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Abstract

Understanding of interactional dynamics between several processes is one of the most

important challenges in psychology and psychosomatic medicine. Researchers exploring

behavior or other psychological phenomena mostly deal with ordinal or interval data. Miss-

ing values and consequential non-equidistant measurements represent a general problem

of longitudinal studies from this field. The majority of process-oriented methodologies was

originally designed for equidistant data measured on ratio scales. Therefore, the goal of this

article is to clarify the conditions for satisfactory performance of longitudinal methods with

data typical in psychological and psychosomatic research. This study examines the perfor-

mance of the Johansen test, a procedure incorporating a set of sophisticated time series

techniques, in reference to data quality utilizing a Monte Carlo method. The main results of

the conducted simulation studies are: (1) Time series analyses require samples of at least

70 observations for an accurate estimation and inference. (2) Discrete data and failing equi-

distance of measurements due to irregular missing values appear unproblematic. (3) Rele-

vant characteristics of stationary processes can be adequately captured using 5- or 7-point

ordinal scales. (4) For trending processes, at least 10-point scales are necessary to ensure

an acceptable quality of estimation and inference.

Introduction

Process-oriented methodologies have become increasingly popular in different fields of empir-

ical research. Multivariate time series techniques that treat variables as an interacting dynamic

system, revealing their internal dynamics, represent relevant tools for understanding behavior

or other psychological phenomena. In the last decade, there are growing numbers of empirical

studies in psychology and psychosomatic medicine exploring intra-individual variability by

means of sophisticated time series techniques like vector autoregressions, cointegration or vec-

tor error correction [1–5]. The problem is that these methods originate from physics, engi-

neering, or econometrics and therefore are primarily designed for equidistant data measured

on ratio scales. In psychology or psychosomatic, however, researchers mostly deal with ordinal

or interval data. Furthermore, the measurements are often non-equidistant and contain miss-

ing values. Thus, the goal of this article is to clarify the conditions for satisfactory performance

of time series analyses with psychometric data. We approach this issue by evaluating the per-

formance of the Johansen test [6, 7] in reference to the data quality by using a Monte Carlo
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method. We chose the Johansen test for our simulation studies because its algorithm com-

prises various sophisticated time series techniques: it can handle autocorrelations; it is applica-

ble to both stable and unstable data; it allows distinguishing between different types of

dynamic systems; it provides the maximum likelihood estimation of time series parameters.

Moreover, the Johansen test demonstrated good performance in Monte Carlo evaluations with

continuous data [e.g., 8].

Theoretical background

This part of the article briefly introduces basic concepts of uni- and multivariate time series

analyses and presents the Johansen test as a method for distinguishing between different types

of dynamic systems. Stadnitski and Wild (2019) provide a detailed description of the methods

within psychosomatic research and demonstrate their implementation with the R software [9].

For comprehensive examples of process-orientated modeling with empirical data from psy-

chological research, consult Stadnitski (2014) [10].

Univariate time series models

To explain basic concepts of the time series approach, we start with a first order autoregressive
model

yt ¼ byt� 1 þ ut ð1Þ

which is a subtype of an autoregressive model of order m abbreviated as AR(m): yt = β1yt−1+

β2yt−2+. . .βmyt−m+ut. The autoregressive model incorporates the past or lagged values of the

dependent variable as predictors (i.e., dependent and independent variables are both endoge-

nous, that is, determined and interrelated inside the organism or system). External influences

can enter the autoregressive system exclusively through the term ut. The residuals ut are not

autocorrelated; this time-independent process is termed white noise. To determine external

influences in the autoregression, the model from Eq 1 must be represented alternatively in the

so-called moving-average form

yt ¼
X1

i¼0

b
iut� i ¼ ut þ but� 1 þ b

2ut� 2 þ . . . ð2Þ

Since all independent variables in the autoregression are endogenous (lagged values of the

dependent variable), Eq 2 points to the fact that autoregression actually models the impact of

external random influences on the long-term development of the system. Therefore, the

regression coefficient β in Eqs 1 and 2 can be interpreted as a memory parameter: β = 0 implies

that the series yt is uncorrelated white noise with no memory; |β|<1 means that the effect of a

random shock dissolves quickly without significant long-term impact on time series character-

istics such as level or variance (short memory). Consequently, such processes are stable and

their autocorrelations decline exponentially. When β = 1, the effect of a particular impulse

does not dissipate over time and the series remembers the shock forever (long memory); as a

result, observations remain strongly correlated even if they are far apart in time. The autore-

gressive process with β = 1 is called integrated of order 1 abbreviated I(1). Accordingly, short

memory processes with |β|<1 are termed I(0). The I(1) process exhibits unstable trending

behavior due to stochastic drifts, its first difference, Δyt = yt−yt-1,

Dyt ¼ ð1 � bÞyt� 1 þ ut ¼ ryt� 1 þ ut ð3Þ

is white noise.
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Stability or instability as well as memory characteristics of time series can be inferred from

their autocorrelation functions (ACF): non-zero autocorrelations at only a few lags are typical

for stable short-memory processes, whereas significant autocorrelations on many lags indicate

long memory or instability. Stationarity tests like the Augmented Dickey-Fuller (ADF) algo-

rithm provide further possibilities to explore this issue. Stationarity means that the statistical

characteristics of a process under study do not change over time (e.g., exhibit no trends or dis-

tinct fluctuations of mean or variance). Most time series are non-stationary due to a determin-

istic time trend or stochastic drift. The most general testing equation of the ADF test

incorporates a constant term c for modelling drift, a coefficient τ for modelling time trend (T)

and allows autocorrelated residuals at:

Dyt ¼ cþ tT þ ryt� 1 þ at: ð4Þ

The null hypothesis of the ADF test is ρ = 0. Please note, if c as well as τ equal zero and the

residuals are white noise, we obtain Eq 3 where the dependent variable is differenced and the

predictors are not, the parameter ρ can therefore not be interpreted as the autocorrelation

coefficient β in Eq 1: ρ = 0 means β = 1, which implies that the series is integrated (yt = yt-1+ut),

ρ<0 stands for|β|<1 –that is, yt is stationary. For an applied description of stationarity tests,

see Stadnytska (2010) [11].

Multivariate time series models

The simplest vector autoregressive VAR(m) model incorporates two processes. In contrast to

the univariate autoregression, the current values of each variable are predicted not only from

their own m lagged values; m extraneous lags (from the other variable) also serve as predictors.

For instance, the bivariate VAR(1) model consists of two equations, each of them includes two

predictors (y1,t-1 and y2,t-1): y1,t = β11y1,t−1+β12y2,t−1+u1,t and y2,t = β21y1,t−1+β22y2,t−1+u2,t or in

matrix notation

y1;t

y2;t

 !

¼
b11 b12

b21 b22

 !
y1;t� 1

y2;t� 1

 !

þ
u1;t

u2;t

 !

! yt ¼ Byt� 1 þ ut: ð5Þ

There are three types of dynamic systems with quite different characteristics: stationary,

integrated and cointegrated. Stationary systems consist of stable processes without trends [e.g.,

y1,t and y2,t are I(0)]. Integrated systems incorporate integrated processes without common sto-

chastic components [e.g., y1,t and y2,t are I(1)]. Systems of integrated time series with common

trends so that they move together to some extend are called cointegrated.

Suppose that two processes share the same I(1) element xt

y1;t ¼ b1xt þ u1;t y2;t ¼ b2xt þ u2;t;

where u1,t and u2,t are stationary or I(0), then the following linear combination

y1;t �
b1

b2

y2;t ¼ b1xt þ u1;t �
b1

b2

b2xt �
b1

b2

u2;t ¼ u1;t �
b1

b2

u2;t

is the weighted sum of stationary variables and therefore also I(0). Although the series y1,t and

y2,t are individually integrated (that is, they have stochastic trends), there exists a stationary lin-

ear combination suggesting that the two variables have a long-term equilibrium relationship

between them. The bivariate process of the previous example is called cointegrated of order 1

or CI(1). The relation y1;t ¼ b1=b2y2;t ! y1;t ¼ b0y2;t ! y1;t � b0y2;t ¼ 0 characterizes the

long-run equilibrium between two processes. As noted earlier, time series can be represented
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alternatively in a differenced form (e.g., Eqs 3 and 4). Processes of cointegrated bivariate VAR

(1) systems have the following differenced presentation, which is termed Vector Error Correc-
tion Model (VECM)

Dy1;t ¼ a1ðy1;t� 1 � b0y2;t� 1Þ þ g11;1Dy1;t� 1 þ g12;1Dy2;t� 1 þ u1;t

Dy2;t ¼ a2ðy1;t� 1 � b0y2;t� 1Þ þ g21;1Dy1;t� 1 þ g22;1Dy2;t� 1 þ u2;t

Dyt ¼ ab
0yt� 1 � G1Dyt� 1 þ ut ¼ Pyt� 1 � G1Dyt� 1 þ ut withP ¼ ab

0≔
a1 � b0a1

a2 � b0a2

2

4

3

5

ð6Þ

where the cointegrating vector β = (1, β0)´ models the long-run equilibrium relation between

processes: y1,t-1 − β0y2,t-1 is the change in both variables that depends on the deviation from the

equilibrium in period t−1.The absolute values of α1 and α2 reflect how quickly the variables

restore the equilibrium. The γ coefficients of lagged differenced predictors capture short-term

autocorrelations of the cointegrated system. For an elaborated discussion of cointegration in

the context of psychological research, consult Stroe-Kunold et al. (2012) [12].

Johansen test

Note that every VAR(m) process has the representation

Dyt ¼ Pyt� 1 � G1Dyt� 1 � . . . � Gm� 1Dyt� mþ1 þ ut;

whereas the relation P = αβ´of the VECM representation holds for cointegrated processes

only. The rank of the matrix P can therefore disclose properties of the system under study.

For instance, in a stationary system all k series are stationary, thus linear combinations of them

remain stationary. Hence, we can construct k independent stationary linear combinations

which implies that P has a full rank: rk(P) = k. In the absence of common trends neither lin-

ear combination of integrated series becomes stationary, therefore rk(P) = 0. The decomposi-

tion of P as the product of two k x r matrices, P = αβ0, is only possible for cointegrated data.

The number of independent cointegrated relations (r) must be smaller than k and depends on

the amount of common stochastic trends in the system (m): rk(P) = r = k−m. For example,

the bivariate VAR(1) system consists of two processes (k = 2), hence maximal one equilibrium

relation r = 1 is possible: rk(P) = 2 means the system is I(0), rk(P) = 1 stands for CI(1), and rk

(P) = 0 implies that both series are I(1) without a common trend. The basic objective of the

Johansen test is to distinguish between the different types of dynamic systems by estimating

the rank of the matrix P. In addition, the Johansen procedure provides the maximum likeli-

hood estimation of the parameters α and β from Eq 6 for cointegrated systems.

Fig 1 demonstrates the performance of the Johansen test for simulated bivariate I(0), I(1),

and CI(1) systems. We generated data using the R statistical environment and conducted the

Johansen test with the command ca.jo of the R package urca [13]. All R commands of the dis-

cussed examples are provided in the Appendix in S1 File. Both time series of the I (0) example

are stationary: y1,t = −0.5y1t−1+u1,t, y2,t = −0.2y2t−1+u2,t (|β|<1). The lag = 1 autocorrelations of

the ACF provide estimations of βs. The ADF test performed with the command adf.test of the

R package tseries rejects the H0: ρ = 0 (β = 1) in both cases (pADF1 = .01, pADF1 = .02). The

Johansen test rejects the null hypotheses rk(P) = 0 and rk(P) = 1 because the test statistics

exceed the 1% level significantly (97.67>23.52; 27.54>11.65). The estimated rank of the matrix

P is therefore 2. In the I(1) example the integrated series do not share a common trend. The

ADF maintains the H0: ρ = 0 in both cases (pADF1 = .79, pADF1 = .21). As expected, the Johan-

sen test does not reject the null hypothesis rk(P) = 0: the test statistic (13.12) is smaller as the
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1% critical value (23.52). The CI (1) series y1,t = 0.4xt+u1,t and y2,t = 0.6xt+u2,t share the same I

(1) element xt, the cointegrating vector is β = (1, -0.4/0.6 = -0.67)´. The ADF identifies both

cases as integrated (pADF1 = .43, pADF1 = .70). The estimated rank of the matrixP in the Johan-

sen test is 1, since the H0: rk (P) = 0 is rejected (59.96>23.52) and H0: rk (P) = 1 is maintained

(3.97<11.65). The estimated cointegrating vector is (1, -0.61)´. Thus, the following linear com-

bination y1,t−0.61y2,t of two integrated series is stationary.

The data of the empirical example in Fig 1 originated from the study by Kupfer, Brosig,

and Brähler (2005), in which the authors analyze the marital interaction of a married couple

under clinical conditions over a period of 144 days [14]. The time series represent the mood

of the couple measured on Likert scales, the measurements are standardized. According to

the Johansen test, the series are cointegrated since the estimated rank of the matrix P is 1,

the estimation of β0 is -0.93. In contrast to the simulated data, however, the correctness of

the decision remains uncertain. The following Monte Carlo simulations aim, among other

things, in providing information about the probability for obtaining a correct test decision

in such cases.

Fig 1. Simulated bivariate I (0), I (1), CI (1) models and a bivariate empirical system with their autocorrelation functions and R outputs of the Johansen test.

https://doi.org/10.1371/journal.pone.0231785.g001
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Empirical versus simulated data

As stated above, the goal of this study is to clarify the conditions for satisfactory performance

of the Johansen test with non-continuous data typical in psychological research. This goal can

be achieved only with simulated data. To understand this statement, one should first know the

differences amongst the following statistical concepts: “parameter”, “estimator”, and “esti-

mate”. A parameter is a quantity that defines a particular system, such as the mean of the nor-

mal distribution. Strictly speaking, to obtain a population parameter one must measure an

entire population, which is mostly infeasible, so instead one generally uses estimators (rules or

formulae) to infer population parameters from observed samples. For any parameter, there are

usually multiple estimators with diverse statistical properties. As an example, suppose we have

n observations of some phenomenon X; then we can estimate the population mean (μ) using

two well-known estimators, the sample mean, m̂1 ¼
1

n

Xn

i¼1

Xi, and the sample median,

m̂2 ¼ X0:5. In contrast to parameters, estimators are not numbers but functions characterized

by their distributions, expectancy values, and variances. An estimate is a particular numerical

value obtained by applying an estimator. Good estimators are unbiased, i.e., their means equal

the true parameter value, and have small variability, i.e., their estimates do not differ strongly.

Considering that just one estimate per method is available in a typical research situation, an

estimator with a narrow range is usually better than one with a broad range. For instance, both

estimators of μ in large samples are normally distributed and unbiased; but m̂1 is a better esti-

mator of μ than m̂2 because its variance is considerably smaller.

The Johansen test is the estimator of the present study. Among other things, it estimates the

cointegrating vector β = (1, β0)´. Fig 1 shows that the estimate of β0 of the simulated CI(1) sys-

tem is -0.61. Since the actual parameter is known in this case (β0 = -0.4/0.6 = -0.67), the esti-

mated value can be compared with it to obtain the estimation error: -0.67-(-0.61) = -0.06.

Therefore, working with simulated data allows to quantify the quality of the estimation. In

contrast, the parameter value of the empirical system in Fig 1 is unknown, hence the difference

between the estimate of β0 (-0.93) and the true parameter is incalculable, which makes quanti-

fication of the estimation error impossible. The examples of Fig 1 point to the fact that an eval-

uation of the Johansen test performance is only possible using simulated data.

Generally, an empirical way to determine the quality of an estimator is by means of Monte
Carlo simulations. For instance, computational algorithms can generate a population with a

known parameter value, and repeated samples of the same size can be drawn from this popula-

tion, e.g., 1000 CI(1) systems with β0 = -1 and T = 100, then an estimator (e.g., the Johansen

test) can be applied to the data, yielding 1000 estimates of the parameter β0. For a good estima-

tor, the variability of the estimates must be low with the mean or median near the true parame-

ter value.

Method

The following Monte Carlo experiments evaluate the performance of the Johansen test for

bivariate time series systems measured on different scales with or without missing values. As

quality indicators serve the percentage of false model identifications and the estimating preci-

sion of the cointegrating parameter β0 from Eq 6. Mean, median, interquartile range (IQR),

and the percentage of estimates outside the 1.5 interquartile range (% OUT) obtained from

1000 replications are used as accuracy indicators of parameter estimations. All computations

are performed with the R software.

For clarity purposes, we first evaluated the performance of the Johansen test for continuous

data in dependence of system type ((I(0), I(1), CI(1)), significance level (10%, 5%, 1%), time
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series length (T = 10 to T = 500) and parametrizations (e.g., β0 = −b1/b2 for cointegrated sys-

tems; in stationary and integrated systems β0 = 0, b16¼b2, means that a bivariate system consists

of time series with unequal variances). The first experiment with N = 1000 replications deliv-

ered the following outcome: The Johansen test achieved an acceptable discriminating perfor-

mance with less than 5% of misclassification at the 1% level of significance in samples of at

least 70 observations. The effect of the system type on the classification accuracy was stronger

than the influence of parameterizations, best results were obtained for stationary systems.

Parameter estimates were unbiased (mean�median), the accuracy of estimation distinctly

improved with growing sample size. Based on these results for continuous data, the following

presentations are confined to T = 100, α = 1%, and the parameterization β0 = −1.

Incomplete data sets represent a widespread problem of psychological research; missing

values are particularly prevalent in longitudinal studies [15]. In time series, missing observa-

tions usually imply not only shortened samples but also distorted equidistance. To investigate

the impact of failing equidistance due to missing values on the performance of the Johansen

test, we made the data discrete (only whole numbers were used as time series values) and

manipulated the percentages of missing values (from 10% to 30%) as well as the nature of fail-

ing observations (regular vs. random).

To investigate the effect of scaling on the performance of the Johansen test, we compared

test decisions and quality of estimations in dependence of the levels of measurement. We cre-

ated various interval and ordinal scales as described in detail by Baker, Hardyck and Petrino-

vich (1966) [16]. For both scales, we varied the number of points: 3 through 10. In the ordinal

case, we also manipulated the interval size between levels: the interval size varied randomly,

increased from the median, decreased from the median, or increased monotonically.

Additionally, we examined the impact of score limitations at the top or the bottom of a

scale on the performance of the Johansen test. In longitudinal analyses, ceiling effects can

cause incorrect model selections and biased parameter estimations [17]. To investigate the

impact of ceiling or floor effects on the performance of the Johansen test we created different

data by merging a portion of the marginal values in a 10-point scale. The merged proportions

varied from 30% through 50% with the scales bounded above, below or on both sides. For

instance, in a scale bounded above the values 7, 8, 9, and 10 were summarized to 7 limiting the

range of the scale.

R codes for generating the data are provided in the files Dataset I (0), Dataset I (1), and

Dataset CI in S2–S4 Files. For more examples and elaborated explanations how to simulate

interval or ordinal data with missing values or with floor and ceiling effects, consult Gruber

(2011) [18].

In sum, the described Monte Carlo studies generated the following types of psychometric

data: continuous data, interval data with different points, ordinal data with different points,

ordinal data with various distances between levels, interval and ordinal data with varying per-

centages of missing values and with equidistant and non-equidistant omissions, interval and

ordinal data with scales bonded above, below or on both sides. There are two main goals of

time series analysis: identifying the nature of the phenomenon represented by the sequence of

observations (model identification) and predicting future values of the time series variable

which requires an accurate parameter estimation. The present study examines the goal attain-

ment in dependence of the data type.

Results

Fig 2 shows that the Johansen test achieved an acceptable discriminating performance with

less than 5% of misclassification in samples with at least 70 observations. The estimates of β0
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proved to be unbiased, therefore Fig 2 visualizes their variability in dependence of sample size

and demonstrates a distinct improvement in the accuracy of the parameter estimation with

increasing T. The results suggest T = 100 as a parsimonious optimal time series length.

Results presented in Table 1 show that in samples with 100 intended observations the

Johansen test can cope with up to 30% of missing values: less than 5% of incorrect model

Fig 2. Performance of the Johansen test in dependence of sample size.

https://doi.org/10.1371/journal.pone.0231785.g002
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identifications were observed; the estimations of β0 were unbiased and precise. The test dem-

onstrated similar discriminating and estimating quality in the regular and random cases.

Therefore, the Johansen test does not necessarily require equidistant measurements for correct

inference.

Table 2 summarizes the most important results concerning the levels of measurement. A

10-point scale seems to be necessary for a satisfactory discriminating accuracy with less than

10% of model misclassifications. For the ordinal scale, the number of points appeared to be

more important than the cause for non-equidistant intervals, thus Table 2 provides summary

statistics obtained from the data with different sizes between levels. The most common error

was misidentification of integrated systems as cointegrated. Scales with more than 5 points

were necessary for satisfactory performance of the Johansen test when dealing with processes

containing stochastic trends. A 7-point ordinal scale was sufficient for accurate parameter esti-

mation in the stationary case. Recall that the estimation of β0 in cointegrated systems is based

on a stationary linear combination.

Table 3 presents simulation results for the data with floor and ceiling effects. It demon-

strates that even strong aggregation (50%) was not problematic for stationary processes. For

merged proportions of no more than 30%, the test performance was even comparable to the

performance based on untransformed continuous data. In systems with trending processes,

however, the scale limitations were definitely disadvantageous for the performance of the

Johansen test because ceiling and floor effects distinctly enhanced the number of incorrect

model selections. Limited scales obviously failed to capture fluctuations of trending series

adequately.

Table 1. Performance of the Johansen test in time series with missing values.

% of misclassifications Accuracy of estimation of β0 = −1

I(1) CI(1) I(0) MEDIAN IQR % OUT

complete data 3.6 1.9 0 −1.002 0.058 3.7

every 10th value is missing 3.2 1.6 0 −1.003 0.060 3.6

every 7th value is missing 3.3 1.7 0 −1.033 0.062 5.2

every 5th value is missing 2.6 1.6 0 −1.035 0.058 4.0

every 3rd value is missing 2.5 4.2 0.4 −1.147 0.071 4.8

10% random missing values 3.2 1.8 0 −1.005 0.056 4.3

14% random missing values 3.2 1.9 0 −1.004 0.061 3.8

20% random missing values 1.9 1.5 0 −1.002 0.063 4.6

30% random missing values 1.9 4.3 0.2 −1.002 0.072 4.2

https://doi.org/10.1371/journal.pone.0231785.t001

Table 2. Performance of the Johansen test in time series measured on different scales.

% of misclassifications Accuracy of estimation of β0 = −1

I(1) CI(1) I(0) MEDIAN IQR % OUT

continuous data 3.6 1.9 0 −1.002 0.058 3.7

10-point interval scale 5.6 2.3 0 −1.003 0.060 4.0

7-point interval scale 8.9 2.2 0 −1.001 0.067 3.7

5-point interval scale 14.0 2.5 0 −0.999 0.068 4.0

3-point interval scale 29.1 6.8 0 −1.000 0.082 4.5

7-point ordinal scale 16.6 4.4 0 −1.002 0.097 4.0

10-point ordinal scale 8.2 3.3 0 −1.003 0.076 3.5

https://doi.org/10.1371/journal.pone.0231785.t002
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Summary and conclusions

Psychometric data are often “imperfect”: measurements usually originate from ordinal scales

like Likert questionnaires; moreover, missing observations are quite common. Consequently,

psychological data from longitudinal designs are normally discrete values of a limited range

with failing equidistance between them. The goal of the presented study was to find out under

which conditions different sophisticated time series techniques implemented in the Johansen

test work properly with data from empirical psychology.

The main results of the conducted Monte Carlo simulations are: (1) Time series analyses

require samples of at least 70 observations for an accurate estimation and inference. (2) Dis-

crete data and failing equidistance of measurements due to irregular missing values appear

unproblematic. Thus, interruptions on weekends by investigating daily phenomena are non-

hazardous and supplementary data collection in order to obtain an appropriate sample size is

reasonable in longitudinal studies. (3) Relevant characteristics of stationary processes can be

adequately captured using 5- or 7-point ordinal scales. (4) For trending processes, at least

10-point scales are necessary to ensure an acceptable quality of estimation and inference.

Moreover, it is essential to consider a possible growth of the processes during scale construc-

tion, since ceiling or floor effects are especially consequential for series containing trends.

The results of the present study, among other things, allow for a better assessment of empir-

ical findings from longitudinal empirical research. For instance, in the martial interaction

study reported above, the Johansen test indicated that the mood time series of the married cou-

ple obtained on 144 successive days were cointegrated with the estimation of β0 = -0.93.The

mood measures originated from a questionnaire with 58 items like “Right now I feel good”. The

momentary intensity of emotions was rated with answers 1 = definitely not, 2 = not, 3 = not
really, 4 = a little, 5 = very much, 6 = extremely. In summary, the data show the following char-

acteristics: 6-point ordinal scale, T = 144, 0% missing values, standardized time series (i.e.,

with equal means and variances). In the Monte Carlo experiments, 6-point ordinal data with

T�150 and 7-point ordinal data with T = 100 provided similar results. Thus, from Table 2 fol-

lows that, under these conditions, the estimated probability of a correct identification for CI(1)

systems is about 96%. On the other side, up to 16.6% I(1) systems can be misclassified as CI(1).

The present study demonstrated that distinct ceiling or floor effects are expectable for 6-point

ordinal data. Such scale limitations impede identification of cointegrated time series, i.e., for-

ward misclassifications of CI(1) systems. Moreover, the estimate of β0 = -0.93 from the empiri-

cal example indicates the following 1.5 interquartile range for β0: [-0.93–1.5�0.097; -0.93

+1.5�0.097] = [-1.076; -0.785]. The findings from the present study suggest that, under the con-

ditions described, CI(1) systems with β0 = -1 are associated with the following 1.5 interquartile

range for the estimations of β0: [-1.002–1.5�0.097; -1.002+1.5�0.097] = [-1.148; -0.857]. The

estimate from the empirical example (-0.93) lies inside the interval and is therefore probable

for CI(1) data with β0 = -1 (see % OUT in Table 2). Consequently, the analysis suggests that

the evidence for cointegration is rather strong in this case.

Table 3. Performance of the Johansen test in time series with floor and ceiling effects.

% of misclassifications Accuracy of estimation of β0 = −1

I(1) CI(1) I(0) MEDIAN IQR % OUT

untransformed data 3.6 1.9 0 −1.002 0.058 3.7

scale is bounded above (30%) 15.6 4.0 0 −1.001 0.063 4.2

scale is bounded below (30%) 20.1 2.4 0 −1.001 0.064 4.3

scale is bounded above (50%) 29.2 11.3 0 −1.002 0.114 5.3

scale is bounded on both sides (30%) 16.4 1.8 0 −1.000 0.046 5.1

https://doi.org/10.1371/journal.pone.0231785.t003
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The following examples demonstrate the implementation of the findings from the present

Monte Carlo experiments in applied research. For this purpose, two clinical studies are used.

The first study aimed at analyzing temporal relationships between awakening cortisol and psy-

chosocial variables in inpatients with anorexia nervosa [4]. The items assessing psychosocial

variables captured anticipations, depressive feelings, nervousness, anxiety, or stress (e.g.,

“Today, I am starting the day with positive anticipations”, “At the moment, I feel nervous”). The

goal of the second clinical study was to investigate the interaction between emotional intoler-

ance and core symptoms of anorexia nervosa over the course of inpatient treatment [3]. Items

as “Today, I could not tolerate unpleasant emotions” assessed emotional intolerance. The essen-

tial symptoms of anorexia nervosa were rated with items monitoring restraint over eating,

weight concern, fear of losing control over eating, and preoccupation with food, e.g., “Today, I
had a definite fear of losing control over eating.” Multivariate time series analyses require simi-

lar scaling for all variables within a system. Therefore, in the first study, psychosocial variables

need a wide numeric scale to associate them appropriately with continuous cortisol measure-

ments. Both studies deal with potentially trending phenomena since changes in mood or clini-

cal symptoms during the treatment are probable. The present Monte Carlo simulations

demonstrated that limited scales failed to capture fluctuations of trending series adequately.

Moreover, they showed that at least 10-point scales are necessary to ensure an acceptable qual-

ity of estimation and inference in trending processes. Thus, to mimic a metric scale and to con-

sider a possible growth of the processes during the scale construction, measurements of

psychosocial variables, emotional intolerance, and symptoms of anorexia nervosa were

obtained as follows: Patients rated each item on a visual analogue scale with bipolar labels. The

marked points were converted by a computer program to a numeric scale, from 0 to 100, visi-

ble to the patient while completing the questionnaire. In both studies, data were collected

daily. The present Monte Carlo experiments suggested that time series analyses require sam-

ples of at least 70 observations for an accurate estimation and inference. Furthermore, from

the simulations follow that supplementary data collection to guarantee an appropriate sample

size is reasonable in the presence of missing values. Therefore, clinical samples of both studies

should primarily include patients with intended inpatient stay of at least three months.
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