V = 1750.8 (5) Å³

Mo $K\alpha$ radiation $\mu = 0.53 \text{ mm}^{-1}$

 $0.22 \times 0.14 \times 0.07 \text{ mm}$

11086 measured reflections

2954 independent reflections

2446 reflections with $I > 2\sigma(I)$

Z = 2

T = 230 K

 $R_{\rm int} = 0.134$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[bis(μ -4,4'-bipyridyl- $\kappa^2 N$:N')bis-(thiocyanato- κN)manganese(II)] diethyl ether disolvate]

Mario Wriedt,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24098 Kiel, Germany Correspondence e-mail: mwriedt@ac.uni-kiel.de

Received 25 May 2010; accepted 7 June 2010

Key indicators: single-crystal X-ray study; T = 230 K; mean σ (C–C) = 0.008 Å; *R* factor = 0.073; *wR* factor = 0.206; data-to-parameter ratio = 15.5.

In the title compound, $\{[Mn(NCS)_2(C_{10}H_8N_2)_2]\cdot 2C_4H_{10}O\}_n$, the Mn^{II} ion is coordinated by four *N*-bonded 4,4'-bipyridine (bipy) ligands and two *N*-bonded thiocyanate anions in a distorted octahedral coordination geometry. The asymmetric unit consists of one Mn^{II} ion and two bipy ligands each located on a twofold rotation axis, as well as one thiocyanate anion and one diethyl ether molecule in general positions. In the crystal structure, the metal centers with terminally bonded thicyanate anions are bridged by the bipy ligands into layers parallel to (001). The diethyl ether solvent molecules occupy the voids of the structure.

Related literature

For general background to thermal decomposition reactions as an alternative tool for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties, see: Wriedt & Näther (2009a,b); Wriedt *et al.* (2009a,b). For the isotypic cobalt(II) structure, see: Lu *et al.* (1997).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Mn}(\mathrm{NCS})_2(\mathrm{C_{10}H_8N_2})_2]\cdot 2\mathrm{C_4H_{10}O} \\ & M_r = 631.71 \\ & \mathrm{Monoclinic}, P2/c \\ & a = 11.702 \ (2) \ \text{\AA} \\ & b = 11.6391 \ (18) \ \text{\AA} \\ & c = 13.424 \ (2) \ \text{\AA} \\ & \beta = 106.75 \ (2)^\circ \end{split}$$

Data collection

Stoe IPDS-1 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002) $T_{min} = 0.912, T_{max} = 0.968$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.073$	191 parameters
$wR(F^2) = 0.206$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^{-3}$
2954 reflections	$\Delta \rho_{\rm min} = -1.37 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Mn1-N21	2.181 (4)	Mn1-N11	2.300 (4)
Mn1-N12 ⁱ	2.277 (4)	Mn1-N1	2.312 (3)

Symmetry code: (i) x, y - 1, z.

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

MW thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie and the Studienstiftung des deutschen Volkes for a PhD scholarship. We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2314).

References

- Lu, J., Paliwala, T., Lim, S. C., Yu, C., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 923–929.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Wriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192-10198.
- Wriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569-575.
- Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975–7984. Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896–6903.

Acta Cryst. (2010). E**66**, m781

supplementary materials

Acta Cryst. (2010). E66, m781 [doi:10.1107/S1600536810021665]

Poly[[bis(μ -4,4'-bipyridyl- $\kappa^2 N$:N')bis(thiocyanato- κN)manganese(II)] diethyl ether disolvate]

M. Wriedt, I. Jess and C. Näther

Comment

Recently, we are interested in thermal decomposition reactions as an alternative tool for the discovering and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt & Näther, 2009a,b; Wriedt *et al.*, 2009a,b). In our ongoing investigation on the synthesis, structures and properties of such compounds we have reacted manganese(II) chloride, potassium thiocyanate and 4,4-bipyridine (bipy). In this reaction single crystals of the title compound were grown.

The title compound (Fig. 1) represents a two-dimensional layered coordination polymer, in which the Mn^{II} atom is coordinated by four bipy ligands and two thiocyanate anions in an octahedral coordination mode. The crystal structure is isotypic to its cobalt(II) analogue (Lu *et al.*, 1997). In the crystal structure the metal atoms are bridged by the bipy ligands into layers with terminally N-bonded thicyanate anions. The layers are stacked perpendicular to the crystallographic *c* axis in order that the metal atoms in one layer sit above or below the squares formed by the metal atoms of the adjacent layers. By this arrangement voids are formed in which the diethyl ether molecules are located (Fig. 2). The MnN₆ octahedron is markedly distorted with four long Mn—N_{bipy} distances in the range of 2.277 (4) to 2.312 (4) Å and two short Mn—NCS distances of 2.181 (4) Å (Table 1). The angles arround the metal atoms range between 88.27 (8) to 91.73 (8) and 176.54 (16) to 180°. The pyridyl rings of the bipy ligands form dihedral angles of 51.2 (1) and 52.6 (1)°, respectively. The shortest intra- and interlayer Mn…Mn distances amount to 11.6391 (6) and 8.3198 (11) Å, respectively.

Experimental

MnCl₂ (117.0 mg, 0.93 mmol) and KNCS (180.8 mg, 1.86 mmol) obtained from Alfa Aesar were dissolved in a mixture of 10 ml water and 15 ml ethanol. This mixture was layered with a solution of 4,4-bipyridine (306.3 mg, 2 mmol) in 10 ml diethyl ether. After one day colourless block-shaped single crystals of the title compound were grown at the phase interface.

Refinement

The H atoms were located in a difference Fourier map but were positioned with idealized geometry and refined using a riding model, with C—H = 0.94 (aromatic), 0.98 (methylene) and 0.97 (methyl) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$.

Figures

Fig. 1. Structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x, y-1, z; (iii) -x, y, -z+3/2.]

Fig. 2. A single layer in the title compound with view approximately along the crystallographic c axis.

Poly[[bis(μ -4,4'-bipyridyl- $\kappa^2 N$:N')bis(thiocyanato- κN)manganese(II)] diethyl ether disolvate]

Crystal	data
---------	------

$[Mn(NCS)_2(C_{10}H_8N_2)_2] \cdot 2C_4H_{10}O$	F(000) = 662
$M_r = 631.71$	$D_{\rm x} = 1.198 {\rm ~Mg~m}^{-3}$
Monoclinic, P2/c	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yc	Cell parameters from 11086 reflections
a = 11.702 (2) Å	$\theta = 2.4 - 25.0^{\circ}$
<i>b</i> = 11.6391 (18) Å	$\mu = 0.53 \text{ mm}^{-1}$
c = 13.424 (2) Å	T = 230 K
$\beta = 106.75 \ (2)^{\circ}$	Block, colourless
$V = 1750.8 (5) \text{ Å}^3$	$0.22\times0.14\times0.07~mm$
Z = 2	

Data collection

Stoe IPDS-1 diffractometer	2954 independent reflections
Radiation source: fine-focus sealed tube	2446 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.134$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: numerical (<i>X-SHAPE</i> and <i>X-RED32</i> ; Stoe & Cie, 2002)	$h = -13 \rightarrow 13$
$T_{\min} = 0.912, \ T_{\max} = 0.968$	$k = -13 \rightarrow 13$
11086 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.073$	H-atom parameters constrained
$wR(F^2) = 0.206$	$w = 1/[\sigma^2(F_o^2) + (0.1115P)^2 + 1.3719P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} < 0.001$
2954 reflections	$\Delta \rho_{max} = 0.72 \text{ e} \text{ Å}^{-3}$
191 parameters	$\Delta \rho_{\rm min} = -1.37 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.034 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Mn1	0.5000	0.71119 (6)	0.7500	0.0284 (3)
N1	0.3018 (2)	0.7070 (3)	0.7479 (3)	0.0385 (8)
C1	0.2710 (3)	0.6632 (5)	0.8264 (4)	0.0557 (13)
H1	0.3317	0.6340	0.8829	0.067*
C2	0.1544 (4)	0.6575 (5)	0.8310 (4)	0.0617 (15)
H2	0.1373	0.6249	0.8892	0.074*
C3	0.0633 (3)	0.7003 (4)	0.7491 (4)	0.0408 (10)
C4	0.0940 (3)	0.7447 (5)	0.6646 (4)	0.0577 (13)
H4	0.0352	0.7725	0.6061	0.069*
C5	0.2141 (3)	0.7470 (5)	0.6684 (4)	0.0559 (13)
Н5	0.2346	0.7788	0.6115	0.067*
N11	0.5000	0.9088 (4)	0.7500	0.0367 (11)
N12	0.5000	1.5156 (3)	0.7500	0.0354 (11)
C11	0.4781 (4)	0.9689 (3)	0.8272 (4)	0.0448 (10)
H11	0.4624	0.9285	0.8824	0.054*
C12	0.4775 (4)	1.0865 (4)	0.8300 (4)	0.0498 (11)
H12	0.4619	1.1249	0.8862	0.060*
C13	0.5000	1.1484 (4)	0.7500	0.0384 (13)
C16	0.4344 (4)	1.4556 (4)	0.6684 (4)	0.0488 (11)
H16	0.3880	1.4963	0.6104	0.059*
C15	0.4314 (4)	1.3368 (4)	0.6652 (4)	0.0509 (11)
H17	0.3837	1.2982	0.6063	0.061*
C14	0.5000	1.2758 (4)	0.7500	0.0390 (13)
N21	0.5534 (3)	0.7169 (3)	0.9196 (3)	0.0386 (8)
C21	0.6253 (3)	0.6927 (3)	0.9963 (4)	0.0412 (10)
S21	0.72754 (14)	0.65840 (19)	1.10210 (13)	0.0900 (6)
C31	0.0822 (10)	0.3656 (13)	0.6206 (10)	0.170 (6)
H31A	0.1479	0.4018	0.6020	0.255*

supplementary materials

H31B	0.0756	0.3981	0.6853	0.255*
H31C	0.0086	0.3787	0.5659	0.255*
C32	0.1059 (12)	0.2324 (15)	0.6347 (9)	0.172 (6)
H32A	0.1679	0.2177	0.7002	0.206*
H32B	0.0329	0.1930	0.6375	0.206*
O31	0.1431 (5)	0.1896 (8)	0.5502 (5)	0.138 (3)
C33	0.1686 (9)	0.0670 (10)	0.5534 (11)	0.146 (5)
H33A	0.0974	0.0238	0.5554	0.175*
H33B	0.2328	0.0489	0.6166	0.175*
C34	0.2049 (11)	0.0329 (12)	0.4606 (12)	0.167 (5)
H34A	0.1368	0.0383	0.3991	0.251*
H34B	0.2341	-0.0456	0.4688	0.251*
H34C	0.2676	0.0837	0.4530	0.251*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0147 (4)	0.0265 (5)	0.0448 (6)	0.000	0.0100 (3)	0.000
N1	0.0135 (13)	0.0482 (19)	0.057 (2)	0.0019 (12)	0.0146 (14)	0.0072 (15)
C1	0.0196 (17)	0.087 (3)	0.060 (3)	0.0062 (19)	0.0109 (18)	0.025 (3)
C2	0.0233 (18)	0.101 (4)	0.064 (3)	0.005 (2)	0.0176 (19)	0.032 (3)
C3	0.0130 (17)	0.060 (2)	0.051 (3)	0.0018 (15)	0.0119 (15)	0.0015 (19)
C4	0.0209 (17)	0.103 (4)	0.050 (3)	0.012 (2)	0.0110 (17)	0.011 (3)
C5	0.0220 (18)	0.095 (4)	0.054 (3)	0.011 (2)	0.0174 (18)	0.019 (3)
N11	0.034 (2)	0.026 (2)	0.054 (3)	0.000	0.018 (2)	0.000
N12	0.0246 (19)	0.025 (2)	0.055 (3)	0.000	0.0101 (19)	0.000
C11	0.057 (2)	0.032 (2)	0.055 (3)	0.0032 (18)	0.030 (2)	0.0031 (18)
C12	0.065 (3)	0.036 (2)	0.058 (3)	0.004 (2)	0.032 (2)	-0.0027 (19)
C13	0.034 (2)	0.028 (3)	0.054 (4)	0.000	0.013 (2)	0.000
C16	0.050(2)	0.032 (2)	0.055 (3)	-0.0014 (18)	0.0004 (19)	0.0048 (18)
C15	0.056 (2)	0.034 (2)	0.054 (3)	-0.0069 (19)	0.002 (2)	-0.0031 (19)
C14	0.036 (3)	0.028 (3)	0.056 (4)	0.000	0.018 (3)	0.000
N21	0.0276 (15)	0.0389 (18)	0.049 (2)	0.0025 (12)	0.0111 (15)	0.0026 (14)
C21	0.034 (2)	0.044 (2)	0.049 (3)	0.0014 (16)	0.0167 (19)	-0.0025 (18)
S21	0.0624 (9)	0.1362 (16)	0.0578 (12)	0.0265 (9)	-0.0047 (7)	0.0143 (9)
C31	0.111 (8)	0.246 (16)	0.144 (11)	0.028 (9)	0.022 (7)	-0.056 (11)
C32	0.136 (9)	0.308 (19)	0.079 (8)	-0.067 (11)	0.041 (7)	-0.028 (10)
O31	0.078 (3)	0.235 (9)	0.093 (5)	-0.005 (4)	0.010 (3)	0.028 (5)
C33	0.089 (6)	0.131 (8)	0.204 (14)	0.015 (6)	0.020 (7)	0.061 (8)
C34	0.134 (9)	0.179 (11)	0.198 (13)	0.057 (8)	0.062 (9)	0.020 (10)

Geometric parameters (Å, °)

Mn1—N21	2.181 (4)	C13—C12 ⁱⁱⁱ	1.380 (5)
Mn1—N12 ⁱ	2.277 (4)	C13—C14	1.483 (7)
Mn1—N11	2.300 (4)	C16—C15	1.383 (6)
Mn1—N1	2.312 (3)	С16—Н16	0.9400
N1—C1	1.311 (6)	C15—C14	1.385 (5)

N1—C5	1.333 (6)	C15—H17	0.9400
C1—C2	1.385 (5)	C14—C15 ⁱⁱⁱ	1.385 (5)
C1—H1	0.9400	N21—C21	1.161 (6)
C2—C3	1.386 (6)	C21—S21	1.621 (5)
С2—Н2	0.9400	C31—C32	1.577 (18)
C3—C4	1.384 (7)	C31—H31A	0.9700
C3—C3 ⁱⁱ	1.488 (6)	С31—Н31В	0.9700
C4—C5	1.392 (5)	С31—Н31С	0.9700
C4—H4	0.9400	C32—O31	1.418 (13)
С5—Н5	0.9400	С32—Н32А	0.9800
N11—C11	1.334 (5)	С32—Н32В	0.9800
N11—C11 ⁱⁱⁱ	1.334 (5)	O31—C33	1.455 (12)
N12—C16	1.338 (5)	C33—C34	1.482 (16)
N12—C16 ⁱⁱⁱ	1.338 (5)	С33—Н33А	0.9800
N12—Mn1 ^{iv}	2.277 (4)	С33—Н33В	0.9800
C11—C12	1.370 (6)	C34—H34A	0.9700
C11—H11	0.9400	С34—Н34В	0.9700
C12—C13	1.380 (5)	С34—Н34С	0.9700
C12—H12	0.9400		
N21—Mn1—N21 ⁱⁱⁱ	176.54 (16)	C11—C12—C13	119.8 (4)
N21—Mn1—N12 ⁱ	91.73 (8)	C11—C12—H12	120.1
N21 ⁱⁱⁱ —Mn1—N12 ⁱ	91.73 (8)	C13—C12—H12	120.1
N21—Mn1—N11	88.27 (8)	C12—C13—C12 ⁱⁱⁱ	117.0 (5)
N21 ⁱⁱⁱ —Mn1—N11	88.27 (8)	C12—C13—C14	121.5 (3)
N12 ⁱ —Mn1—N11	180.0	C12 ⁱⁱⁱ —C13—C14	121.5 (3)
N21—Mn1—N1	89.88 (12)	N12-C16-C15	123.4 (4)
N21 ⁱⁱⁱ —Mn1—N1	90.19 (12)	N12—C16—H16	118.3
N12 ⁱ —Mn1—N1	88.79 (8)	C15—C16—H16	118.3
N11—Mn1—N1	91.21 (8)	C16—C15—C14	118.9 (4)
N21—Mn1—N1 ⁱⁱⁱ	90.19 (12)	C16—C15—H17	120.6
N21 ⁱⁱⁱ —Mn1—N1 ⁱⁱⁱ	89.88 (12)	C14—C15—H17	120.6
N12 ⁱ —Mn1—N1 ⁱⁱⁱ	88.79 (8)	C15 ⁱⁱⁱ —C14—C15	118.3 (5)
N11—Mn1—N1 ⁱⁱⁱ	91.21 (8)	C15 ⁱⁱⁱ —C14—C13	120.8 (3)
N1—Mn1—N1 ⁱⁱⁱ	177.58 (16)	C15—C14—C13	120.8 (3)
C1—N1—C5	116.9 (3)	C21—N21—Mn1	146.6 (3)
C1—N1—Mn1	120.3 (3)	N21—C21—S21	178.9 (4)
C5—N1—Mn1	122.7 (3)	C32—C31—H31A	109.5
N1—C1—C2	123.8 (4)	C32—C31—H31B	109.5
N1-C1-H1	118.1	H31A—C31—H31B	109.5
C2—C1—H1	118.1	C32—C31—H31C	109.5
C1—C2—C3	119.4 (4)	H31A—C31—H31C	109.5
C1—C2—H2	120.3	H31B—C31—H31C	109.5
С3—С2—Н2	120.3	O31—C32—C31	109.5 (10)
C4—C3—C2	117.5 (3)	O31—C32—H32A	109.8
C4—C3—C3 ⁱⁱ	120.5 (4)	C31—C32—H32A	109.8

supplementary materials

C2—C3—C3 ⁱⁱ	122.0 (5)	O31—C32—H32B	109.8
C3—C4—C5	118.4 (4)	C31—C32—H32B	109.8
C3—C4—H4	120.8	H32A—C32—H32B	108.2
C5—C4—H4	120.8	C32—O31—C33	115.3 (10)
N1	124.0 (4)	O31—C33—C34	110.1 (10)
N1—C5—H5	118.0	O31—C33—H33A	109.6
С4—С5—Н5	118.0	С34—С33—Н33А	109.6
C11—N11—C11 ⁱⁱⁱ	116.8 (5)	O31—C33—H33B	109.6
C11—N11—Mn1	121.6 (2)	С34—С33—Н33В	109.6
C11 ⁱⁱⁱ —N11—Mn1	121.6 (2)	H33A—C33—H33B	108.2
C16—N12—C16 ⁱⁱⁱ	117.1 (5)	C33—C34—H34A	109.5
C16—N12—Mn1 ^{iv}	121.4 (2)	C33—C34—H34B	109.5
C16 ⁱⁱⁱ —N12—Mn1 ^{iv}	121.4 (2)	H34A—C34—H34B	109.5
N11—C11—C12	123.3 (4)	С33—С34—Н34С	109.5
N11—C11—H11	118.4	H34A—C34—H34C	109.5
C12—C11—H11	118.4	H34B—C34—H34C	109.5

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*, *y*, -*z*+3/2; (iii) -*x*+1, *y*, -*z*+3/2; (iv) *x*, *y*+1, *z*.

Fig. 2

