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Introduction
Single‑nucleotide polymorphisms  (SNPs) 
may play potential roles in the pathogenesis 
of multifactorial diseases such as multiple 
sclerosis  (MS).[1] MS is the most common 
autoimmune disease of the central nervous 
system  (CNS).[2,3] In the past years, 
different studies have demonstrated that 
microRNAs  (miRNAs) can play key roles 
in the pathogenesis of neurodegenerative 
diseases such as MS.[4] SNPs in miRNA 
recognition elements  (MREs) located 
in 3’UTR of miRNA target genes may 
increase or decrease MRE affinity, create 
new elements or remove existing elements, 
which influence the expression of target 
genes.[5] Therefore, the discovery of 
SNPs in miRNA binding sites, as well as 
miRNAs, is vital for understanding the 
pathophysiology of MS and other complex 
diseases,[6] and could play functional roles 
in the diagnosis and treatment of MS. 
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Abstract
Background: Different genetic variants, including the single‑nucleotide polymorphisms  (SNPs) 
present in microRNA recognition elements  (MREs) within 3’UTR of genes, can affect 
miRNA‑mediated gene regulation and susceptibility to a variety of human diseases such as 
multiple sclerosis  (MS), a disease of the central nervous system. Since the expression of many 
genes associated with MS is controlled by microRNAs  (miRNAs), the aim of this study was 
to analyze SNPs within miRNA binding sites of some neuronal genes associated with MS. 
Materials and Methods: Fifty‑seven neuronal genes related to MS were achieved using dbGaP, 
DAVID, DisGeNET, and Oviddatabases. 3’UTR of candidate genes were assessed for SNPs, and 
miRNAs’ target prediction databases were used for predicting miRNA binding sites. Results: Three 
hundred and eight SNPs  (minor allele frequency  >0.05) were identified in miRNA binding sites 
of 3’UTR of 44 genes. Among them, 42 SNPs in 22 genes had miRNA binding sites and miRNA 
prediction tools suggested 71 putative miRNAs binding sites on these genes. Moreover, in silico 
analysis predicted 22 MRE‑modulating SNPs and 22 MRE‑creating SNPs in the 3’UTR of these 
candidate genes. Conclusions: These candidate MRE‑SNPs can alter miRNAs binding sites and 
mRNA gene regulation. Therefore, these genetic variants and miRNAs might be involved in MS 
susceptibility and pathogenesis and hence would be valuable for further functional verification 
investigation.
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At this point, bioinformatic approaches 
allow identifying functional genetic 
variants within miRNA binding sites. In 
this study, SNPs in MREs located in the 
3’UTR of MS‑related neuronal Genes were 
investigated using In silico methods.

Materials and Methods
In silico analysis of neuronal genes 
related to multiple sclerosis

Neuronal genes related to MS were 
obtained from DisGeNET,[7] dbGaP (https://
www.ncbi.nlm.nih.gov/gap/phegeni) , 
Ovid  (http://www.ovid.com), and DAVID 
Bioinformatics Resources 6.8 (https://david.
ncifcrf.gov/).

Investigation of the single‑nucleotide 
polymorphisms within 3’UTR of 
candidate genes

To identify the SNPs within 3’UTR of 
candidate genes, we used the “1000 Genome 
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database”  (https://www.internationalgenome.org/category/
dbsnp/). Moreover, the allele’s frequencies were checked, 
and the SNPs with the minor allele frequency  (MAF) 
higher than 0.05 were chosen.

In silico predictions of microRNAs target binding sites

miRNA target prediction databases including 
miRdSNP[8]  (http://mirdsnp.ccr.buffalo.edu/search.php/), 
MirSNP.[9]  (http://202.38.126.151/hmdd/mirsnp/search/), 
TargetScan Human 6.2[10]  (http://www. targetscan. org), 
miRNASNP 2.0[11]  (http://www.bioguo.org/miRNASNP/
search.php), and PolymiRTS 3.0.[12]  (http://compbio.uthsc.
edu/miRSNP/) were used to identify putative miRNA 
binding sites on 3’UTR of each selected gene. miRNA 
sequences were got from miRBase 21 (http://mirbase. org). 
mirRNAs’ function can be affected by SNPs within MREs 
so the function was obtained from MirSNP.

Calculation of the binding free energy

The Gibbs binding free energy (ΔG, kCal/mol) was assessed 
for the wild and variant alleles using RNAcofold (http://rna.
tbi.univie.ac.at/cgi‑bin/RNAcofold.cgi). Then, the variation 
of ΔG between two alleles  (i.e., ΔΔG) was calculated to 
assess the stability of the mRNA: miRNA duplex.[13]

Results
The neuronal genes and single nucleotide polymorphisms 
associated with multiple sclerosis

By researching in the different databases  (DisGeNET, 
dbGaP, Ovid and DAVID), 57 MS‑related neuronal genes 
were found. Next, 308 SNPs (MAF >0.05) on 3’UTR of 44 
candidate genes were identified.

Single nucleotide polymorphisms predicted within the 
microRNAs binding site

Three hundred and eight SNPs locating on 3’UTR of 
these 44 genes were investigated in detail. The results 
indicated that 42 SNPs of 22 genes had the miRNA 
binding sites and 71 putative miRNAs were predicted 
to target them. Thirty‑seven miRNAs were identified by 
SNPMIR, 44 miRNAs were identified by PolymiRTS 3.0, 
and 18 miRNAs were identified by miRNASNP v2. These 
SNPs were MRE‑modulating  (enhancing, decreasing, and 
disrupting) or MRE‑creating. Sixteen SNPs of them could 
disrupt miRNA target sites, 5 SNPs could enhance, 1 SNP 
could decrease and 22 SNPs could create a novel miRNA 
target site [Table 1].

Discussion
Genetic variations have been reported to play important 
roles on susceptibility to common autoimmune diseases. 
Despite recent advances in genetics, the pathogenesis of MS 
remains largely unknown suggesting that further studies are 
needed to evaluate the genetic basis of susceptibility to this 
disease.[14,15] SNPs are the most prevalent types of genetic 

variations among individuals and associated with clinical 
progression of human disease, and response to treatment.[16] 
The SNPs within 3’UTR, which can be the binding sites 
for miRNA, change the ability of miRNAs binding to target 
genes, influence gene regulation and the susceptibility risk 
to MS.[17]

In this paper, the main approach was finding SNP variants 
that are likely to disrupt miRNAs binding target sites 
and consequently cause dysregulation of gene expression 
or creates new target sites in 3΄UTR of genes and cause 
down‑regulated gene expression. Since, Functional 
studies are time‑consuming and expensive, bioinformatics 
tools have been designed to facilitate investigations into 
biological interactions and pathogenomics pathways.[18] 
Here, our emphasis was on suggesting a list of miRNAs 
and their target sequences in the candidate neuronal genes 
which have not yet been reported.

Since demyelination and degeneration of the nervous 
system are main parameters in the development of MS,[3] in 
this way, 22 genes were chosen that at least one SNP was 
at their MREs. 3΄UTR contains highly conserved MREs 
that even a single‑nucleotide change in these regions can 
disrupt the thermodynamic stability of miRNAs binding 
to the mRNA. Therefore, in the next step, the SNPs were 
investigated to define different types of change such as 
removing the previous element, creating a new element, 
increasing or decreasing MRE affinity, and then cause the 
difference of the free energies between the two alleles was 
assessed  [variation of  ∆G or ∆∆G, Table  1]. The higher 
∆∆G indicates the bigger impact of SNP on the miRNA 
binding site.[13] Hence, further experiments of miRNAs 
with significant ∆∆G can be valuable. For example, ∆∆G 
between wild type allele and rs13515 variant allele in 
MAPK1 gene is 48 KJ/mol, which is the highest ∆∆G in our 
list. After further assessments in miRDB and TarBase V.8 
databases, 15 miRNAs of the total 71 identified miRNAs 
were reported that could downregulate the expression of 
target genes  [these miRNAs have been marked with one 
asterisk (*) in Table 1].

Up and downregulation of hsa‑mir‑196b‑5p,[19,20] 
hsa‑mir‑26a,[20,21] hsa‑mir‑4479,[1] has‑mir‑660,[22,23] 
has‑mir‑484,[24,25] has‑4665‑5p,[26,27] has‑mir‑199a‑3p[20,28] in 
MS have been reported by previous studies. For instance, 
Hsa‑miR‑484 showed significantly different expression 
levels between MS and healthy controls. Hsa‑miR‑484 
has an important function in the regulation of neural 
progenitor cells and its downregulation is associated 
with dysregulation of synaptogenesis, which leads to 
neurodevelopmental diseases such as epilepsy, autism, 
and hyperactivity.[24] In contrast, increased expression of 
hsa‑miR‑484 has been detected in MS patients’ sera and 
may indicate the activation of neurogenesis pathways as part 
of an ongoing repair process. C/T substitution in 3΄UTR of 
hsa‑miR‑484 target, MBP, creates new MRE and perhaps 
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Table 1: Predicted single nucleotide polymorphisms and microRNAs analyzed using microRNA target prediction 
databases

Gene name dbSNP ID Variant miRNA ΔΔG kcal/mol SNPMIR PolymiRTS 3.0 miRNASNP v2 Effect
MAPK1 rs13515

rs13943
rs3810608

C/T
C/G
G/A

hsa‑miR‑592
hsa‑miR‑3145‑5p
hsa‑miR‑1288‑3p

hsa‑miR‑3169
hsa‑let‑7b‑3p

hsa‑let‑7f‑1‑3p

48.02
6.34
4.17
3.61
4.47
4.27

√
√
√
√
√
√

√
√
√
√

Break
Create
Break
Break

FGF2 rs45504296
rs1476215
rs41278093
rs3804158
rs7683093
rs1048201
rs6853268

T/C
A/T
G/A
G/A
C/G
C/T
T/C

hsa‑miR‑6715b‑3p*
hsa‑miR‑196b‑5p
hsa‑miR‑196a‑5p*
hsa‑miR‑26a‑1‑3p
hsa‑miR‑26a‑2‑3p
hsa‑miR‑3064‑3p
hsa‑miR‑4711‑5p
hsa‑miR‑892c‑5p

hsa‑miR‑3190‑3p*
hsa‑miR‑4533

13.18
4.6
4.54
4.15
4.13
3.82
3.8
3.7
3.64
3.36

√
√
√

√
√
√
√
√
√
√

√
√
√
√

Break
Break
Create
Create
Enhance
Create

PGR rs1046982
rs500760

T/C
T/C

hsa‑miR‑5096
hsa‑miR‑127‑5p

11.93
3.32

√
√

Decrease

OLIG2 rs1059004
rs13046814

C/A
T/G

hsa‑miR‑6803‑5p
hsa‑miR‑7110‑5p
hsa‑miR‑2277‑5p
hsa‑miR‑744‑5p
hsa‑miR‑423‑5p*
hsa‑miR‑3184‑5p

hsa‑miR‑4479

6.32
4.93
5.71
5.41
4.07
4.01
3.29

√
√
√
√
√
√
√

√
√
√

Break
Break
Create
Create

ABAT rs45615432
rs3743798

rs9456
rs7201586
rs17674530
rs1641032
rs4985000

A/G
G/A
T/A
C/T
T/C
A/G
G/C

hsa‑miR‑6785‑3p
hsa‑miR‑1470

hsa‑miR‑660‑3p
hsa‑miR‑133a‑3p
hsa‑miR‑6843‑3p
hsa‑miR‑4768‑3p*
hsa‑miR‑4798‑5p
hsa‑miR‑483‑3p*
hsa‑miR‑4795‑5p

5.92
5.55
4.14
5.06
3.98
4.66
3.77
3.76
3.67

√
√
√
√
√

√
√
√
√
√
√

√ Create
Create
Create
Create
Break

ATP1A3 rs919390 G/C hsa‑miR‑5010‑5p
hsa‑miR‑4665‑5p
hsa‑miR‑7111‑5p

5.44
4.4
4.08

√
√
√
√

Break

NRG1 rs73672607 C/A hsa‑miR‑6808‑5p* 5.4 √
MBP rs3752069

rs9199
rs2282557

C/T
T/C
C/T

hsa‑miR‑3194‑3p
hsa‑miR‑484

hsa‑miR‑2682‑5p*
hsa‑miR‑34b‑5p

hsa‑miR‑4769‑5p*
hsa‑miR‑3714*
hsa‑miR‑3926

5.24
3.31
4.68
4.68
4.65
4.64
3.51

√
√
√
√
√
√
√

√
√
√

√
√

Create
Create
Create
Create
Enhance
Create
Create

Contd...
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increases the affinity of hsa‑miR‑484 to that gene [Table 1]. 
Quintana et al. showed that the expression of miR‑199a‑3p 
along with 5 other miRNAs in cerebrospinal fluid of MS 
patients has down‑regulated in comparison with the control 
group.[28] G/A substitution in MRE of the LINGO‑1 gene as 
a target of miR‑199a‑3p can remove miRNA binding site. 
Interestingly, LINGO‑1 is an important negative regulator 
of myelination by oligodendrocytes in the CNS and its 
overexpression can result in increased demyelination of 
axons.[29] In another experiment, Selmaj et  al. studied the 
expression of miRNAs in the serum of 19  patients with 
relapsing remitting MS. They observed that there was 
a significant difference between expression levels of 4 
miRNA, including has‑mir‑196b‑5p in patients compared 
with the control group and the expression of these 
miRNAs was significantly reduced during the relapse.[19] 
dysregulation of 2 miRNAs of the 71 miRNAs represented 
in Table  1 was reported in other neurological diseases. 
One of them, hsa‑mir‑34b, is a stable microRNA in plasma 
of Huntington’s patients that is used as a biomarker for 
the diagnosis of the presymptom condition in HD gene 
carriers.[30] Moreover, it may regulate the entry of dendritic 
cells into the CNS in an animal model of MS.[31] The 
other miRNA, has‑mir‑3613‑5p, has shown a significantly 

increased expression in serum exosomes from mTLE‑HS) 
mesial temporal lobe epilepsy with hippocampal 
sclerosis.[32]

Conclusions
Due to the existence of common pathways in the nervous 
diseases, further investigations on these two miRNAs can 
be done in MS. Other remaining mirRNAs and SNPs, 
which have not been investigated yet in MS, are proposed 
as potentially attractive targets in association studies or 
functional investigations in MS.
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