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Equivalence between positive
and negative refractive index
materials in electrostatic cloaks

Xingcai Li%?*, Juan Wang’3 & Jinghong Zhang*

We investigate, both theoretically and numerically, the equivalence relationship between the positive
and negative refraction index dielectric materials in electrostatic invisibility cloak. We have derived
an analytical formula that enables fast calculate the corresponding positive dielectric constant from
the negative refraction index material. The numerical results show that the negative refraction index
material can be replaced by the positive refractive index materials in the static field cloak. This offers
some new viewpoints for designing new sensing systems and devices in physics, colloid science, and
engineering applications.

In military and some scientific experiments, hiding one object from the environmental is a fundamental
requirement'. Several studies have confirmed that using metamaterials or designing special structures can make
the target cloaking or hiding in the environment®*. The transformation optics and scattering cancellation-based
cloaking should be two powerful tools**®. The basic idea of transformation optics is to manipulate electromagnetic
waves by precisely designing the refractive index and permeability of every point and every direction in space.
Scattering cancellation-based cloaking mainly using metamaterial, meta-surfaces, graphene and/or plasmonic
materials to eliminate the scattering field of target object, and it can also be used in some physical fields’~'5.
As some of the literatures suggests that each cloaking technique has its own advantages and disadvantages
exploring the new methods, for example, the illusion optics, or the common materials that can also make targets
invisible from different ways, will significantly promote the practical application of relevant research results®-22.

At presents some researchers have reported that the invisibility cloak can be widely used in electromagnetic
waves?>~%¢, mechanical waves?, elastic waves®®?, matter waves®, water waves’!, magnetic fields*’, DC magnetic
or electric fields**=*, current®, and thermal fields*’~*. Based on the metamaterial, people can also design an
electrostatic field concentrator’, magnetic field concentrator*’, asymmetric universal and invisible gateway*!,
the perfect lens***’, perfect transmission channel*, general illusion device?!, transparency coating®, dc electric
concentrator*®, tunable invisibility cloaking®, special imaging probe*® and so on**-*!. However, the materials
used in these devices are anisotropic, negative refractive index medium, chiral materials, even double-negative
materials or field gain materials®®*>**. Some papers also discuss the tunable electromagnetically induced trans-
parency metamaterial based on solid-state plasma*’ and the broadband perfect absorption based on plasmonic
nanoparticles®. It is well known that the negative refractive index materials or metamaterials are hard to be
produced, and usually, its sizes are much larger than the targets®. Can we find alternatives to negative index
materials?

Besides, the electric field commonly exists in the nature, and it may change the object’s physical
characteristic®*-*8. Some conditions we need effectively manipulate the electric field, for example, the measure-
ment of electrostatic phenomena in sandstorms and other aerosol weather**, neuro-medicine ¢, the shielding
of an static electromagnetic field for some special devices or sensors®, the enhancement of localized electric
field®®, polymer self-assembly properties induced by strong electric field®, etc. In these applications, the placed
sensor will undoubtedly cause electric field perturbations, which may affect the experimental results. In contrast,
the precise control of the electric field in the target test area helps improve the experimental accuracy. Therefore,
it is an interesting and meaningful research topic to design a device that does not notably perturb the applied
electric field, but it still keeps the original information of the incident field, or it can adjust the localized field
exactly according to our will. Generally speaking, existing designs are based either on anisotropic negative
refraction index materials or on the geometric dimensions of the cloak structure®-*’. At present, material dop-
ing has been used to fabricate some new materials with specific properties®®®. If the isotropic positive refractive
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Figure 1. Schematic of a core-shell particle in a uniform electrostatic field.

index materials can also be used to design the metamaterials, we think the cloaking will become more useful.
Some references have introduced the positive refractive index and isotropic material to induce “invisibility” in
the Rayleigh limit for two-dimensional objects'®*”7%7!. Then, is there an equivalent transformation relationship
between positive and negative refractive index materials?

To answer the above question, we are inspired by the electric potential distribution function of the coated
sphere in a uniform static field**”>7*. Supposed that the inner and outer radius of a coated sphere are R; and R,
respectively, the permittivity in the core and shell are &1, &, respectively, and the permittivity of environment
medium is €, as illustrated in Fig. 1. The applied electric field is along the z-axis, and its intensity is Eo. For the
selected physical model, the core can be thought as the target to be invisible, and the shell zone can be viewed
as the functional device that needs to be designed.

The potential inside and outside the core-shell particles can be calculated through the equation V2¢=0 with
separating variables method, and the equivalent dielectric constant &.4, of the core-shell particle also can be
obtained”?. We need to make Sequ=Em> and then a new equation derived,

EQex +em)(er — 2)=(em — €2)(e1 + 2&2) (1)

By solving the above equation and set 8 = (2& + 1)e1 — (2 + &)emé = R} /R3, we can get two roots of &, for
the Eq. (1) we defined them as &4, and 3}, which is expressed as following.

g _ TBH VB8 —E)eren

2= 11— &) (2)
b _ —B— VB8 —§) eren
&1 = -8 )

In addition, we made the two roots £, and &3, divided by &,,, then we can obtain the relative permittivity of
the shell, and Eqgs. (2) and (3) became to a new expression,

—B1+ 1/ B} +8(1 — &) ey, @

%= a1—¢)
b —B1 — \/BIH8(1 — &)y, )
’ 4(1-£)

here 81 = (2§ + Dey, — 2 + &).61,=61 / &m is the relative permittivity of core. The numerical simulation results
shown that €3 corresponds to an isotropic positive refractive index dielectric material, but €5 corresponds to
the negative refractive index material, which means there is a reciprocity relationship between the positive
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Figure 2. The equipotential line of different spherical object in a uniform electric field.

and negative refraction index dielectric materials. Considering the similarity of the two expressions in Egs. (4)
and (5), and add these two equations together. Through some simplify calculation, we can obtain the following
formula,

. QO - QE+Dey
& = —& (6)
2(1-8)

Therefore, we can calculate the matching positive refractive index according to the negative refractive index
for the electrostatic field invisibility cloak. That means if we have obtained the material permittivity of a cloak
through the transformation optics or other method, we can deduce its equivalent positive refractive index
parameters, which make it much simpler to design a required invisibility structure.

Results

To clearly verify the reliability of the above formulas, we calculate the electric potential of the particle sur-
rounded by the designed cloak, whose permittivity is given by the solution of Eq. (4), and the equipotential
lines are shown to investigate the perturbation of the particle to the applied electric field. The electric potentials
are calculated by Egs. (7)-(9). Here we set 1, = 2.0 + 0.1i,R; = 0.5 m, Ry = 0.7 m, the thickness of the shell
dr = Ry — Ry, Ey = 100 V/m. Substitute them into the Eqgs. (4) and (5), we can obtain thate} = 0.6575 — 0.0181i
and e} = —1.5176 — 0.1179i. The results are shown in Fig. 2. It can be seen from the Fig, 2a that the electric field
around the object without the cloak covering are severely distorted, but from Fig. 2b, ¢ we can find there are no
any perturbation around the object. It means the spherical object will be perfectly "invisible" in the electric field.
Therefore, besides the negative refractive index materials reported by some researchers, the non-negative refrac-
tive index materials also can make the object invisible in the electric field. Compared with Fig. 2a, the number of
equipotential lines inside the sphere decreases in Fig. 2b (the color becomes lighter), but increases in Fig. 2¢ (the
color becomes darker). So, we conclude that the cloak with permittivity €5 can shield the applied electric field to
a certain extent, while the cloak with permittivity e} can increase its internal electric potential. Based on these
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Figure 3. The equipotential line of a layered object with different shell.

properties, we can design some special devices following the requirement of the experiment. For example, we
can make the electrostatic field sensor coated with the material €5 to avoid the distortion of the external electric
field caused by the sensor, and we also can design a more sensitive sensor with material €5 to measure a weak
signal. Furthermore, we also find that when the imaginary part of the cloaK’s permittivity is positive, the field
distribution is the same as that when the imaginary part of cloak’s permittivity is negative, as shown in Fig. 3. So
we can conclude that the imaginary part of the medium’s dielectric constant does not affect the response of the
medium to the external electrostatic field.

In order to analyze the effect of the core zone on the permittivity of the cloak, we set the permittivity of the
core particle can be expressed by €1, = ¢" + ig’. Figure 4 shows the effect of the real part of permittivity of the
core zone on the permittivity of cloak. We have sete” = 2 x nand &’ = 0.1, n is the magnification of the real part
of permittivity, other parameters are the same as above. From the Fig. 4, we can find that with the increase of
the parameter ', both the real part and the imaginary part of the d1electr1c constant &3 decreases exponentially,
and finally tend to be a stable value. However, the dielectric constant ¢} shows different changing rules, and its
real and imaginary parts both increase exponentially, but its real part does not tend to be stable. In addition, we
have observed that with the increase of the cloak thlckness, the real part of the permittivity €5 increases continu-
ously, but its imaginary part and the permittivity e} both decrease continuously. So, the requirement of cloak’s
permittivity can be improved by adjusting its thickness, which makes it possible to design a practical cloak. In
addition, we also can use material doping to obtain the proper dielectric constant’>7®.

In Fig. 5 we make a similar discussion on the absorbent particle, with a permittivity e” = 2,&' = n x 0.1, nis
the magnification of the imaginary part of core’s permittivity. Other parameters are the same as above. We find
that with the increase of &', the real part of €} decreases linearly, while its imaginary part is increasing linearly.
However, the dielectric constant of the cloak designed by the negative refractive material €} still increases linearly.
However, no matter which one material is used, the change degree of the real part of the dielectric constant of
the cloak is much less than that of its imaginary part. Besides, we also found that when the ratio between the
inner radius and outer radius of the core-shell particle remains the same, the change of particle geometry size
does not affect the dielectric constant of the required shell (cloak) medium.

Discussion

In summary, based on the theoretical derivation and numerical simulation, an equivalence relationship between
positive-permittivity and negative-permittivity materials in electric invisibility cloak is proposed. We also pre-
sent a formula to realize the conversion between the positive and negative permittivity of the corresponding
materials. The numerical results show that both positive-permittivity and negative-permittivity materials all can
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Figure 4. Influence of ¢ on the permittivity of the cloak with different permittivity.
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Figure 5. Influence of &' on the permittivity of the cloak with different permittivity.
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be used to achieve an electric invisibility cloak, and the positive-permittivity cloak can reduce the electric field
inside it, while the negative-permittivity cloak can enhance the electric field inside it. In addition, we find that
the permittivity of cloak is influenced by the physical parameters of core and the thickness of cloak. In terms
of the equivalence of real physical field, this idea is feasible, and it also can be applied to other types of physical
fields. Moreover, especially and importantly, we have demonstrated the conversion relationship between the
positive-permittivity and negative-permittivity dielectric materials, further research is needed to determine
whether similar relationships exist in other physical fields.

Methods
The distribution of electric potential inside and outside the particle can be represented as the following equations
in the spherical coordinates’.

¢1 = —AEpr cosf (7)
¢y = —Eo(Br — Cr™2) cos6 (8)
¢m = —Eo(r — Dr?) cos 6 )

Supposed that x = (g; — 82)/(81 +287),& = R?/Rg, the parameters A, B, C, D can be calculated through
the following expressions”,

Ao 9eme B 3em(er + 2¢2)

(&2 + 2em) (61 + 262) + 28(e2 — em)(e1 — €2) (&2 + 2em)(e1 + 282) + 26(e2 — em) (€1 — €2)
co 3em(er + )13 D— EQey +em)x + (62 — &) 2

(&2 + 2&m) (61 + 262) + 28(e2 — em) (81 — €2) 26(e3 — em)x + (£2 4 260)

the equivalent dielectric constant .y, of the core-shell particle also can be obtained,

14 2&x

1 —&x £ (10)

Eequ =
In order to cancel the perturbation of the external field by the object, we need to make £.4,=¢,, and then a
new equation derived,

§Qeztem)x+(e2—em) =0 (11)

Then through some simplified operation we can obtain the Eq. (1).
In addition, if we add the Egs. (4) and (5) together, then we can obtain,
2 _
gm0 h (12)
41-8) 20-9)
Then substitute the expression of 8; in Eq. (12) we can obtain the Eq. (6).
The above derivation can also be applied to the cloak design in static magnetic fields, or the condition that
the object size is much smaller than electromagnetic wavelength.
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