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Membrane contact sites (MCS) are typically defined as areas of proximity between
heterologous or homologous membranes characterized by specific proteins. The study
of MCS is considered as an emergent field that shows how crucial organelle interactions
are in cell physiology. MCS regulate a myriad of physiological processes such as
apoptosis, calcium, and lipid signaling, just to name a few. The membranal interactions
between the endoplasmic reticulum (ER)–mitochondria, the ER–plasma membrane, and
the vesicular traffic have received special attention in recent years, particularly in cancer
research, in which it has been proposed that MCS regulate tumor metabolism and fate,
contributing to their progression. However, as the therapeutic or diagnostic potential
of MCS has not been fully revisited, in this review, we provide recent information on
MCS relevance on calcium and lipid signaling in cancer cells and on its role in tumor
progression. We also describe some proteins associated with MCS, like CERT, STIM1,
VDAC, and Orai, that impact on cancer progression and that could be a possible
diagnostic marker. Overall, these information might contribute to the understanding of
the complex biology of cancer cells.
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INTRODUCTION

Cancer is a serious public health problem worldwide (Henley et al., 2020a); the most common types
among women are lung, breast, and colorectal tumor, whereas lung, prostate, and colorectal cancer
prevails in men. Globally, 25% of such deaths were from the lung, 9% colorectal, 7% from breast,
and 5% from prostate cancer (Henley et al., 2020b).

Breast cancer is the main diagnosis among young women (Rugo, 2019). The risk of recurrence
remains latent up to 15 years after adjuvant therapy, as there is an association between progression
and risk of metastasis. Breast stages I–III tumors and regional lymph nodes are characterized by 5–
10 years survival rates (Liu X. et al., 2019), whereas patients with stage IV metastatic breast cancer
have 5 years survival rates below 25%. On average, 5–10% of patients are classified as with stage
IV disease at initial diagnosis, but 20–30% of stage I–III patients eventually progress to metastatic
disease (Liu X. et al., 2019). Even if the cancer mortality rates decreased by 15% from 2007 to 2017,
breast cancer caused 20.7 deaths per 100,000 in women (Henley et al., 2020b), and 1,735,350 new
cases were reported in 2018. According to the National Institutes of Health, up to 23.6 million total
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cases are expected in 2030; therefore, breast cancer will remain
one of the deadliest diseases for individuals1.

Cancer groups have around 100 highly heterogeneous
kinds of diseases, with variable morphological and biological
characteristics; hence, the different clinical behaviors
and responses to treatment (So et al., 2019) complicate
chemoresistance. The classification of cancer is based on its
morphology, histological grade (level of differentiation/growth
pattern), immunohistochemical subtype, as well as gene
expression profiling (Golub et al., 1999; So et al., 2019; Tsang and
Tse, 2020). So, to establish the clinical management of cancer in
patients, it is essential to understand the underlying biological
process that sustains the metabolic and signaling requirements
for adequate tumor dynamism, including diffusion or active
transport through the cytoplasm, vesicular traffic, and contact
site biology (Prinz et al., 2020).

Membrane contact sites (MCS) contribute to maintain
the function of the interacting organelles and to preserve cell
homeostasis (Prinz et al., 2020). Electron microscopy made
these connections evident decades ago (Bernhard and Rouiller,
1956; Copeland and Dalton, 1959), and lately, improved
spatial and temporal resolution imaging has led to track
organelle dynamics over time, revealing the extent to which
many of them are closely related (Wu et al., 2018; Figure 1).
The best-described membrane contacts involve endoplasmic
reticulum (ER)–mitochondria, ER–plasma membrane (PM),
ER–Golgi, ER–peroxisome, and ER–lipid droplets (LD)
interactions; however, MCS also include LD–peroxisome,
mitochondria–vacuole, mitochondria–PM, mitochondria–LD,
and mitochondria–peroxisome (Scorrano et al., 2019).

MCS are not only considered as regulatory sites for lipid
metabolism and intracellular calcium [(Ca2+)i] homeostasis but
they also modulate the organelle distribution and structure
(Prinz, 2014). Some functions and interactions of MCS
have been identified and described to regulate cancer cell
metabolism during disease progression. For example, hexokinase
2 overexpression, which is related to the stages of cancer
progression, acquisition of invasive and metastatic capabilities,
and poor prognosis (Patra et al., 2013), has been located
in the mitochondria-associated membranes (MAMs), and its
displacement induces mitochondrial Ca2+ [(Ca2+)mt] overload
(Ciscato et al., 2020).

In the present work, we reviewed in detail the state-of-the-art
of MCS-mediated Ca2+ and lipid signaling in cancer, specifically
the interactions between ER–PM, ER–mitochondria, and ER–
Golgi. Besides this, we describe the involvement of these contact
sites in cancer progression, and finally, we address MCS as
possible candidates for therapy.

MEMBRANE CONTACT SITES

MCS are defined as areas where two different organelles
physically interact without merging, and therefore the identity of
each of them is preserved (Jing et al., 2020; Venditti et al., 2020).
MCS are dynamic and heterogeneous structures composed

1https://www.cancer.gov/

of different proteins that act as a bridge between the two
membranes, exerting a binding force, that might have additional
functions in the cell (Eisenberg-Bord et al., 2016; Peretti et al.,
2020). ER, which occupies the largest surface area in the cell, is
involved in the formation of many MCS with other organelles
(Venditti et al., 2019, 2020). ER contact sites allow the direct
exchange of macromolecules and serve as a platform for the
recruitment of machinery that regulates biogenesis, division, and
trafficking of organelles (Lee et al., 2020). Among the broad
processes taking place at such interface are Ca2+ homeostasis,
lipid signaling, and organelle remodeling (Jing et al., 2020) as well
as mitochondrial fusion/fission, autophagy, apoptosis, reactive
oxygen species (ROS) signaling, and unfolded protein response
(van Vliet et al., 2014; Silva-Palacios et al., 2020).

Endoplasmic Reticulum–Plasma
Membrane
ER–PM contacts were first described by electron microscopy
in muscle cells (Porter and Palade, 1957) and eventually in
many other cell types (Okeke et al., 2016). Their abundance
and morphology vary from one cell to another and can be
modulated by its functional status. The ER–PM contact sites are
represented by both small focal contacts and large cisterns with
a gap between ER and PM in the range of 10–30 nm (Orci et al.,
2009; Fernández-Busnadiego et al., 2015) that allows the direct
interaction of protein and lipid components in both membranes.

Currently, it is well known that the oxysterol-binding protein
(OSBP)-related protein (ORP) is the major lipid transporter
between ER and PM contacts, specifically of phosphatidylserine
(PS) and phosphatidylinositol 4-phosphate (PI4P). Similarly,
OSBP counteracts the transport of sterols and PI4P in the ER–
Golgi contact (see below), while Osh3 (OSBP homolog in yeast)
regulates the metabolism of phosphoinositol (PI) (Fernández-
Busnadiego, 2016). Recently, it was reported that a robust
exchange of sterols at the ER–PM contact site in yeasts lacking
tether proteins (including E-synaptotagmin and the vesicle-
associated membrane protein, VAMP). These sites act as an
interface for the regulation and integration of lipid synthesis
pathways to maintain plasma membrane composition and
integrity. Loss of ER–PM contacts in yeast has been associated
with low levels of PS, phosphatidylcholine, and phosphatidic
acid and with the disruption of membrane dynamics (Quon and
Beh, 2016; Quon et al., 2018). The vesicle-associated protein
(VAP) in mammals neither appears to be strictly necessary
for the maintenance of ER–PM contact, probably because
other transmembrane proteins of the endoplasmic reticulum are
involved in the tethering complex (Chung et al., 2015; Lees et al.,
2017). The ER–PM contact sites in non-muscular cells remained
poorly described until recently, when the discovery of the stromal
interaction molecule 1 system (STIM/Orai1) revealed that these
contacts mediate calcium input through the store-operated Ca2+

entry system (SOCE) (see below) into all metazoan cells (Collado
and Fernández-Busnadiego, 2017). In addition, inositol 1,4,5-
trisphosphate receptor (IP3R) might form a complex with STIM1
and improve the SOCE pathway cation input (Paknejad and Hite,
2018; Sampieri et al., 2018).
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FIGURE 1 | Scientific and technological advances in the study of membrane contact sites. The knowledge about organelle contacts and their role in different
pathophysiological conditions has experienced a great “boom.” In harmony with these advances, significant progress has been made in optimizing methodology
strategies to study and comprehend the interaction between organelles. TEM, transmission electronic microscopy; CM, confocal microscopy; SF, subcellular
fractionation; FRET, fluorescence resonance assembly transfer; BioID, proximity-dependent biotin identification; PLA, proximity ligation assay; BRET,
bioluminescence resonance energy transfer; MERLIN, mitochondria–endoplasmic reticulum length indicator nanosensor.

Endoplasmic Reticulum–Mitochondria
MAMs are specific MCS between the ER and the mitochondria,
which participate in different cellular functions (Peretti et al.,
2020). The average distance between both organelles varies from
10 to 60 nm. In this sense, several studies indicate that 9–16 nm
is enough distance to tether the outer mitochondrial membrane
(OMM) to the smooth ER, while a space of 20 nm has been
observed between the OMM and the rough ER (Achleitner et al.,
1999; Csordás et al., 2006; Giacomello and Pellegrini, 2016;
Simmen and Herrera-Cruz, 2018; Wu et al., 2018).

It has been reported that distances between MAMs greater
than 30 nm are required for Ca2+ transport in cardiomyocytes
(Sharma et al., 2000). The MAM tethering axis includes the IP3R
in the ER which is pivotal for communication and interaction
with the voltage-dependent anion channel (VDAC), which is
located at the OMM and is responsible for the release of
adenosine triphosphate (ATP) from the mitochondria to the
cytosol (Fang and Maldonado, 2018). It is relevant to note that
isoform 1 of IP3R is crucial for calcium exchange with the
mitochondria (Bartok et al., 2019).

The interaction between IP3R and VDAC is mediated by
glucose-regulated protein 75 (Grp75), which participates in

calcium exchange and stabilizes the membrane contact site
(Szabadkai et al., 2006; Patergnani et al., 2011). Mitofusin
2 (Mfn2), mostly located in MAM (de Brito and Scorrano,
2008), also regulates calcium transport in ER–mitochondria
contacts. MAMs convey calcium signaling between the IP3R
and the mitochondrial calcium uniporter (MCU), the channel
responsible for Ca2+ uptake into the mitochondrial matrix.
Other recently described proteins that maintain MAM integrity
are DJ-1 (oncoprotein encoded in PARK7 gene) (Xu et al.,
2018; Liu Y. et al., 2019; Basso et al., 2020) and PDZ domain-
containing protein 8 (a synaptotagmin-like mitochondrial lipid-
binding protein domain-containing ER transmembrane protein)
that has been implicated in ER-dependent mitochondrial calcium
homeostasis (Hirabayashi et al., 2017; Elbaz-Alon et al., 2020),
while pannexin 2 has been reported to sensitize cancer cells
to apoptotic stimuli (Le Vasseur et al., 2019). In triple-negative
breast cancer (TNBC), MCU silencing disturbs calcium uptake,
enhancing alternative pathways such as SOCE, whereas the
reduction of mitochondrial calcium levels inhibits cell migration
in cancer cell lines. Depletion of MCU expression also reduces
ROS production and deregulates hypoxia-inducible factor 1
alpha, diminishing cancer progression (Tosatto et al., 2016).
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Endoplasmic Reticulum–Trans Golgi
Network
The Golgi complex is part of the cytoplasmic endomembrane
system, which is normally found adjacent to the nucleus (Li
et al., 2019). Transmission electron microscopy analysis revealed
that the Golgi forms stacks consisting of eight-storey cisterns
placed parallel to each other (Donizy and Marczuk, 2019). The
Golgi complex is divided into three compartments: (1) the
cis-Golgi network (near the ER and receiving its output), (2)
the middle part, and (3) the trans-Golgi network (TGN, near
the PM that sends vesicle-dependent and vesicle-independent
molecules to different destinations) (Witkos and Lowe, 2016).
This peculiar structure actively participates in the traffic of
proteins and lipids into the cell and regulates post-translational
modification (De Matteis and Rega, 2015; Howley and Howe,
2018). The phospholipid composition of the ER and the trans-
Golgi membrane differ significantly, the cytosolic side of the ER
membrane is slightly charged, and phospholipids are enriched in
monounsaturated chains, while the TGN membrane is enriched
with sphingolipids and with negatively charged lipids such as PS,
PI, and PI4P on its cytosolic side (Mesmin et al., 2019).

The ER and Golgi network is related to the molecular traffic of
vesicular and non-vesicular routes (Lev, 2010, 2012; Wu et al.,
2018). Specifically, the VAMP-associated protein is involved in
the formation of MCS between ER and almost all organelles
(Murphy and Levine, 2016). At ER–Golgi sites, VAPs provide
contacts with FFAT motifs [two phenylalanine (FF) in an acid
tract] of three different proteins involved in lipid transfer such
as Nir2 (important for PI transfer from the ER to the PM),
ceramide transferase (CERT, responsible for ceramide transfer
between ER and TGN) (Hanada et al., 2003), and ORP protein,
which exclusively transfers cholesterol and PI4P but also acts as
tethers agent (De Matteis and Rega, 2015).

REGULATED CELLULAR PROCESSES AT
CONTACT SITES AND THEIR RELATION
TO CANCER PROGRESSION

Calcium Signaling
MCSs allows the efficient transfer of metabolites between
compartments, particularly of calcium. The cytosol calcium
concentrations are∼100 nM (Marchi et al., 2020), whereas in the
ER lumen [(Ca2+)ER], it reaches 100–800 µM (Burdakov et al.,
2005; Zhai et al., 2020).

The role of calcium signaling in cancer progression has
been discussed in detail recently (Marchi and Pinton, 2016;
Bong and Monteith, 2018). Calcium regulates cellular processes
such as proliferation, migration, and resistance (among others),
contributing to the development of a malignant phenotype that is
essential and continuously rewired at all stages of carcinogenesis
(Morciano et al., 2018). This scenario seems to be caused
by the uneven regulation of pumps and channels and to the
consequent alteration in calcium concentration (Dang et al.,
2017; So et al., 2019; Makena and Rao, 2020; Yang et al., 2020). It

has been proposed that changes in the distance and morphology
of the mitochondrial tether can dramatically alter calcium
homeostasis and cell function (Simoes et al., 2020); therefore,
it is imperative to understand the regulation of this cation
by MCS in cancer.

Store-Operated Ca2+ Entry
Store-operated Ca2+ entry (SOCE) is an ancient and ubiquitous
Ca2+ signaling pathway discovered decades ago (PutneyJr.,
1986), the main components of which are the stromal interaction
molecule 1 (STIM1) and Orai1 (Roos et al., 2005; Zhang et al.,
2005; Feske et al., 2006). The depletion of the Ca2+ store directly
results in the activation of the Ca2+ channel in the plasma
membrane (PutneyJr., 1986), whereas SOCE is activated by
membrane receptors or by pharmacological manipulations that
empty the ER intracellular Ca2+ stores (Xie J. et al., 2016).

STIM proteins (in humans 1 and 2) are single-pass membrane
proteins located in the ER membrane that, after ER Ca2+

depletion, regulate the Orai channel (Hou et al., 2020).
Structurally, all STIM1 monomers contain an N-terminal signal
peptide, a canonical Ca2+-binding EF 1 hand, a non-Ca2+-
binding EF 2 hand, and a sterile α-motif (SAM) domain in the
ER luminal region (known as ER-SAM) (Dziadek and Johnstone,
2007; Schober et al., 2019). The C-terminus domain located
in the cytosolic side of the ER membrane is characterized by
the coiled-coil 1 (CC1) segments, a STIM-Orai-activating region
(SOAR) or calcium release-activated calcium (CRAC) activation
domain (CAD), and the motif S/TxIP which are the components
of the Orai1 activation small fragment (Chen Y. T. et al., 2013;
Stathopulos et al., 2013; Rathner et al., 2018; Figure 2).

When the [Ca2+]ER decreases, the cation dissociates from
the different binding sites in the EF-SAM, producing a
conformational change in this region (Zheng et al., 2011). That
this, at rest, the EF-SAM region of STIM1 is monomers, while
the cytosolic region of STIM1 are dimers. After activation, EF-
SAM oligomerizes, which leads to conformational changes in its
cytosolic region, elongating the SOAR/CAD segments (extended
state) and the S/TxIP motif (Gudlur et al., 2018; Hirve et al.,
2018). Thanks to this and its positively charged polybasic tail,
STIM1 moves along the microtubules network interacting with
the EB1 protein, generating clusters and elongation of the ER near
the PM and favoring its union with Orai1 (Grigoriev et al., 2008)
(reviewed in Ma et al., 2020).

Calcium Release-Activated Calcium Channel
Orai is the pore-forming protein of the calcium release-activated
calcium (CRAC) channel; there are three human Orai (Orai1-
3) proteins which consist of four transmembrane (TM) helices
(TM1–4) with cytoplasmic N- and C-terminal domains (Hou
et al., 2012; Stathopulos et al., 2013). The channel structure
consists of six Orai subunits arranged as a hexamer with a
central pore (Hou et al., 2012; Cai et al., 2016). TM2–4 forms
concentric rings around the ion-conducting pore, surrounding
the TM1 helices located at the boundary of the ion pore. A TM4
extension binds with a SOAR, promoting coupling between
PM and ER and mediating intracellular Ca2+ mobilization
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FIGURE 2 | Cartoon model of ER–PM junction (store-operated Ca2+ entry system pathway). (A) Orai’s monomeric structure: TM1-4 and its C- and N-terminal
endings facing the cytosol. (B) Orai channel structure: The channel is conformed by six subunits (monomers) which interact with each other due to the hydrophobic
cluster (E106, V102, F99, R91) in their respective TM1. These interactions leave the ion pore at the center of the channel, and it is also stabilized by the TM1–TM2
turret, causing the channel’s selectivity. (C) STIM1 resting state: This protein seems to dimerize in basal conditions. STIM1 monomer’s structure consists of the
EF-SAM calcium sensor, facing the ER-lumen, the TM domain, and the CC1, SOAR/CAD segments oriented to the cytosol. The STIM1 monomer in the presence of
calcium is folded into the cytosol domain due to hydrophobic interactions between the coiled coils. (D) STIM1 extended state: STIM1 interacts with EB1 protein,
helping to remodel the ER and forming STIM1 clusters near the PM; its polybasic tail also seems to interact with the PM. When there is a Ca2+ depletion in the ER
lumen, STIM1 suffers a conformational change, and both monomers release its SOAR/CAD segments, which, in turn, interact with Orai. (E) Possible activation of
Orai: STIM1 could contribute to either rotate Orai’s helices or help the subunits’ outward movement. Orai loses its high permeability and allows the entry of
extracellular calcium. TM, transmembrane helices; EF-SAM, EF hand 1, non-canonical ER hand 2, and sterile alfa motile; CC1, coiled coil 1; SOAR/CAD,
Stim1-Orai1 activating region/CRAC activation domain; EB1, microtubule plus-end tracking of end binding protein 1; cyt, cytosol; ER, endoplasmic reticulum; PM,
plasma membrane.

(Park et al., 2009; Cai et al., 2018). Orai’s selectivity for calcium
is determined by the mainly electronegative charged TM1–TM2
turret structure, which is stabilized by a VQLD motif and a
lysine residue from the TM3 (K270 in D. melanogaster) and by
the narrowing of the region near the Ca2+ binding site formed
by the E106 residue (Yeung et al., 2018; Bulla et al., 2019;
Hou et al., 2020).

It has been proposed that, after Ca2+ store depletion in
ER, the CRAC channels interact both at their cytoplasmic
N- and C-termini with the ER Ca2+ sensor protein STIM1,
resulting in close coupling in the apposed sites at the ER–plasma
membrane junctions (Figure 2). Specifically, the SOAR/CAD
segment interacts with the Orai1 hexamer, producing the pore
helix, which displaces six F99 residues and disrupts the V102-F99

hydrophobic segment that closes the channel, increasing
port hydration and calcium conduction (Yamashita et al.,
2017, 2020). Another hypothesis, derived from cryo-electron
microscopy (3.3 Å resolution) studies in D. melanogaster’s
mutant protein, suggests that Orai subunits are displaced, causing
the repositioning of F171 (F99 in human Orai), widening
the hydrophobic región, and promoting channel opening
(Hou et al., 2020).

The SOCE pathway involvement in cancer progression is
undeniable and might be a target for the study and treatment
of this disease. Flourakis et al. (2010) demonstrated that SOCE
is the main source of Ca2+ influx that triggers apoptotic cell
death in human prostate cancer cells. Orai1 knockdown in cancer
cells inhibits SOCE and protects these cells from apoptotic death
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(Flourakis et al., 2010). Also, the inhibition of STIM1 and Orai1
reduces cell migration and tumor metastasis in breast cancer
cells by down-regulating the calcium-dependent focal adhesion
pathway (Yang et al., 2009), an effect also seen in cervical
cancer (Chen Y. F. et al., 2011, 2013) and hepatocarcinoma cells
(Yang et al., 2013).

It has been shown that pharmacological upregulation of
the SOCE pathway decreases glioblastoma tumor cell growth,
activating Ca2+ entry and inhibiting the YAP/TAZ pathway (a
key transcription factor that regulates tumor cell proliferation
and aggressiveness) (Enzo et al., 2015). On the other hand,
SOCE activates the extracellular signal-regulated kinase (ERK)
signaling pathway, promoting cell proliferation and migration
in melanoma cells (Umemura et al., 2014), while Orai1/STIM1
enhances Akt activity, contributing to cis-platin resistance in
ovarian carcinoma cells (Schmidt et al., 2014). Recently, it was
reported that the inhibition of STIM1/Orai1 interactions in
TNBC cell lines with NO1, a fluorescent ligand for Sigma-2R
(initially described as a cholesterol transport regulator), causes an
alteration of the SOCE pathway, increasing apoptotic cell death
and reducing the proliferation and migration rate of these cells
(Cantonero et al., 2020).

Ineffective epithelial–mesenchymal transition (EMT) and
metastasis suppression were observed in MDA-MB-231 and
MCF-7 cell lines treated with transforming growth factor-β
(TGF-β) in which STIM1 was knocked-down, proving a clue of
the role of SOCE in TGF-β-induced cancer progression (Zhang
et al., 2017). Furthermore, in very aggressive cancer cell lines
(such as MDA-MB-231), STIM1 is overexpressed as compared to
the MCF-7 cell line (Kulkarni et al., 2019).

On the other hand, deregulation of Orai by siRNA inhibition
in cancer cell lines promotes deregulation of proteins involved
in the cell cycle such as cyclin-D1 and cyclin-E, as well as
overexpression of p53 and p21, together with an increase in
[Ca2+]i, which collectively favor apoptosis (Faouzi et al., 2011).
Besides these, Orai3 produces resistance to chemotherapeutic
drugs through increased free calcium uptake, which leads
to p53 inactivation (Hasna et al., 2018). In turn, silencing
of Orai1 and 2 with SOCE chemical inhibitors and siRNAs
inhibits calcium uptake and suppresses cancer cell proliferation,
colony formation, and migration in association with inhibition
of the Akt/mammalian target of rapamycin (mTOR)/nuclear
factor κB (NF-κB) pathway (Singh et al., 2020). Orai can be
inactivated through phosphorylation in its Ser-27, -30, or -34
residues. In MDA-MB-231 cell lines, it has been reported that
overexpression of Orai1, as well as calcium–calmodulin-activated
adenylyl cyclase type 8 (which interacts at phosphorylation sites),
prevents the inactivation of Orai1, increasing calcium signaling
and promoting cancer cell migration (Sanchez-Collado et al.,
2019). In summary, these examples highlight the relevance of
the ER–PM contact site both in calcium signaling and in other
physiological pathways.

Clinically, STIM1 has been correlated with poor prognosis
in breast (Yang et al., 2017), colorectal (Wang et al., 2015), and
lung carcinoma (Zhan et al., 2015) because its overexpression in
patients’ tissues is associated with increased tumor size, lymphatic
metastases, and other factors. Orai3 is also overexpressed

in several types of cancer such as esophageal and gastric
carcinoma among others (Zhu et al., 2014; Xia et al., 2016;
Wang L. et al., 2017).

In conclusion, [Ca2+]i modulated by SOCE is a master
physiological regulator that contributes to uncontrolled
proliferation and malignant tumor progression (Sharma and
Elble, 2020). We must recall that mitochondrial Ca2+ activates
the Krebs cycle, apoptosis, and mitochondrial fission (Harper
et al., 2020). In particular, the activity of α-ketoglutarate,
isocitrate, and pyruvate dehydrogenases is controlled by the
cation, increasing the ATP synthesis. However, cancer cells
require a high glycolytic rate (Warburg effect) to maintain
growth and tumor progression. Such metabolic switch has
been associated with alterations in calcium signaling in MAMs
(Bittremieux et al., 2016). Therefore, deregulation of Ca2+ import
via MAMs could affect tumorigenesis through metabolism and
cell death (Peretti et al., 2020).

Further information of the expression profile of some MCS
protein-related genes is included in the cancer genomic database
The Cancer Genome Atlas (TCGA), which is integrated with
clinical characteristics, including patient outcome in common
cancer types. For example, the Stim1 gene was shown to be
elevated in many solid tumors (Figure 3A), but the gene product
is not considered as prognostic. Interestingly, the expression
of the Stim1 gene is diminished in breast cancer (Figure 3B)
and is practically comparable to normal tissue levels at all
stages (Figure 3C). Regarding Orai, its expression increases
(Figure 3D), particularly in breast (Figure 3E) and renal
cancer (Figure 3F). These changes could be easily addressed
by conventional methods such as qRT-PCR to confirm their
prognostic relevance.

IP3R
Overexpression of IP31 and 2 receptors has been related to
apoptosis in different tissues and cancer cells (Assefa et al., 2004;
Kopacek et al., 2009; Akl et al., 2013; Hudecova et al., 2016) and
to compromised cell metabolism (particularly glycolytic and the
mitochondrial bioenergetic) (Singh et al., 2017). Recently, it has
been reported that down-regulation of IP3R3 correlates with a
lower migration rate due to the modulation of Ca2+ signaling.
Accordingly, overexpression of IP3R in cancer cells improves free
calcium fluctuation and promotes efficient migration (Mound
et al., 2017). Migration is also associated with cell morphology,
i.e., when IP3R3 is silenced, a rounded shape is produced in highly
invasive cancer cell lines, resulting in a low rate of adhesion and
migration, as a consequence of Ca2+ oscillation and cytoskeletal
changes driven through the ARHGAP18/RhoA/mDia1/FAK
signaling pathway (Vautrin-Glabik et al., 2018). This silencing is
also related to the induction of apoptosis in different cancer cell
lines such as colorectal, ovarian, and clear cell renal carcinoma
tumors (Rezuchova et al., 2019).

VDAC
On the other hand, the role of the mitochondrial protein VDAC
in cancer is debated. For example, VDAC1 knockdown has been
related to proliferation inhibition. Also, the VDAC inhibitor,
JQ1, prevents the activity of bromodomain-containing proteins
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FIGURE 3 | (A) Stim1 gene product is elevated in several solid tumors. (B) Stim1 gene expression in breast cancer (BRCA) vs. tissue samples (p = 1.62 × 10−12)
and (C) Stim1 gene expression in all stages of BRCA vs. normal samples. (D) Orai3 gene overexpression is associated with many cancers, in particular with
(E) BRCA (p < 1.0 × 10−12) and with (F) KIRC (p = 1.62 × 10−12). All data were taken by UALCAN cancer database (Chandrashekar et al., 2017).

(BRD), including BRD4, that is enriched in patients with basal
luminal breast cancer (Qi, 2014), suggesting that VDAC1 is
relevant in cancer cell progression and is a hallmark of poor
prognosis (Yang et al., 2019).

In this regard, Dr. Lev’s group recently identified that the
combination of the synthetic drug JQ1 and the proteasome
inhibitor bortezomib induces ferroptosis in multiple TNBC cells
line in vitro and in vivo. The findings of this group indicate that
combination therapies effectively decrease the size of the tumor
and significantly prolong the survival of mice up to 80 days.
Mechanistically, these therapies induce ferroptosis in correlation
with the reduction of glutathione peroxidase 4, nuclear factor
erythroid 2-related factor 2 (Nrf2), and glutathione metabolism.
Therefore, drug combination might be a new therapeutic option
for patients with triple-negative breast cancer, highlighting
ferroptosis as a promising avenue for the treatment of TNBC
(Verma et al., 2020). Relevant to this issue is the finding that
progesterone induces VDAC and sarco(endo)plasmic reticulum
Ca2+-ATPase (SERCA) expression, inhibiting the growth of
MCF-7 cells (Azeez et al., 2018).

Using the TCGA database, we also detect VDAC
overexpression in several solid tumors (Figure 4A). Notably, in
breast cancer (Figure 4B), lung adenocarcinoma (Figure 4C),
and head and neck carcinoma (Figure 4D), a close relationship

exists between gene expression and poor survival outcome.
By using the extraordinary resources based on “omics” data,
more MCS-associated protein could be relevant in the clinical
context; some of them might be useful for outcome prediction,
particularly in the emerging “contactology science.”

Grp75
Grp75 (also known as mortalin or HSPA9) interacts with p53
(the master regulator of multiple cellular physiological processes
such as apoptosis, senescence, cell cycle arrest, etc.), preventing
its activation and therefore promoting cancer cell survival. In
human breast cancer cells, treatment with the molecule embelin
inhibits Grp75-p53 interaction, leading to the downregulation
of Grp75 as long as metastatic signaling occurs, inhibiting
mitochondrial fission and arresting growth (Nigam et al., 2015).
Grp75 is also a metastatic hallmark in cancer. Interestingly,
mortalin also increases in adjacent non-tumor cells, suggesting
that such enrichment could be detected at the early stages of
cancer (Jin et al., 2016).

PERK
The protein kinase RNA like ER kinase (PERK) is another
tether in MAM extensions that could promote or suppress
tumor progression in cancer cells. PERK triggers multiple steps
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FIGURE 4 | (A) Increment in voltage-dependent anion channel (VDAC) in several solid tumors. (B) Survival analysis for the VDAC gene and expression in breast
cancer samples vs. normal tissue (p = 1.0 × 10−12). (C) Survival analysis of VDAC gene and expression in lung adenocarcinoma vs. normal tissue samples
(p = 1.0 × 10−12). (D) Survival analysis and expression of VDAC in head and neck carcinoma samples vs. normal tissue samples (p = 1.0 × 10−12). All data were
taken from the UALCAN cancer database (Chandrashekar et al., 2017).

in the metastatic cascade, including angiogenesis, migration,
survival, and colonization at secondary organ sites. It is also
required for the metastatic dissemination of cancer cells that
have undergone EMT (Feng et al., 2017), and its absence inhibits
tumor growth in animal models by disrupting redox homeostasis
(Bobrovnikova-Marjon et al., 2010; Salaroglio et al., 2017). In
this regard, Raturi et al. (2016) described that cancer cells
with low levels of thioredoxin-related transmembrane protein
1 (TMX1) show increased Ca2+ release from the ER with a
concomitant decrease in mitochondrial cation levels that results
in reduction of respiration and glycolytic energy-based tumor
growth (Ganapathy-Kanniappan and Geschwind, 2013). TMX1
requires thioredoxin and palmitoylation motifs to target MAM
and to participate in calcium flow between ER and mitochondria
contact sites (Raturi et al., 2016). Recently, the expression of
FUN14 domain-containing protein 1 was positively correlated
with breast cancer metastasis and the Ca2+/NFATC1/BMI1 axis,
suggesting that inhibition of this protein could represent a
therapeutic target for breast cancer (Wu et al., 2019). From the
above-mentioned description, it is clear that calcium regulation
is essential in carcinogenesis and tumor development. Last but
not least, other MAM-tethering proteins are the mitochondrial
proteins Mfn1 and Mfn2, which have been reported to be anti-
proliferative and pro-apoptotic in cancer cells. Overexpression of
both mitofusins in cancer cells has been demonstrated, as well as
their interactions with phosphatidylinositol 3-kinase (PI3K)/Akt

and P21Ras pathways, which are involved in cell proliferation,
metastasis, and invasion processes (Ma et al., 2015; Li et al., 2018;
Moghaddam et al., 2020).

Lipid Exchange and Signaling in Cancer
Lipidomic remodeling, including alteration in fatty acid
transport, de novo lipogenesis, β-oxidation, and storage as lipid
droplets, is a metabolic hallmark of cancer cells (Blücher and
Stadler, 2017; Enríquez-Cortina et al., 2017; Diaz-Aragon et al.,
2019).

Under basal conditions, cells store fatty acids as an energy
reserve to ensure their survival. They are located in bodies
called lipid droplets, whose function is to transport lipids to all
organelles (mainly to the mitochondria) (Cohen et al., 2018).
Lipid transport is coupled to membrane vesicle trafficking of the
secretory pathway and also supplied to different compartments
through non-vesicular traffic (Urbani and Simoni, 1990; Lev,
2010, 2012). Lipid transfer proteins (LTPs) facilitate lipid traffic
from a donor to a receptor compartment (Lev, 2010; Wong
et al., 2019). Most intracellular LTPs are anchored to the MCS,
whereas domains containing the lipid-binding cavity transfers
the lipid cargo from one organelle to the others (Wong et al.,
2017, Hanada, 2018; Wong et al., 2019). LTP dysfunction may
contribute to cancer development, as it has been suggested that
these proteins are involved in both migration and cell growth
(Sassano et al., 2017) and that their deregulation could lead
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to disease progression (Peretti et al., 2020), making them an
attractive target in cancer research.

LTPs acting at the ER–Golgi interface are as follows: (1) CERT,
which transports the newly synthesized ceramide from the ER
to the trans-Golgi network via the MCS (Scheffer et al., 2011;
Kumagai and Hanada, 2019), (2) the four-phosphate adaptor
protein 2 involved in the transport of glucosylceramide to the
TGN (Mesmin et al., 2019), and (3) OSBP, which is engaged in
the direct transfer of cholesterol from the ER to the TGN via
PI4P-coupled countertransport (Mesmin et al., 2017). All LTPs
share structural characteristics that allow them to bind to the
Golgi and ER simultaneously, acting as a bridge. Most relevant
are the N-terminal pleckstrin homology (PH) domain that is
selective for PI4P in the TGN and a central motif of FFAT that
binds to the VAPA and VAPB proteins located in the ER (Loewen
et al., 2003; Kawano et al., 2006). In the following sections, we
describe current information on the relevance of some LTPs in
cancer migration and progression; in particular, we will refer to
CERTs and OSBPs.

Ceramide Transfer Protein
CERT (encoded by COL4A3BP) contains a steroidogenic
regulatory protein-related lipid transfer (START) terminal
carboxylic domain responsible for ceramide binding and inter-
membrane transfer that also shows high specificity with natural
C14−20 ceramide, but not with longer acyl chains (Hanada et al.,
2003; Kumagai et al., 2005).

It has been observed that stress stimuli, such as those exerted
by chemotherapeutic drugs, cause an increase in ceramide
levels by stimulating de novo ceramide synthesis, sphingomyelin
hydrolysis, or both (Alphonse et al., 2004; Mesicek et al., 2010).
In this sense, some tumor models are associated with impaired
ceramide signaling, suggesting that this molecule plays a key role
in tumor development and progression (Norris et al., 2006; Kim
et al., 2008; Ruckhäberle et al., 2008). Specifically, its decrease
results in resistance to cell death stimuli (Bonnaud et al., 2007),
while its restoration increases sensitivity (Morales et al., 2007),
which supports the central role of ceramide signaling in cell
death. Swanton et al. (2007) also observed that downregulation of
COL4A3BP, besides sensitizing cancer cells to multiple cytotoxic
agents, enhances ER stress, proposing COL4A3BP as a possible
target in chemotherapy-resistant cancers.

CERT represents the main ceramide gateway from the
endoplasmic reticulum and might increase its levels in the
mitochondria (Scheffer et al., 2011). In light of this, Dadsena
et al. (2019) identified VDAC1 and VDAC2 channels as
binding proteins to mitochondrial ceramide by using a
photoactivatable ceramide probe. On the other hand, VDAC2
loss or the replacement of a membrane-facing residue of
glutamate with glutamine makes human colon cancer cells
resistant to ceramide-induced apoptosis (Dadsena et al., 2019).
To reinforce the premise that deregulation of ceramide levels
in ER is linked to mitochondrial apoptosis, Jain et al. (2017)
demonstrated that mitoCERT (a ceramide transfer protein
equipped with an OMM anchor) triggers mitochondrial Bax-
dependent apoptosis HeLa cells.

The regulation of CERT differs between different types of
cancer. For instance, CERT is overexpressed in ovarian cancer
cells (Juul et al., 2010) and HER+ cells (Lee et al., 2012); its
silencing exerts enhanced sensitivity to multi-drug treatment in
several cancer cell lines (Swanton et al., 2007) and also induces
changes in the levels of lysosome-associated membrane protein 2,
which increases the autophagosome–lysosome flux in colorectal
and breast cancer cell lines (Lee et al., 2012). On the other hand,
the downward regulation of CERT improved ErbB1 mobility,
ligand autophosphorylation, internalization, and chemotaxis that
eventually contribute to TNBC cell progression (Heering et al.,
2012). CERT decrease is also related to alterations in the activity
of phospholipase D2, which facilitate the activation of HER1
(Heering et al., 2012). In this context, the activity of PLD increases
in different types of cancer; for instance, it was shown that this
phospholipase is dispensable for tumorigenesis and growth of
breast tumors, but it is essential for lung metastasis of mammary
cancer cells (Wang Z. et al., 2017).

As mentioned above, CERT1 displays a profound impact on
human cancers. The survival analysis of the prediction outcome
in the TCGA data set in cancer patients with high and low
expression of COL4A3BP gene (Figure 5A) also reveals that its
high expression was associated with a poor outcome in renal
cancer (Figure 5A) and cholangiocarcinoma (CHOL, Figure 5B).
Furthermore, cholangiocarcinoma primary tumors exhibited
a higher expression of COL4A3BP gene as compared with
normal liver (Figure 5C), according to the UALCAN database2

(Chandrashekar et al., 2017). The genomic findings regarding this
gene in TCGA data point to it as a noteworthy target for future
research, particularly in CHOL, which is the second liver primary
tumor with higher mortality (Banales et al., 2020).

Nir
On the other hand, the Nir2 protein (which contains a PI
transfer domain and transfer phosphatidic acid) (Kim et al., 2015)
mediates the interactions with ER through a VAP binding site
located in the Golgi. It works in coordination with CERT and
OSBP in the ER–Golgi contact sites to regulate the transport
of ceramide (Amarilio et al., 2005; Peretti et al., 2008). Nir2-
mediated MSC allows the regulation of lipids involved in the
activation of the mitogen-activated protein kinase and PI3K
signaling pathways, which, in turn, play an important role in
the initiation and progression of breast cancer and with EMT
activation (Keinan et al., 2014; Ellis and Ma, 2019). Expression
of Nir2 in MDA-MB-231 cells correlates with a poor prognosis
in breast cancer. By contrast, depletion of Nir2 expression
in MDA-MB-231 cells reduces metastasis in number and size
(Keinan et al., 2014).

In the cell lines of colorectal adenocarcinoma SW48, the
participation of Nir1 and Nir2 genes has been investigated as
key regulators of cell morphogenesis. Under normal conditions,
the regulation of both genes is differential, i.e., Nir1 is
regulated downward, while Nir2 is regulated upward. However,
these scenarios are modified with tumor suppressors such
as the TGFβ-induced factor 2-linked X (TGIF2LX). In the

2http://ualcan.path.uab.edu
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FIGURE 5 | (A) Survival analysis for the COL4A3BP gene (CERT protein) in kidney renal clear carcinoma and in (B) in cholangiocarcinoma (CHOL). (C) COL4A3BP
gene expression in CHOL samples against normal liver (p = 1.09 × 10−6). All data were taken from the UALCAN cancer database (Chandrashekar et al., 2017).

FIGURE 6 | Summary of proteins with relevance in cancer. The progression and metastasis of cancer cells benefit is associated with an overexpression of different
proteins. To mention a few examples, IP3 overexpression favors cancer migration, with a concomitant increase in Ca2+ concentrations, while VDAC and SERCA
increase is related with poor prognosis. Grp75 interacts with p53 and promotes cancer cell survival, whereas Orai1 and STIM1 boost Ca2+ and allow cancer cell
migration. On the other hand, PERK increases invasion and metastasis by limiting redox homeostasis through TMX1, which is decreased in cancer. Ultimately, red
stars illustrate the effect that different therapies exert on cancer. PM, plasma membrane; STIM1, stromal interaction molecule 1; IP3R, inositol 1,4,5-triphosphate
receptor; SERCA, sarco(endo)plasmic reticulum Ca2+-ATPase; PERK, protein kinase RNA-like ER kinase; Mfn2, mitofusin 2; Bcl-XL, B-cell lymphoma—extra large;
Bcl-2, B cell lymphoma-2; Grp75, glucose-related protein 75; p53, tumor suppressor protein; TMX1, thioredoxin-related transmembrane protein 1; VDAC,
voltage-dependent anion channel; ATP, adenosine triphosphate; ADP, adenosine diphosphate; MCU, mitochondrial calcium uniporter; MCS, membrane contact
sites.

presence/absence of TGIF2LX, Nir2 acts as a tumor suppressor
and Nir1 acts as a proto-oncogene, respectively (Mobini et al.,
2016). Interestingly, overexpression of TGIF2LX in C57BL/6
nude mice induced a different effect in Nir1 and Nir2, suggesting
that the regulation of these genes would help suppress the

progression of colorectal carcinoma (Mobini et al., 2018).
Speaking of Nir1, it has been shown that its binding to chemokine
ligand 18 induces the progression and metastasis of invasive
ductal breast carcinoma to the lung through the LIMK/cofilin
and PI3K/Akt/GSK3β/Snail signaling cascade, promoting EMT
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(Zhang et al., 2013). These results suggest that direct intervention
on Nir1 could serve as a potential target in cancer progression,
and the study of Nir2 may be useful to understand some LTP-
mediated mechanisms that regulate key cellular processes and
contribute to cancer metastasis.

Oxysterol-Binding Protein
As already mentioned, ORP proteins contain double-targeting
determinants for ER and associated organelles, such as an FFAT
motif that binds to VAP proteins located in the ER and PH
domain that allow their interactions with different non-ER
organelle membranes (Olkkonen and Li, 2013). Galmes et al.
(2016) showed in HeLa cells that OPR5 and OPR8 are located
in ER–mitochondria MCS, in addition to mitochondrial protein
tyrosine phosphatase-interacting protein-51 that interacts with
ER–PM contacts. Interestingly, the depletion of ORP5 and ORP8
leads to defects in mitochondrial morphology and respiratory
function (Galmes et al., 2016).

Cholesterol has acquired great relevance thanks to its
participation in carcinogenic signaling pathways (Huang
et al., 2020). In this sense, it has been described that
hypercholesterolemia represents a risk factor in the development
of some types of cancer such as breast, prostate, liver, and
colorectal cancer. At the cellular level, cholesterol is an important
component of cell membranes and lipid rafts (Ding et al., 2019;
Huang et al., 2020), while tumor cells use it for membrane
formation during cell growth and division (Vassilev et al., 2015).

The location of cholesterol in cell membranes favors its
interaction with membrane proteins. In terms of cholesterol
trafficking, it has been reported that the START domain
3 (StARD3, steroidogenic acute regulatory protein-related
lipid transfer domain-3) creates endosome–ER contact sites,
promoting cholesterol accumulation in endosomes at the expense
of the plasma membrane (Wilhelm et al., 2017). STARD3
has an N-terminal MLN64 domain (MENTAL) with four
transmembrane subunits anchored to the endosome membrane,
a central FFAT region, and a hydrophobic START C-terminal
domain in which cholesterol binds (Voilquin et al., 2019).
This process is favored by the interaction with ER-anchored
VAP protein, generating a highly efficient cholesterol transport
(Wilhelm et al., 2017). Overexpression of StARD3 was identified
in at least 14 of 93 invasive breast carcinomas, which also
expressed high levels of HER2 mRNA, and may increase
oncogenic signaling through membrane-associated kinases such
as proto-oncogene tyrosine-protein kinase Src (Vassilev et al.,
2015). In this regard, Zhang et al. (2011) evaluated the
activation of Src in primary breast tumor samples of patients
treated with trastuzumab (an anti-HER2 monoclonal antibody
indicated for the treatment of tumors that overexpress HER2)
by immunohistochemical staining and demonstrated a strong
correlation between patients expressing high levels of Src activity
and low survival as well as high survival in those patients
with low Src activity (Zhang et al., 2011), suggesting that
STARD3 may contribute to the aggressive behavior of patients’
resistance to trastuzumab.

It has also been described that STARD3, when overexpressed,
generates rigid endosome and a static ER–endosome contact

site, preventing the late maturation of endosome to lysosome
and consequently blocking lysosomal degradation of cell surface
receptors (including HER2 and other growth factors). In turn, the
receptors are recycled back to the plasma membrane, favoring the
spread of cell signals of uncontrolled cell growth. Thus, STARD3
increases the progression of HER2-positive cancer (Peretti et al.,
2020). Qiu et al. (2014) reported a strong expression of STARD3
in tubular adenocarcinoma cells, positively associated with a high
mitochondria number. In this sense, alterations in mitochondrial
cholesterol trafficking have been associated with inhibition of cell
death by inhibiting the release of cytochrome c and Smac/Diablo,
facilitating the survival of tumor cells (Smith and Land,
2012). Interestingly, even in non-cancerous cells, cholesterol
accumulation in hepatocytes is strongly associated to apoptosis
resistance and mitochondrial dynamic changes (Domínguez-
Pérez et al., 2019). Mitochondrial cholesterol is also associated
with resistance to chemotherapy. Montero et al. (2008) found that
StART silencing in H35 and HepG2 cells significantly decreases
cholesterol levels in the mitochondria as a result of cholesterol
delivery reduction from extramitochondrial sources into the
mitochondria. Additionally, over-accumulation of cholesterol in
tumor tissues is strongly associated with low serum cholesterol
levels in patients diagnosed with cancer (Strasak et al., 2009; Benn
et al., 2011; Smith and Land, 2012). Finally, it has been reported
that mitochondrial cholesterol overload is directly associated with
aggressive liver cancer phenotype with poor prognosis (Enríquez-
Cortina et al., 2017). In brief, LTPs impact cancer progression and
metastasis; however, more studies are needed to understand the
specific function of LTPs.

In the next section, we tackle the effect of cancer
chemotherapy and its relationship with MCS, with greater
emphasis on ER–mitochondria contact sites and calcium
management, which are the most reported players in cancer
progression and metastasis.

MCS AS POSSIBLE THERAPEUTIC
TARGETS IN CANCER

Although pioneering studies by Howatson and Ham (1955)
reported a limited number of contacts between the ER and the
mitochondria in rat liver cancer compared to normal tissue, it
was the first evidence of the relationship between organelles and
their importance in tumorigenesis. As it is known, organelles
sense stress in the cellular microenvironment and modify their
structure and function according to cellular demand for survival;
however, deterioration of the signaling cascades might lead to
oncogene activation. In this regard, oncoproteins located in the
MAM, such as AKT (Betz et al., 2013), PERK (Fels and Koumenis,
2006; Bu and Diehl, 2016), Grp75 (Wadhwa et al., 2006), and
VDAC (Pernemalm et al., 2013; Shoshan-Barmatz et al., 2015)
as well as tumor suppressors such as p53 (Giorgi et al., 2015),
the phosphatase tensin homolog (Bononi et al., 2013), and the
promyelocytic leukemia (Giorgi et al., 2010; Missiroli et al.,
2016), interact with Ca2+ handling proteins, modulating their
activity and promoting tumorigenesis (Morciano et al., 2018;
Xia et al., 2019).
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Anti-cancer drugs have multiple modes of action; in this
regard, much attention has been paid to calcium signaling, as
its deregulation in MAMs has been identified as a hallmark
of cancer cells. Ca2+ ions shift cancer metabolism toward
glycolytic metabolism and increase their resistance to cell death
(Bittremieux et al., 2016). These also support mesenchymal
transformation, migration, invasion, and metastasis (Ren et al.,
2017). However, changes in Ca2+ signaling depend on the
type of cancer cell and the chemotherapeutic treatment used.
For instance, cis-platin (used for solid tumors) in rat dorsal
root ganglion neurons blocks VDAC at high concentrations
(Tomaszewski and Büsselberg, 2007), while in prostate cancer
it promotes calcium uptake through other channels (Chen
et al., 2014) and in lung carcinoma it favors its liberation via
SOCE (Gualdani et al., 2019). Therefore, management of Ca2+

signaling is a major complication in chemotherapeutic treatments
(Varghese et al., 2019).

There is a growing number of reports on Ca2+ signaling
alterations in MCS research, but the information in this area still
remains scarce. The following sections present current evidence
on the role of conventional chemotherapeutic strategies and their
relevance in MCS as a study target in cancer treatment.

Chemotherapeutic Compounds and
Their Role in MCS
Some compounds used in chemotherapy have been shown
to indirectly modulate interactions between the ER and the
mitochondria. However, there are no conclusive studies that
demonstrate their direct participation. It has been suggested that
these drugs could act on some of the MCS’s interaction proteins.
For example, the expression of Mfn2 (which controls the stability
of the ER–mitochondria interaction and the transfer of Ca2+

and lipids) decreases in neonatal cardiomyocytes exposed to
doxorubicin (Dox) (Tang et al., 2017). Other reports indicate
that p53, located in the ER, MAM, and cytosol under basal
conditions, is accumulated in the ER–mitochondria interface
in response to Dox in p53+/+ HTC-116 cells, modulating
Ca2+ homeostasis. In this sense, p53 interacts with SERCA,
promoting the accumulation of calcium in the ER and its
subsequent transfer to the mitochondria, triggering apoptosis
(Giorgi et al., 2015). Betz et al. (2013) showed that mTORC2
is detected in the contacts of the mitochondria with the ER
where it phosphorylates and activates the Akt after growth
factor stimulation. In turn, mTORC2–Akt signaling regulates
MAM integrity, Ca2+ flux in the ER–mitochondria contacts,
and energy metabolism. Nevertheless, some of the side effects
of Dox are related to Ca2+. Aziz et al. (2019) reported that
calcium derived from the ER increases significantly as compared
to cytosolic calcium via Src kinase activation in rat ovarian
follicles (Aziz et al., 2019).

cis-Platin can also affect MCS homeostasis. Studies in the A549
cell lines resistant to cis-platin show elevated concentrations of
free intracellular Ca2+ (Liang and Huang, 2000). Other studies
showed that the IP3R gene is deregulated in the drug-resistant
cell, explaining in part the bladder cancer cells’ resistance to
apoptosis (Tsunoda et al., 2005). Xu et al. (2015) also revealed

that cis-platinum causes the pro-apoptotic release of Ca2+ from
the ER in the cytosol and the mitochondria, leading to cationic
overload in both compartments and ultimately contributing to
ER- and mitochondria-mediated apoptosis in cis-platin-sensitive
SKOV3 cells (Xu et al., 2015). The same group demonstrated that
ABT737 (a pharmacological Bcl-2 inhibitor that interacts with
IP3R and suppresses Ca2+ signaling) (Akl et al., 2014) increases
cis-platinum cytotoxicity in chemically resistant SKOV3 cells.
Interestingly, ABT737 increased the free calcium levels both
in the cytosol and the mitochondria, accentuating apoptosis
mediated by the ER–mitochondria contacts (Xie Q. et al., 2016).
On the other hand, BIRD2 inhibits Bcl-2/IP3R interaction by
attenuating Bcl-2 control after Ca2+ elevation and calcium-
mediated apoptosis in different types of cancer in vitro and
in vivo (Distelhorst, 2018). Bittremieux et al. (2019) recently
showed that BIRD2 changes calcium signals from pro-survival
to pro-death in the cancer cell, that is, IP3R-mediated calcium
release from the ER causes a marked increase in intracellular
Ca2+, leading to calcium mitochondrial overload and apoptosis
triggering (Bittremieux et al., 2019).

In addition, chemotherapeutic compounds are related to some
of the cellular processes that take place at the MCS interface. For
instance, in pancreatic cancer cells, cis-platin stimulates ER stress
and interacts with bortezomib (a potent and selective proteome
inhibitor for the treatment of solid neoplasias) by increasing
ER dilatation, [Ca2+]i levels, and cell death. It is important
to note that combination therapy (bortezomib plus cis-platin)
induces JNK activation and apoptosis in these cells, resulting in a
reduction in tumor burden and suggesting that this combination
increases the anti-cancer activity of cis-platin (Nawrocki et al.,
2005). On the other hand, oxaliplatin (a platinum-based drug)
acts as a mediator of Ca2+ signaling and plays a role in peripheral
neuropathy. It has been described that prolonged exposure to the
drug induces changes in ER loading and IP3R-mediated Ca2+

signaling in SH-SY5Y neuroblastoma cells (Schulze et al., 2011).
Most of the works cited here refer to different cancer cell lines,

where the protection mechanism of pharmacological compounds
is associated with calcium management. However, the relevance
of these molecules at the interface of the ER–mitochondria
contact sites, as well as in other interactions in cancer, is still
scarce; we believe that it is paramount to study not only the
management of Ca2+ but also other processes carried out in
the MCS that could be modulated by some of the molecules
already described.

CONCLUSION AND PERSPECTIVES

The identification of new targets that provide better prognosis
in cancer is necessary due to the increase in the number of
new cases in the world. In particular, the increased interest
in the study of contact sites in different physiopathological
conditions suggests that they could be placed as novel targets in
cancer studies. However, even though several working groups are
actively studying the role of MCS in cancer (as well as in other
pathological conditions), there are missing links that must be
incorporated to understand their function in an integrated way.
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The nutraceutical compounds’ effect on contact sites is also
an interesting issue to be explored. The relevance of these
molecules lies in their ability to regulate some of the proteins
that conform with the MCS machinery, such as Mfn2, IP3R,
VDAC1, but they could also function as adjuvant therapy to
improve the beneficial effects of conventional therapy (Figure 6).
It is clear that a considerable number of proteins that regulate
membrane contacts have been “discovered” in recent years,
but it has to be determined which of them might have the
potential to reduce cancer progression. Overall, one of the
most attractive and immediate perspectives in the field of
“contactology” (Csordás et al., 2018) would be to elucidate
and/or describe what other types of organelle interactions occur
in cancer as well as to detail how they would favor and/or
inhibit cancer progression. Undoubtedly, it remains a real
challenge to limit the progression of cancer, but great advances
in this area have been made. We believe that understanding
the MCS mode of action could improve the management of
several diseases.

Finally, we believe that more studies of MCS might position
them as novel relevant markers for diagnostic and prognostic
purposes in cancer.
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