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Scale and standardization are essential to the prosperity of the breeding industry. During large-scale, standardized breeding, the
selective breeding of good livestock breeds hinges on the accurate measurement of body parameters for live animals. However, the
complex shooting environment brings several urgent problems, such as the missing of many local data in the point cloud and the
difficulty in the automatic acquisition of body data. To solve these problems, this paper proposes a method for parameter
measurement of live animals based on the mirror of multiview point cloud. Firstly, the acquisition and stitching principles were
given for the multiview point cloud data on body parameters of live animals. Next, the authors presented a way to make up for the
data missing areas in the point cloud. Finally, this paper acquires the body mirror data of live animals and scientifically calculates
the body parameters. *e proposed measurement method was proved effective through experiments.

1. Introduction

Precision animal husbandry refers to the scientific breeding and
management of live animals by arranging regular daily ration
based on information technology. As an important aspect of
intelligent agriculture, precision animal husbandry can improve
the output benefit of animal husbandry products and ensure
product quality and safety [1–4]. Large-scale, standardized
breeding can effectively improve the output and profit of pigs,
cattle, and sheep. During large-scale, standardized breeding, the
selective breeding of good livestock breeds hinges on the ac-
curatemeasurement of body parameters for live animals [5–12].
*e manual measurements with tools like caliper and tap
measure are greatly affected by subjective human factors. By
contrast, the body measurement of three-dimensional (3D)
body parameters, which cover the geometry of live animals, is
relatively accurate. *e measured data help to assess the health
state of livestock, evaluate their body shapes, and identify their
behavioral features [13–16].

Focusing on parameter measurement based on 3D point
cloud data, Jo et al. [17] relied on the point cloud data of the
3D human body model to construct an objective interpo-
lation function, which can describe the morphological

changes of human body (e.g., gender, age, weight, height,
and body proportion). *en, the independent elements were
weighted reasonably according to the linkage been element
changes. In this way, the independent elements were ad-
justed and updated. After that, the needed human body
model was derived from the intermediate human body. Sato
[18] proposed a hardware and software system capable of
synchronization precise acquisition of point cloud data on
live animals. *e system consists of an FM810-GI depth
camera and its fixation structure, a point cloud data pro-
cessing module, and a repeater. Rao et al. [19] improved the
stereo calibrationmethod of point cloud data on live animals
based on the location relationship between the multiple
depth cameras used to collect the data. *en, the three-view
point cloud data on live animals underwent stitching and
duplicate removal by the interactive closest point (ICP)
algorithm and k-means clustering (KMC). Finally, a precise
3D point cloud data was established for live animals.

To evaluate the health state of pandas, Turner et al. [20]
introduced the skinnedmultianimal linear (SMAL)model to
the 3D model reconstruction of these first class protected
animals in China and obtained the base shape and base pose
of the 3D panda model based on principal component
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analysis (PCA) and bone movements. Further, they derived
the parameterized description of the shape and pose of the
model. Zhang et al. [21] manually extracted animal contours
from two-dimensional (2D) images, set up the objective
function of Euclidean clustering between SMAL model and
contour segmentation maps, and estimated SMAL param-
eters by minimizing the objective function. Ahsan et al. [22]
provided an effective and accurate way to measure the
length, width, and depth of pavement cracks. Specifically,
watershed segmentation was adopted to segment and mask
the background of damaged pavement images, the coordi-
nate system of pavement cracks was converted point by
point, a 3D visual model was established on MATLAB for
pavement cracks, and the computed results were compared
with the measured data. To solve the precision product
quality problems induced by manufacturing errors,
Chen and Wang [23] proposed a 3D point cloud feature
calculation method to compute the geometric and physical
parameters of workpieces and combined area changes and
centroid deviation into a dense layered part evaluation and
adaptive stratification algorithm, which can reconstruct
workpiece surfaces and adaptively stratify workpieces.

Some results have been achieved on 3D point cloud and
body parameter extraction, as well as weight prediction
[24–27]. However, there are often holes in the point cloud,
owing to the complex environmental factors, e.g., envi-
ronmental interference (especially the fences of the breeding
base) and low equipment precision. *ese holes severely
impede the postprocessing of the point cloud. In addition, it
is very difficult to automatically acquire the body data of live
animals [28–31]. To solve these problems, this paper pro-
poses a method for parameter measurement of live animals
based on the mirror of multiview point cloud. Section 2
introduces the acquisition and stitching principles of the
multiview point cloud data on body parameters of live
animals. Section 3 presents a way to make up for the data
missing areas in the point cloud. Section 4 acquires the body
mirror data of live animals and scientifically calculates the
body parameters. *e proposed measurement method was
proved effective through experiments.

2. Data Acquisition and Stitching

During the 3D reconstruction of a specific object, the object
must be extracted from the background to ensure the rec-
ognition and analysis accuracy. Owing to the complex en-
vironment of the breeding base, the point cloud data
extracted from live animals contain the background, noises,
and outliers. *e data need to be preprocessed to remove the
background and noises, facilitating further analysis. By vi-
sualizing the point cloud data of live animals, it is possible to
obtain the left and right point cloud data of the background,
including the ground, cameras, and noises. Considering the
complex living environment of animals, the point cloud data
were extracted from live animals in the following steps: (1)
crop the point cloud data in the specified coordinate range,
using passthrough filter; (2) remove ground point cloud data
through planar template matching; and (3) eliminate out-
liers with redundant information by statistical filter.

Figure 1 shows the mirroring principle of multiview
point cloud. It can be inferred that the multiview point cloud
data on live animals contain multiple coordinate systems,
such as rotation and translation. Point cloud registration is
necessary to unify the coordinates of multiple point clouds
under different coordinate systems.

LetG, p, andU be the rotationmatrix, translationmatrix,
and perspective transform vector between two depth cam-
eras, respectively, withU being a zero vector andA� 1 be the
proportional factor of the multiview point cloud on live
animals.*en, the mapping F of point cloud registration can
be expressed as follows:

F �

G11 G11 G11 p

G21 G22 G23 p

G31 G32 G33 p

ux uy us A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶ F �
G3×3 p3×1

U1×3 A
􏼢 􏼣. (1)

To directly stitch point clouds on live animals, it is
necessary to determine the location relationship between
depth cameras. *e parameters can be obtained through the
stereo calibration in the binocular visual system. Let OSJ be
the coordinate of any point O in the world coordinate
system; G1 and G2 be the rotation matrices of cameras 1 and
2 relative to the calibration object, respectively; and p1 and p2
be the translation matrices of cameras 1 and 2 relative to the
calibration object, respectively. Under the world coordinate
system, the coordinates of the two cameras can be described
by the following:

O1 � G1OSJ + p1,

O2 � G2OSJ + p2.

⎧⎨

⎩ (2)

*e relationship betweenO1 andO2 can be established as
follows:

O1 � GO2 + p. (3)

Combing formulas (2) and (3),

G � G1 G2( 􏼁p,

p � p1 − Gp2.
􏼨 (4)

According to the affine invariance of four point pairs in
4-point congruent sets (4PCS), the distance ratio g can be
fixed with three known colinear points U, V, and W:

g �
U − V

U − W

�������

�������
. (5)

SupposeU andW fall on the same straight line andV and
Q fall on the same straight line. In addition, the two lines
intersect at point H. *en, distance ratios g1 and g2 can be
calculated by the following:

g1 �
U − H

U − W

�������

�������
,

g2 �
V − H

V − Q

�������

�������
.

(6)
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During affine transform, the distance ratios g1 and g2
determined by the four coplanar points of the source point
cloud and the corresponding four points in the target point
cloud are constant, i.e., completely the same. If there exists
any point pair s1 and s2 in S whose lines intersect at points h1
and h2, which are the same within a certain error range, then
s1 and s2 are the coplanar points corresponding to the given
base in the world coordinate system. *e intersections h1
and h2 can be calculated by the following:

h1 � s1 + g1 s2 − s1( 􏼁,

h2 � s1 + g2 s2 − s1( 􏼁.
(7)

If the point cloud data on live animals are stitched directly
using the results of stereo calibration, the registration accuracy
needs to be guaranteed through iterations by the precision
matching algorithm ICP. Suppose the point set under the
world coordinate system and the target point set is denoted as
O� {oi|oi∈R3, i� 1, 2, . . ., m} and S� {sj|sj∈R3, j� 1,2, . . ., n},
respectively. Under the premise of minimizing the error
function error(G, p) between the two point sets in formula (8),
the least squares method can be adopted to iteratively perform
the optimal coordinate transform and calculate the rotation
matrix and translation matrix until the preset error threshold
or maximum number of iterations is reached:

error(G, p) �
1
m

􏽘

m

i�1
si − Goi + p( 􏼁

����
����
2
. (8)

3. Repairing Missing Areas

To make up for the large nonclosed missing areas in the
point cloud of live animals, this paper proposes the cubic

B-spline curve fitting method based on the projections of
point cloud slices.

*e slicing of the point cloud on live animals was carried
out along the a-axis. *e first step is to determine the
minimum distance εmin between the point cloud center and
other points and the maximum amax and minimum amin of
the center along the a-axis. Next, point cloud splices were
sampled from amin in the positive direction of a-axis, with an
interval of εmin. *e sampling number MS can be calculated
by the following:

MS � ⌈
amax − amin

εmin
⌉, (9)

where the square brackets stand for rounding operation.*e
sampling interval of the i-th point cloud slice Oi can be
described as [amin + (i− 1) εmin, amin + iεmin]. *en, the
maximum bi−max and minimum bi−min of Oi along b-axis
were determined, and the point cloud was sliced into Mi
parts with an interval of εmin:

Mi � ⌈
bi−max − ai−min

εmin
⌉. (10)

*e curve fitting effect is greatly affected by the number
of new points appearing through the expansion of the in-
terval of point cloud slices. *erefore, this paper selects the
center Oil of the l-th interval [bi−min + (l− 1) εmin, bi−min + l
εmin] of Oi long b-axis as the representative point of that
interval. Suppose the interval contains Nl points, with Oilk
being the k-th point. *en, we have

Oil �
1

Nl

􏽘

Nl

j�1
Oilk. (11)

*e processed Oi was projected onto plane boc. *e
projection point was then fitted. When restoring the fitted
point cloud O∗i to the space, the points in interval O∗i along
a-axis should be configured uniformly:

a
∗
i � amin + p −

1
2

􏼒 􏼓 · εmin. (12)

Suppose the slice plane or space of the point cloud on live
animals contains u + v + 1 vertices. *en, Oi has a v-di-
mensional parametric curve segment:

Ojv(p) � 􏽘
u

j�0
Oj+lRj,v(p). (13)

*e v-dimensional B-spline curve can be derived from
the v-dimensional B-spline curve segment Ojv(p) above. *e
base function Riv(p) of the curve can be calculated by the
following:

Riv(p) �
1
v!

􏽘

v−t

t�0
(−1)

t
W

t
v+1(p + v − i − t)

v
. (14)

*e v-dimensional B-spline curve can be defined by v − 1
adjacent vertices. *en, the cubic B-spline curve can be
expressed as follows:
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Figure 1: Mirroring principle of multiview point cloud.
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Oj3(p) � 􏽘
3

i�0
Oi+jRi,3(p). (15)

*e corresponding base function can be expressed as
follows:

R0,3(p) �
1
6

−p
3

+ 3p
2

− 3p + 1􏼐 􏼑,

R1,3(p) �
1
6

3p
3

− 6p
2

+ 4􏼐 􏼑,

R2,3(p) �
1
6

−3p
3

+ 3p
2

+ 3p + 1􏼐 􏼑,

R3,3(p) �
1
6
p
3
.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

*e j-th segment of the cubic B-spline curve can be
described by the following:

Oj3(p) �
1
6 1 p p

2
p
3􏽨 􏽩

1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (17)

Figure 2 shows the projection and fitting of point cloud
slices on the forelimbs of a cow. After the projection and
fitting, the distance between adjacent points averaged at
6.842mm, the standard deviation was 1.514mm, and the
approximate error was 0.426mm. *e number of points
increased by 67.2% to 270. *e fitted range of points was
close to the original range of points.

4. Mirror Data Acquisition and
Parameter Calculation

4.1. Key Point Positioning and Mirror Data Acquisition.
Figure 3 presents the side view of a live animal. To obtain the
exact values of the body parameters, it is necessary to locate
the key points of the body of the live animal. Cattle, pigs, and
sheep share the same key points, including the point of
maximum abdominal width, the shoulder point and its
transition points, the point of ischial tuberosity, and the
point of withers.

During the preprocessing, the ground plane equation
was defined for each frame of the point cloud. *e side view
and top view correspond to planes aob and aoc, respectively.
Specifically, the point of maximum abdominal width P1 is
the point furthest away from the line connecting the left and
right end points in the fitted point range. *e transition
point P2 of the shoulder point P4 characterizes the point at
which the slope of the cloud segment P1–P4 turns from
positive to negative. Along the positive direction of axis a,
the number MEK of centers in the cloud segment P1–P4 was

calculated with P1 (a1, c1) as the starting point. *en, the
angle ωi between axis a and the line connecting P1 with each
point in Oi (ao, co) (i� 1,2, . . .,MEK) can be calculated by the
following:

ωi � arctan
coi

− c1

aoi
− a1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (18)

*e nearby transition point P3 at which the slope also
turns from positive to negative was identified in a similar
manner as point P2. Along the positive direction of axis a,
the number MFK of centers in the cloud segment P1–P4 was
calculated with P2 (a2, c2) as the starting point. *en,
the angle ωj between axis a and each point in Oi (ao, co)
(i� 1,2, . . ., MFK) with P1 (a1, c1) as the starting point and
satisfying coj≥ c1 can be obtained by the following:

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0
1 2 3 4 50 6

c (m)

b 
(m

)
Original range of points
Range of points fitted by cubic B-spline curve

Figure 2: Projection and fitting of point cloud slices on forelimbs
of live animals.
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a1 � acmin
, c1 �

cmin + cmax

2
,

ωj � arctan
coi

− c1

aoi
− a1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

cpi
≥ c1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

After obtaining P2 and P3, the shoulder point of the live
animal P4 was determined as the farthest point in the point
cloud segment P2-P3 from the line connecting P2 and P3.
*en, the point of ischial tuberosity P5 could be obtained as
the center of the K nearest points to the point of minimum a.
After that, the point of withers P6 could be solved by
computing the center coordinates of all the tallest points in
the 2 slice point clouds extended to the left and right of the
axis a coordinates of the midpoint of P2 and P4. Finally, the
upper point PU and lower point PD of the depth could be
solved by computing the center coordinates of all the tallest
points and all the lowest points in the 2 slice point clouds
extended to the left and right of the axis a coordinates of
point P1, respectively.

To get an accurate plane of symmetry for the body of the
live animal, the normal vector cop of the ground supporting
the animal and the horizontal direction vector ξp of the
animal were aligned with the positive directions of axes a
and b, respectively, to normalize the poses. *en, the normal
vector ϕp of the plane of symmetry is the product between
cop and ξp:

φp � cop × ξp. (20)

*e above analysis shows that the tail point of the live
animal is the extreme point in the negative direction of axis
a, whose coordinates are (a0, b0, c0). From (a0, b0, c0) and ϕp,
the planar equation of the live animal can be determined as
c� c0.*emirror data on one side of the plane of asymmetry
could be obtained by setting up the homogeneous coordi-
nates of the point Ot1 � {(a, b, c)|c> c0} on one side of the
plane:

a′ b′ c′ 1􏼂 􏼃 � a b c 1􏼂 􏼃

1 1 1 0

0 1 0 0

0 0 −1 0

0 0 2c0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (21)

After obtaining the symmetric data Ot2 � {(a’, b’, b’|a’, b’,
c ∈Ot2} of the live animal, it is assumed that Ot �Ot1 +Ot2,
where Ot is the mirror of the point cloud on the complete
animal in the 3D space.

4.2. Calculation of Body Parameters. *e Euclidean distance
from P4(a4, b4, c4) to P5(a5, b5, c5) was defined as the diagonal
length of the Euclidean distance:

ζO �

����������������������������

a4 − a5( 􏼁
2

+ b4 − b5( 􏼁
2

+ c4 − c5( 􏼁
2

􏽱

. (22)

*e horizontal distance from P4 (a4, b4, c4) to the vertical
line of P5 (a5, b5, c5) was defined as the horizontal distance:

ζS � a4 − a5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (23)

*e shoulder width was defined as twice the distance
from P4(a4, b4, c4) to the plane of symmetry c � μ∗0 + μ1a:

ψJ �
μ1a4 − c4 + μ∗0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�����

μ21 + 1
􏽱 . (24)

*e abdominal width was defined as twice the distance
from P1 (a1, b1, c1) to c � μ∗0 + μ1a:

ψF �
μ1a5 − c5 + μ∗0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�����

μ21 + 1
􏽱 . (25)

*e height was defined as the distance from P6 (a6, b6, c6)
to the ground τaa + τbb + τcc + υ� 0:

HA �
τaa6 + τbb6 + τcc6 + υ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����������

τ2a + τ2b + τ2c
􏽱 . (26)

*e depth was defined by the vertical heights of PU (aPU,
bPU, cPU) and PD (aPD, bPD, cPD):

Tu,υ � cPU
− cPD

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (27)

5. Experiments and Result Analysis

During the acquisition of point cloud data from live animals,
it is difficult to shoot an image and complete 3D calibration
using normal calibration targets. *us, this paper performs
3D calibration with large and small infrared calibration
targets. Depending on the deployment of depth cameras, the
overhead camera was calibrated separately with the left
infrared lens of the left camera and the right infrared lens of
the right camera. *e calibration errors are recorded in
Figures 4(a) and 4(b). It can be inferred that the mean
reprojection error between overhead camera and the left
infrared lens of right camera was 1.31 pixels, and that be-
tween overhead camera and the right infrared lens of left
camera was 0.87 pixels. Both results meet the precision
requirements.

*e axis a coordinates of chest circumference measuring
points on a live pig were recorded on interactive measuring
software of point cloud data. *e fitting parameters were set
as follows: the order of the curve, 4; the number of iterations,
50; and the number of control points, 100. Figure 5(a) shows
the point cloud within 0.005 before and after the coordinates
obtained by passthrough filter. Figure 5(b) shows the curve
obtained by our cubic B-spline curve fitting method, which
is marked in red. *e curve circumference could be esti-
mated from the length of the approximate polygon com-
posed of the curve control points.

Our point cloud repairing method was applied to the
missing areas in the 240 frames of point clouds on 50 pigs.
*ese areas went missing due to the occlusions of railings.
*e fitting errors of the traditional method and our method
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are displayed in Figure 6. *e mean, maximum, and min-
imum fitting errors of traditional cubic B-spline curve were
2.524mm, 4.452mm, and 2.346mm, respectively; those of
our method, i.e., cubic B-spline curve fitting based on
projection of point cloud slices, were 1.924mm, 3.754mm,
and 1.859mm, respectively. *is further confirms that the
curve fitted by our method is closer to the original point
cloud.

To verify its effectiveness, the proposed algorithm was
compared with two other models through experiments. *e

processing results of different models are listed in Table 1.
Our algorithm achieved relatively good results on seg-
menting live animals in point cloud data: the recall was as
high as 82.7% and the accuracy as 88.9%. *e recall and
accuracy of region growth + threshold judgement were
80.4% and 82.7%, respectively. *e recall and accuracy of
watershed segmentation were merely 55.1% and 80.4%,
respectively. *e comparison shows that our algorithm
boasts a good precision and high recall and accuracy. As for
the two contrastive models, region growth + threshold
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Figure 4: Mean reprojection errors of overhead, left, and right depth cameras: (a) overhead and right cameras; (b) overhead and left
cameras.

(a) (b)

Figure 5: Curves fitted from chest circumference measuring points: (a) passthrough filter; (b) our method.
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judgement outperformed watershed segmentation in both
recall and accuracy.

*e body appearance of live animals can be well dis-
played by the side view captured by depth cameras and
characterized by the projection of point range on plane aoc.
In general, the local curves of the projected point range are
not smooth enough despite being relatively simple. *e local
point range could be fitted ideally, using a cubic polynomial
in one variable with 2 extremes. *e fitting effect is shown in
Figure 7(a). *e key points of live animal body are presented
in Figure 7(b), including the point of maximum abdominal
width P1, the shoulder point P4 and its transition points P2
and P3, and the point of ischial tuberosity P5. *e positions

of the point cloud on the live animal projected to the 3D
space could be derived from the projected position of each of
these points.

*e point cloud data obtained from one side only cover
half of the body of the live animal. *is calls for the res-
toration of the mirror of the point cloud. After determining
the symmetric longitudinal section along the line connecting
the center of the head and the center of the tail of the live
animal, the shoulder width is equivalent to twice the distance
from the point of maximum shoulder width to the plane of
symmetry. Similarly, the abdominal width is equivalent to
twice the distance from the point of maximum abdominal
width to the plane of symmetry. *e tallest points on the
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Figure 6: Errors of different methods in missing area repairing.

Table 1: Processing results of different models.

Model Live
animals

Number of
samples

Number of
effectively

segmented samples

Number of
oversegmented

samples

Number of
undersegmented

samples
Recall Accuracy

Watershed
segmentation

Pigs 154 87 15 34 55.1 77.1
Cattle 227 103 22 29 54.3 80.4

Region
growth + threshold
judgement

Pigs 154 99 14 31 67.8 81.4

Cattle 227 134 21 22 80.4 82.7

Our algorithm Pigs 154 139 14 30 74.2 88.9
Cattle 227 188 20 21 82.7 83.7
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point cloud slices between the following points were merged
into a point range: point of maximum abdominal width P1,
shoulder point P4 and its transition points P2 and P3, and
point of ischial tuberosity P5. *en, the outliers were re-
moved from the point range, and the center coordinates
were solved. *e resulting new point range was fitted by a
linear equation. *en, the straight line was translated to the
mean distance from every point in the range to the center
coordinates, producing the line of symmetry of the live
animal. *en, it is possible to derive the mirror data of the
point cloud of that animal. Figure 8 shows the fitted line of
symmetry.

*e body parameters were extracted and measured from
the 240 frames of point clouds on 50 pigs. Table 1 presents

the measured results. Table 2 compares the point cloud
measurements with manual measurements.

As shown in Table 3, the MAE of height measurement
was minimized at 0.0032. *e MAEs of other parameters
were within 0.0270. Specifically, diagonal length and hori-
zontal length had relatively large MAEs (0.0262 and 0.0232),
35% greater than theMAEs of other parameters.*eMRE of
height was also minimized at 0.9127%. *e MRE of hori-
zontal length was 5.0327, above theMREs of all the other five
parameters. Regardless of MAE or MRE, the measurement
errors of horizontal and diagonal lengths were relatively
large, while those of height and depth were small. *e main
reason is that the slight changes of body position of the live
animals during the measurement affects the accuracy of key
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point identification. Besides, the subjectiveness of manual
measurement also influences the determination of key
points. Of course, the errors were relatively small. *e above
results show that our measurement method for body pa-
rameters is accurate enough for application.

6. Conclusions

*is paper develops a parameter measurement method for live
animals based on the mirror of multiview point cloud. After
being acquired from the target animal, the point cloud data
from multiple views were preprocessed and stitched, followed
by the eliminating of redundant background points. Next, the
features of the point cloud data were analyzed, and a 3D point
cloud datamodel was established for live animals. After that, the
authors explained how to repair the missing part of the point
cloud data, acquired the mirror data on animal body, and
scientifically computed the body parameters. Experimental
results confirm the scientific nature of the calibrating overhead
camera separately with the left infrared lens of the right camera
and the right infrared lens of the left camera. In addition, the
chest circumference measuring points were fitted into a curve,
and the errors of differentmethodswere compared for repairing
missing areas in the point cloud. *e relevant results dem-
onstrate the effectiveness of our fitting algorithm. Further, the
line of asymmetry of a live animal was fitted, which proves the
feasibility and effectiveness of our point cloud acquisition
method. Finally, the measuring errors of body parameters were
presented, suggesting the high accuracy of our body parameter
measuring method for live animals.
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