol Psychiatry 8: 695–705, 643.

72. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS (2000)
Location of a major susceptibility locus for familial schizophrenia on

chromosome 1q21-q22. Science 288: 678–682.

73. Garver DL, Holcomb J, Mapua FM, Wilson R, Barnes B (2001) Schizophrenia
spectrum disorders: an autosomal-wide scan in multiplex pedigrees. Schizophr

Res 52: 145–160.
74. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, et al.

(2001) Genomewide genetic linkage analysis confirms the presence of
susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and

8p21-22 and provides support for linkage to schizophrenia, on chromosomes

11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 68: 661–673.
75. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, et al. (2001) A

schizophrenia-susceptibility locus at 6q25, in one of the world’s largest reported
pedigrees. Am J Hum Genet 69: 96–105.

76. Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, et al. (2000) A

genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families
with affected siblings: support for loci on chromosome 10p and 6. Mol

Psychiatry 5: 638–649.
77. Hong KS, Won HH, Cho EY, Jeun HO, Cho SS, et al. (2009) Genome-widely

significant evidence of linkage of schizophrenia to chromosomes 2p24.3 and
6q27 in an SNP-Based analysis of Korean families. Am J Med

Genet B Neuropsychiatr Genet 150B: 647–652.

78. Hindorff LA, Junkins HA, Hall PN, Mehta JP, Manolio TA (2009) A Catalog of
Published Genome-Wide Association Studies. Available at: hhtp://www.

genome.gov/gwastudies.
79. Byerley W, Badner JA (2010) Strategies to identify genes for complex disorders: a

focus on bipolar disorder and chromosome 16p. Psychiatr Genet, Available:

http://www.ncbi.nlm.nih.gov/pubmed/20453718.

80. Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial

susceptibility to common diseases. Nat Genet 40: 695–701.
81. Baron M (2001) Genetics of schizophrenia and the new millennium: progress

and pitfalls. Am J Hum Genet 68: 299–312.

82. Kryukov GV, Pennacchio LA, Sunyaev SR (2007) Most rare missense alleles are
deleterious in humans: implications for complex disease and association studies.

Am J Hum Genet 80: 727–739.
83. Alaerts M, Del-Favero J (2009) Searching genetic risk factors for schizophrenia

and bipolar disorder: learn from the past and back to the future. Hum Mutat 30:

1139–1152.
84. Nothen MM, Nieratschker V, Cichon S, Rietschel M (2010) New findings in the

genetics of major psychoses. Dialogues Clin Neurosci 12: 85–93.
85. Ross J, Berrettini W, Coryell W, Gershon ES, Badner JA, et al. (2008) Genome-

wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility
loci at chromosomes 16 and 20. Psychiatr Genet 18: 191–198.

86. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare

variants create synthetic genome-wide associations. PLoS Biol 8: e1000294.
87. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, et al. (2009)

Support for the involvement of large copy number variants in the pathogenesis
of schizophrenia. Hum Mol Genet 18: 1497–1503.

88. McClellan JM, Susser E, King MC (2007) Schizophrenia: a common disease

caused by multiple rare alleles. Br J Psychiatry 190: 194–199.
89. Wang K, Dickson SP, Stolle CA, Krantz ID, Goldstein DB, et al. (2010)

Interpretation of association signals and identification of causal variants from
genome-wide association studies. Am J Hum Genet 86: 730–742.

90. Schulze TG, Detera-Wadleigh SD, Akula N, Gupta A, Kassem L, et al. (2009)
Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for

bipolar disorder. Mol Psychiatry 14: 487–491.

91. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, et al. (2008)
Systematic meta-analyses and field synopsis of genetic association studies in

schizophrenia: the SzGene database. Nat Genet 40: 827–834.
92. Francks C, Tozzi F, Farmer A, Vincent JB, Rujescu D, et al. (2010) Population-

based linkage analysis of schizophrenia and bipolar case-control cohorts

identifies a potential susceptibility locus on 19q13. Mol Psychiatry 15: 319–325.

Meta-Analysis and Genetic Architectures

PLoS ONE | www.plosone.org 13 April 2011 | Volume 6 | Issue 4 | e19073


