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Influential nodes identification 
using network local structural 
properties
Bin Wang, Junkai Zhang, Jinying Dai & Jinfang Sheng*

With the rapid development of information technology, the scale of complex networks is increasing, 
which makes the spread of diseases and rumors harder to control. Identifying the influential nodes 
effectively and accurately is critical to predict and control the network system pertinently. Some 
existing influential nodes detection algorithms do not consider the impact of edges, resulting in the 
algorithm effect deviating from the expected. Some consider the global structure of the network, 
resulting in high computational complexity. To solve the above problems, based on the information 
entropy theory, we propose an influential nodes evaluation algorithm based on the entropy and 
the weight distribution of the edges connecting it to calculate the difference of edge weights and 
the influence of edge weights on neighbor nodes. We select eight real-world networks to verify the 
effectiveness and accuracy of the algorithm. We verify the infection size of each node and top-10 
nodes according to the ranking results by the SIR model. Otherwise, the Kendall τ coefficient is used 
to examine the consistency of our algorithm with the SIR model. Based on the above experiments, the 
performance of the LENC algorithm is verified.

With the development of graph theory, the complex network has been applied in many  fields1–4. Nodes and edges 
in different types of networks play diverse roles in network structure and function. These networks are heteroge-
neous at macro, mesoscale, and micro scales. At the macro level, we mainly focus on the statistical characteristics 
of networks, such as degree distribution, cluster distribution, and degree correlation. At the mesoscale level, the 
hierarchical and community structure of the network are the two most prominent characteristics. At the micro-
level, the number of local neighbors nodes and the weight of edges is the focus of many scholars.

Traditional methods of identifying influential nodes mainly consider the degree of nodes, such as  Hindex5, 
K-shell6, and Semi-local  centrality7. In addition, the methods based on the influence of edges do not consider 
the different roles of edges in the process of information transmission, and the time complexity is high, such as 
Closeness  centrality8 and Betweenness  centrality9. Based on the mentioned above, many research works explore 
potential features in complex network from different  perspective10–13. At present, many scholars have proposed 
methods to identify influential  nodes14–17. For instance, to solve the limitation of the existing model in terms of 
research content is too single, Zhao et al.18 proposed a new method. It takes into account the influence of the node 
itself and its neighbor nodes. Also, a model to quantify the global influence of nodes are proposed, which makes 
the ranking more intuitive. Xu et al.19 designed two different influential nodes identification algorithms based on 
information entropy for four different types of networks. Consider the limited local information of the centrality 
method that may lead to incomplete identification of influential nodes, Maji et al.20 presented an improvement 
method that identifies the influential nodes even when the complete network structures are unavailable.

In recent years, many entropy-based centrality measures have been proposed. For instance, to design a more 
applicable centrality measure, Xu et al.19 proposed two influential nodes identification algorithms based on node 
adjacency information entropy (AIE). By calculating and comparing the adjacency information entropy of nodes, 
the importance of nodes is ranked. The larger the entropy value is, the more influential the nodes are. The algo-
rithms highlight the different characteristics of the different types of networks (directed network and weighted 
network). To design a more robust and practical algorithm, Guo et al.21 proposed the EnRenew algorithm aimed 
to identify a set of influential nodes via information entropy (IE). Firstly, the information entropy of each node is 
calculated as the initial spreading ability. Then, select the node with the largest information entropy and renovate 
its l-length reachable nodes’ spreading ability by an attenuation factor, repeat this process until the specified 
number of influential nodes are selected. By taking the effect of the spreading rate on information entropy into 
account, Zhong et al.22 proposed an improved information entropy (IIE) method. The IIE method takes the 
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spreading rate and the number of the target node’s neighbors into account. The above entropy-based algorithms 
for identifying influential nodes have all proved their accuracy through experiments. In the time complexity 
analysis section, we will compare the computational complexity of these algorithms with our proposed algorithm.

In this paper, considering the computational time of large-scale complex networks, we propose an algorithm 
that has low time complexity, can identify influential nodes with more accuracy. The algorithm can directly iden-
tify influential nodes without setting any parameters because some parameters are set to reasonable constants.

The rest of the paper is organized as follows. "Preliminaries" section gives a brief introduction to the pre-
liminaries.  "Methods" section presents the LENC ranking algorithm we proposed, including the main idea, and 
the calculation process of our algorithm.  "Experiments" section will point out the experimental verification. 
"Discussion" section is the conclusion.

Preliminaries
A network can be denoted by G, equated as G = (V ,E) , where V and E represent the set of nodes and edges, 
respectively.

Equilateral triangle. The edge between node Vm and Vn is expressed by Emn . Assuming that the neighbor 
node sets of Vm and Vn are Ŵ(Vm) and Ŵ(Vn) , respectively, then the number of triangles that can form between 
the two nodes is the number of their common neighbors. It can be defined as

Edge weight. On the one hand, the more paths connected by the node, the greater the information load, 
and the greater the influence of corresponding edges. On the other hand, the more alternative paths are available, 
the influence of the edge will be reduced  correspondingly23. Besides, the contribution of the edge to the informa-
tion transmission is proportional to the information load of the node. Based on the above considerations, the 
influence of an edge depends on the information-carrying capacity of the connected nodes and the possibility of 
the edge is being replaced by other paths. The weight of edge Emn between node Vm and Vn can be expressed as

where k(vm) represents the degree of node vm , Tmn represents the number of triangles formed by the edge Emn , 
wmn represents the weight of the edge between node m and n, and Rmn represents the contribution coefficient of 
the edge. For simplicity, we set wmn = 1 . Weight(Emn) is abbreviated as Wmn in this paper. Since the contribution 
of edge to the influence of the two nodes it connects is different, the same edge reflects different influences to 
the two nodes, expressed as Wmn  = Wnm.

The virtual node V ′ and other nodes in the network have a virtual edge Emv′ , and the number of triangles 
constituted by the virtual edge is assumed to be 0 in the algorithm. The weight calculation method of the virtual 
edge is the same as that of other edges, and the weight of edge Emv′ is expressed as

where k(v′) represents the information load (degree value) of the virtual node. Since the virtual node connected 
to all nodes in the network, here k(v′) = N , and N is the number of nodes in the network.

The influence of all edges around the node is added, the sum of the weights of the first order edges of the 
nodes can be expressed as

where Wm represents the sum of the weights of all edges connected to the node Vm.

Information entropy. Claude  Shannon24 pointed out that information entropy is monotone, non-negative 
and additive. The only form of the uncertainty measurement function of a random variable that has proved to 
satisfy the three conditions is H(X) = −C

∑

P(X) log2 P(X) , which is suitable for constant C, in this case, we 
set C = 1 . The entropy of the node based on the weight distribution of the edges connected to it of virtual node 
and neighbor node defined as

(1)Triangle(Emn) =� Ŵ(Vm) ∩ Ŵ(Vn) � .

(2)Weight(Emn) =
(k(vm)− Tmn)(k(vn)− Tmn)Rmnwmn

(Tmn/2)+ 1
,

(3)Rmn =
k(vm)

k(vm)+ k(vn)
,

(4)Wmv′ = k(vm)k(v
′)

k(vm)

k(vm)+ k(v′)
=

k(vm)
2k(v′)

k(vm)+ k(v′)
,

(5)Wm = Wmv′ +
∑

Vn∈Ŵ(Vm)

Wmn,

(6)Entropy(Emn) =−
Wmn

Wm
log2

Wmn

Wm
,

(7)Entropy(Emv′ ) =−
Wmv′

Wm
log2

Wmv′

Wm
.
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The sum of the information entropy of all first-order edges of a node is obtained by summing up the informa-
tion entropy of all first-order edges of a node, which is similar to the method of calculating and evaluating the 
influence of nodes based on degree  entropy25. In this algorithm, the entropy of the node based on the weight 
distribution of the edges connected to it is used to evaluate the influence of nodes, and the edge entropy weight 
of nodes is expressed as

Node influence. According to the topological structure of the network, nodes at the center of the network 
have a higher influence than nodes at the edge of the network. In the case of two nodes with the same entropy 
value, the node at the center is more important than the node at the edge. When calculating the local influence 
of nodes, the position influence coefficient k-core is introduced. The first-order entropy of the node based on 
the weight distribution of the edges connected to the node is the contribution of the first-order edge to the node 
influence, which is expressed as

To ensure the accuracy of the algorithm, the second-order edge entropy should be considered. The first-order 
edge is the entropy of the node based on the weight distribution of the edges connected to the node itself, and 
the second-order edge is the entropy of the node based on the weight distribution of the edges connected to the 
neighbor nodes, which is the contribution of the neighbor to the influence of the  node26. The total influence of 
nodes in the network can be expressed as

where, vn are the neighbor nodes of node vm.

Methods
Main idea. According to the properties of information entropy, information entropy can measure the uncer-
tainty of the system. The more stable the system is, the higher the information entropy is. Otherwise, the infor-
mation entropy is lower. Therefore, the entropy of the node based on the weight distribution of the edges con-
nected to it can be used as an indicator to evaluate the local influence of nodes. The higher the entropy is, the 
higher the complexity of nodes is, and the more influential it is in the network. There are two extreme cases of 
ranking the influence of nodes by using information entropy: the entropy value of nodes with one edge is 0, and 
the entropy value of nodes with a similar structure is equal.

As shown in Fig. 1, node a and node b in the network have the same number of neighbor nodes. It is assumed 
that the degree of the node j and k are not equal, the weights are different but the distribution is the same. If we 
calculate the information entropy by the difference distribution, the weighted entropy of both nodes are the same, 
and the value is E = − log2 (1/3) . Hence the influence is indistinguishable. However, with the introduction of the 
virtual node V ′ , the weight and the connecting edge of the virtual node to the two nodes are the same, without 
changing the network attribute. The weight value of the virtual edge and real edge is different due to the differ-
ence of nodes, which breaks the original balanced distribution so that the influence of the two nodes can be well 
distinguished. The influence of nodes can be obtained by the entropy weight of multi-order edge information.

Information entropy model. Introducing virtual nodes to reconstruct the network, assigning edge 
weights to nodes, and calculating the entropy of the node based on the weight distribution of the edges con-
nected to it, the contribution of edges to the influence of nodes is determined. On this basis, introduce the loca-
tion of the nodes in the network parameters, ensure the rationality of the proposed algorithm. The calculation 
considers the two-layer edge of the node to ensure the accuracy and efficiency of the algorithm. We mainly intro-
duce the construction process of the LENC algorithm model from three aspects: algorithm definition, algorithm 
flow, and time complexity analysis.

(8)Entropy(Vm) = Entropy(Emv′ )+
∑

vn∈Ŵ(vm)

Entropy(Emn).

(9)influence(vm) = Entropy(vm)k − core(vm).

(10)Influence(vm) = influence(vm)+
∑

vn∈Ŵ(vm)

influence(vn),

Figure 1.  Virtual node action display diagram.
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The algorithm flowchart. The idea of the LENC algorithm is as follows. Firstly, a virtual node V ′ is intro-
duced to reconstruct the network, forming a new network G = (V ,E) . Node V ′ has a virtual edge with all nodes 
in the network, and the degree of node V ′ is the total number of nodes in the network. Secondly, according to 
the number of adjacent triangles and the effect of the nodes on the influence of adjacent triangles, the weights 
of adjacent nodes and neighbor nodes, and virtual nodes are calculated. Then, the entropy value of each edge is 
obtained according to the information entropy formula, and the entropy value of the first-order edge of the node 
to obtain the local influence of the node. Finally, the local influence attributes of the neighbor nodes are added 
to obtain the entropy weight of the first and second-order edges of the nodes, which can be an indicator of the 
influence ability of the nodes in the network. Figure 2 shows the calculation process of the model.

Time complexity. The time complexity of the LENC algorithm has three main components. In the first 
part, to calculate the weight of the edge, we need to consider the number of common nodes among the nodes 
and their neighbors. First, calculate the number of the triangle of the edge, then calculate the weight of the edge. 
The time complexity is O(N), where is the average degree of the network, and N is the number of nodes; The 
second part is to calculate the local influence of nodes, which requires the introduction of the location attribute 
k-core of nodes. According to the K-shell algorithm, this step requires the traversal of all edges in the network. 
The time complexity is O(|E|), where E is the number of edges. In the third part, to calculate the total influence 
of the node, it is necessary to accumulate the weighted entropy of the first and second-order edges of the node. 
To calculate the weighted entropy of the neighbor edges, it is necessary to continue to traverse two-layer neigh-
bor nodes, with the time complexity of O(N < k >2) . Therefore, the time complexity of the LENC algorithm 
is O(N < k >2 +|E|) . Table 1 lists the time complexity of several state-of-the-art algorithms and some popular 
entropy-based centrality measures. We can see the time complexity of LENC is low.

Computation process. To further explain the specific calculation process of the LENC algorithm, a simple 
network that contains 6 nodes and 7 edges is an example. Node V ′ is a virtual node introduced in the network. 
As shown in Fig. 3, take the influence of node v4 in the network as an example. By calculating the entropy weight 
contribution of the first-order and second-order edges, the influence of the nodes was obtained. The specific 
calculation steps are as follows.

Step 1: Calculate edge weight. Calculate the weight of the edge between node v4 and virtual node V ′,

Calculate the weight of the edge between node v4 and neighbor node v2,

W4v
′ =

k(v4)
2 × k(v

′
)

k(v4)+ k(v
′
)
= (

42 × 6

4+ 6
) = 9.6.

Figure 2.  The flow chart of the LENC algorithm.
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In the same way, the weights of the edge of the neighbor node v3 , node v5 , and node v6 can be calculated as fol-
lows: 0.5714, 3.2, 1.3333.

Step 2: Calculate total weight. Add the edge weights of node v4 and all neighbors to obtain the first-order 
edge weights of node v4,

Step 3: Calculate the entropy value. The entropy weights of the edges of node v4 and its neighbors and virtual 
nodes are calculated respectively. Take the information entropy of the edges of node v2 and its neighbors as an 
example,

Following this method, the entropy weights of the edges of node v4 and all neighbor nodes are added (including 
the entropy values of the virtual node V ′ ), so that the sum of the entropy values of all first-order edges of the 
node is

Step 4: Calculate the total influence. Combined with the location parameters of node, the local influence of 
nodes in the network is calculated, as shown in the following formula,

Weight(E42) =
(k(v4)− T42)× (k(v2)− T42)

(T42/2)+ 1
× R42 =

(4− 1)× (3− 1)

(1/2)+ 1
× (

4

4+ 3
) = 2.2857.

Weight4 = W4v
′ +

∑

Vn∈Ŵ(V4)

W4n = 16.9904.

Entropy(E42) = −(
W42

W4
) log2(

W42

W4
) = −(

2.2857

16.9904
) log2(

2.2857

16.9904
) = 0.3893.

Entropy(E4v′ ) = −(
W4v

′

W4
) log2(

W4v
′

W4
) = −(

9.6

16.9904
) log2(

9.6

16.9904
) = 0.4654.

Entropy(v4) = Entropy(E
(4v

′
)
)+

∑

vn∈Ŵ(v4)

Entropy(E4n) = 1.76105.

influence(v4) = Entropy(v4)× k − core(v4) = 1.76105× 2 = 3.5221.

Table 1.  Time complexity of different algorithms. (n, m and r represent the number of nodes, edges and initial 
infected nodes, respectively.)

Algorithm Complexity

CC O(n2logn+ nm)

EC O(n2)

HITS O(n)

Hindex O(nlogn)

DIL O(n < k >2)

LENC O(n < k >2)

IIE O(n)

AIE O(n2)

IE O(m+ n+ rlogn+
rm2

n2
)

Figure 3.  A toy network.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1833  | https://doi.org/10.1038/s41598-022-05564-6

www.nature.com/scientificreports/

According to the “three-degree separation”  theory27, edges outside the third-order have less impact on the 
influence of nodes and even have a negative effect. To ensure accuracy, the second-order edges were considered. 
In addition to its local influence, the ultimate influence of nodes in the network should be extended to other 
neighbor nodes. The total influence of node v4 in the network is calculated as follows.

In the same way, we can calculate the influence of all nodes in the network. The results are shown in Table 2.
Next, we analyze the influence of nodes in the network according to the node deletion method. Firstly, nodes 

3 and 4 are at the center of the network. The degree of node 4 is greater than that of node 3, and removing node 
4 has a greater impact on the network structure. Therefore, the influence of node 4 is greater than that of node 3. 
Secondly, for node 2 and node 6, moving node 2 will cause the entire network to be disconnected, which has a 
greater impact on the network structure, so node 2 is more important than node 6. Finally, the influence of node 
1 and node 5 at the edge of the network is similar. Therefore, according to the node deletion method, the rank-
ing results of the influence of nodes are 4, 3, 2, 6, 5, 1. As shown in Table 2, the ranking results of our proposed 
algorithm are consistent with the analysis result. Therefore, the accuracy of LENC has been proved initially.

Experiments
Data sets. In this experiment, eight real-world networks with different properties are selected, the statistics 
of these networks are summarized as follows. The basic statistics are shown in Table 3, and these networks can 
be downloaded from KONECT (http:// konect. uni- koble nz. de/ netwo rks/) and NETWORK (http:// netwo rkrep 
osito ry. com/).

Zachary. The Karate club network, a total of 34 nodes and 78 edges. The nodes represent the club members, 
and the edges represent the bond between two club members.

Arenas‑email. This is the E-mail network of Rovira I Virgili University in Tarragona, southern Catalonia, 
Spain. It consists of 1133 nodes and 5451 edges. In the network, the nodes represent e-mail users, and the edges 
represent at least one e-mail message that has been sent between two users.

Moreno‑blogs. The Blog network contains hyperlinks on the front pages of blogs in the context of the 2004 USA 
election. A node represents a blog, and an edge represents a reference relationship between two blogs. There are 
1224 nodes and 16715 edges in the network.

Web‑spam. The network is provided by the Purdue university network repository and contains 4767 nodes 
and 37375 edges.

Bio‑dmela. In biological networks, the nodes are proteins, and the edges are interactions between proteins. The 
nodes are individual proteins with a total of 7393 nodes. The edges represent the interactions between proteins 
with a total of 25569 edges.

Influence(4m) = influence(v4)+
∑

vn∈Ŵ(v4)

influence(vn) = 12.8902.

Table 2.  Comparison result of simple network node influence evaluation indexes.

Node 4 3 2 6 5 1

k-core 2 2 2 2 1 1

Result 12.8902 11.8911 10.5953 8.4408 4.5212 4.4470

Table 3.  The statistics of eight real-world complex networks: Node number |V|, edge number |E|, average 
degree < K > , maximum degree Kmax , and clustering coefficient < CC >.

Data Sets |V| |E| < K > Kmax < CC >

Zachary 34 78 4.5882 17 0.5706

Arenas-email 1133 5451 9.62 71 0.2202

Moreno-blogs 1224 16715 27.312 351 0.3197

Web-spam 4767 37375 15.681 477 0.2859

Bio-dmela 7393 25569 6.916 17 0.5706

Ca-astroph 18771 198050 21.34 236 0.677

Email-EU 32430 54397 3.3547 623 0.1127

Opsahl-powergrid 4941 6594 2.669 19 0.0801

http://konect.uni-koblenz.de/networks/
http://networkrepository.com/
http://networkrepository.com/
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Ca‑AstroPh. The network is a collaboration diagram of authors of selected scientific papers in astrophysics 
(Astro-ph). Nodes represent each paper author, and edges indicate that the authors quote each other or have a 
cooperative relationship with each other. It contains 18771 nodes and 198050 edges.

Email‑EU. The Email-EU network, containing 32000 nodes and 54000 edges, nodes represent all kinds of 
e-mail, and edges represent the interconnections among e-mail.

Opsahl‑powergrid. This undirected network contains information about the power grid of the Western States 
of the United States of America. An edge represents a power supply line. A node is either a generator, a trans-
former, or a substation. It consists of 4941 nodes and 6594 edges.

Comparison algorithm. Five comparison algorithms are selected in our experiment. They are described 
as follows.

CC (Closeness Centrality). Closeness centrality is based on the global information of the network to determine 
the network influence of nodes. The smaller the relative distance between all the node pairs, the stronger the 
accessibility of node information, and the more important are the nodes. It has been widely used in research but 
the time complexity is high.

EC (Eigenvector Centrality)28. This method considers that the influence of nodes in the network depends on 
both the number of neighbor nodes and the influence of neighbor nodes themselves. Its essence is to increase the 
influence of the node itself by connecting other nodes of relative influence. However, when there are many nodes 
with a large degree in the network, the phenomenon of fractional convergence will  occur29.

HITS. HITS algorithm using different metrics to assess the influence of the nodes in the network. Give each 
node a hub value and an authority value to evaluate the influence of the node. Authority value measures the 
original creativity of nodes to information, and hub values reflect the role of nodes in information transmission. 
They interact and converge iteratively.

Hindex. This algorithm is mainly used to evaluate a scholar’s academic achievements. The higher Hindex value 
indicates the greater influence of the node.

DIL. DIL is a new  algorithm23. The method considers the degree attribute of the node but also the edge attrib-
ute of the node.

Evaluation indicators. SIR model. Kermack and McKendrick proposed the SIR model in  192730. The 
model includes S, I, and R states. S indicates susceptible, I state indicates infected, and it can infect other healthy 
nodes with a certain probability. The R indicates recovered and has immunity. The SIR model is defined as fol-
lows.

where S(t), I(t) and R(t) represent the number of susceptible nodes, infected nodes, and recovered nodes at time 
t respectively. β represents the probability of infection and γ represents the probability of recovery.

Kendall coefficient. Kendall τ  coefficient31 is used to explain the correlation of two sequences, the correla-
tion coefficient can reflect the proximity of two sequences. Suppose two sequences are related and have the same 
number of elements, expressed as X = (x1, x2..., xn) , Y = (y1, y2..., yn) . For the elements in both sequences, if 
xi > xj , yi > yj or xi < xj , yi < yj , then any pair of sequence tuples (xi , yi) and (xj , yj) , (i  = j) are considered to 
be concordant; If xi < xj , yi > yj or xi > xj , yi < yj , they are considered discordant; If xi = xj or yi = yj , they are 
considered neither consistent nor inconsistent. Kendall τ coefficient is defined as

where n is total combinations in these sequences, nc and nd indicate the number of concordant and discordant 
pairs, respectively. It reflects the correlation and matching between two sequences. In general, τ ∈ [−1, 1] , where 
τ > 0 indicates a positive correlation and τ < 0 illustrates negative correlation. That is, the higher the τ value is, 
the more accurate the ranking.

Experimental analysis. To verify the ability of the LENC algorithm to identify influential nodes, the SIR 
model and Kendall correlation coefficient are used as evaluation indicators and compare the accuracy and effec-
tiveness of different algorithms.

(11)











ds(t)
d(t) = −βs(t)i(t)
di(t)
d(t) = βs(t)i(t)− γ i(t) ,
dr(t)
d(t) = γ i(t)

(12)τ(X,Y) =
nc − nd

0.5n(n− 1)
,
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Case test. First, take the karate network as an example. The topology of the karate network is shown in 
Fig. 4. Table 4 shows the top-10 nodes ranking results of different algorithms and the SIR model. It can be seen 
from Table 4 that the ranking results of CC, Hindex, and DIL algorithms are different from the SIR model, which 
indicates that the ranking results of these three algorithms in the Zachary network are not accurate enough. The 
ranking results of the LENC, EC, and HITS algorithms are consistent with the SIR model, which can identify 
the influential nodes in the network accurately. Therefore, the accuracy of the LENC algorithm is proved pre-
liminarily.

Correlation analysis. In this experiment, the SIR model was used to evaluate the rationality and correct-
ness of different algorithms. The infection  probability32 is set as β = 2 < k > / < k2 > , k represents the average 
degree of nodes in the network, and < k2 > represents the second-order neighbor degree with recovery prob-
ability γ = 1 , running independently for 1000 times. Figure 5 shows how the number of infected nodes varies 
with the influence of nodes. The x-axis represents the influence of nodes in different algorithms, and the y-axis 
represents the average number of infected nodes corresponding to different infection probabilities. The more 
linear the curve is, the more accurate the ranking result is. To observation, the axis is scaled, as shown in Fig. 5. 
In the Arenas-email network, the linear growth trend of the LENC algorithm is obvious, which indicates that 
there is a positive correlation between the node influence and the SIR model. CC, EC, and Hindex algorithms 
perform well, but they can not accurately distinguish nodes with the same influence. In the HITS algorithm, the 
distribution of nodes is loose, and the influence of nodes in the same location is significantly different, which 
indicates that the algorithm is coarse-grained. In the Moreno-blogs network, the HITS algorithm performs 
worst. In Web-spam network, Bio-dmela, Opsahl-powergrid, and Email-EU network, the LENC algorithm is 
better than other algorithms because it has a significant positive correlation with the SIR model. Therefore, the 
LENC algorithm is suitable for different networks, and the ranking result of node influence is more accurate and 
reasonable. As the above result, the LENC algorithm has the best positive correlation with the SIR model. As the 
influence evaluation index increases gradually, the number of infected nodes in the SIR model increases stead-
ily. Moreover, the number of nodes with the same influence is relatively concentrated, which indicates that this 
method can rank the influence of nodes more precisely.

Transmission capacity. In this experiment, the top-10 nodes detected by different algorithms are used 
as infected nodes, and the number of infected nodes in each time step is used to distinguish the influence of 
nodes. To verify the initial infection ability of each algorithm, we set the infection probability β = 0.01 , and the 
recovery probability γ = 1 . T is the time step, and F(t) represents the number of infected nodes in the network 
in time step t, as shown in Fig. 6. In the Web-spam network, the infected nodes of the top-10 nodes of the LENC 

Figure 4.  The karate network.

Table 4.  Comparison of ranking results of top-10 nodes in karate network.

Rank CC EC HITS Hindex DIL LENC SIR SIR Value

1 1 34 34 1 34 34 34 3.58

2 3 1 1 3 1 1 1 3.31

3 34 3 3 14 3 3 33 3.00

4 32 33 33 33 33 33 3 2.94

5 9 2 2 34 32 2 2 2.65

6 14 9 9 9 2 9 9 2.34

7 33 14 14 2 14 32 4 2.31

8 20 4 4 24 28 14 14 2.30

9 2 32 32 31 9 4 32 2.24

10 4 31 31 4 24 31 31 2.05



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1833  | https://doi.org/10.1038/s41598-022-05564-6

www.nature.com/scientificreports/

Figure 5.  Correlation between significance evaluation indicator of different algorithms and SIR model 
infection.
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algorithm are greater than other algorithms, indicating that the LENC algorithm can more identify the influen-
tial nodes in the network accurately. In the Bio-dmela and Email-EU network, the infection effect of the LENC 
and DIL algorithms is the best. In Arenas-email, Moreno-blogs and Ca-astroph networks, the ranking result of 
CC, Hindex, HITS, and LENC algorithms are similar. It is worth noting that the infection curve of the LENC 
algorithm has better infection performance. Besides, the ranking results of influential nodes identified by the 
EC algorithm do not meet the expected results. In summary, the positive correlation between the number of 
nodes infected by the LENC algorithm and the SIR model is the most obvious and verified the accuracy of this 
method. In the Opsahl-powergrid network, it can be seen from Fig. 6 that the infected performance of the LENC 
algorithm is significantly better than other algorithms, and the infection size of the top-10 influential nodes of 
the CC algorithm is relatively smaller than that of other algorithms.

Consistency analysis. Kendall coefficient is used to express the similarity and consistency of two 
 sequences33. In this experiment, the infection probability of the SIR model is set as [0.01, 0.1]. The infection 
sequence was obtained through 500 iterations. The higher the Kendall coefficient, the more consistent the algo-
rithm is with the real ranking result, as shown in Fig. 7. In Arena-Email and Bio-dmela networks, the kendall 
correlation coefficient between the LENC algorithm and SIR model is higher significantly. When the infection 
probability is greater than 0.06, the effect of the proposed algorithm and SIR model is relatively consistent, 
which proves that the evaluation results of the LENC algorithm are accurate. In Moreno-blogs and Ca-astroph 
networks, The Kendall coefficient of the LENC algorithm is the maximum when β ≤ 0.05 , and then drops to the 
same value as other algorithms when β > 0.05 , but it still has certain advantages, indicating that the algorithm 
can accurately identify influential nodes in the network. In the Bio-dmela and Email-EU networks, the Kendall 

Figure 6.  Transmission initial infection capacity of the top-10 nodes.
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coefficient of the LENC algorithm is the largest, indicating that the recognition accuracy of the LENC algorithm 
is high. In summary, the ranking results of the LENC algorithm are highly consistent with the results of the SIR 
model, which verifies the accuracy of the algorithm. In the Opsahl-powergrid network, the Kendall coefficient of 
the LENC and HITS algorithm has the highest value, which is significantly better than other algorithms.

Discussion
The paper mainly introduces the model construction process of identifying influential nodes based on the 
entropy of the node based on the weight distribution of the edges connected to it. Introduces the time complex-
ity of the model and the node influence evaluation process, and selects eight real-world networks with different 
network structure attributes. The experimental verification is carried out in four aspects: case test, correlation 
analysis, transmission capacity, and consistency analysis. The experiment verifies that the proposed algorithm 
LENC has obvious advantages. However, when calculating the influence of nodes, to control the time complex-
ity of calculation cost, only the influence of first-order and second-order edges of the nodes are considered, and 
the accuracy of node influence ranking still has a lot of room for improvement. We will further improve the 
algorithm in future work.
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