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A fundamental task in single-cell RNA-seq (scRNA-seq) analysis is the identification of transcriptionally distinct groups of
cells. Numerous methods have been proposed for this problem, with a recent focus on methods for the cluster analysis of
ultralarge scRNA-seq data sets produced by droplet-based sequencing technologies. Most existing methods rely on a sam-
pling step to bridge the gap between algorithm scalability and volume of the data. Ignoring large parts of the data, however,
often yields inaccurate groupings of cells and risks overlooking rare cell types. We propose method Specter that adopts and
extends recent algorithmic advances in (fast) spectral clustering. In contrast to methods that cluster a (random) subsample of
the data, we adopt the idea of landmarks that are used to create a sparse representation of the full data from which a spectral
embedding can then be computed in linear time. We exploit Specter’s speed in a cluster ensemble scheme that achieves a
substantial improvement in accuracy over existing methods and identifies rare cell types with high sensitivity. Its linear-
time complexity allows Specter to scale to millions of cells and leads to fast computation times in practice. Furthermore,
on CITE-seq data that simultaneously measures gene and protein marker expression, we show that Specter is able to use

multimodal omics measurements to resolve subtle transcriptomic differences between subpopulations of cells.

[Supplemental material is available for this article.]

Single-cell RNA sequencing (scRNA-seq) has increased the resolu-
tion at which important questions in cell biology can be addressed.
It has helped to identify novel cell types based on commonalities
and differences in genome-wide expression patterns, reconstruct
the heterogeneous composition of cell populations in tumors
and their microenvironment, and unveil regulatory programs
that govern the dynamic changes in gene expression along devel-
opmental trajectories.

One of the most fundamental computational tasks in the
context of scRNA-seq analysis is the identification of groups of
cells that are similar in their expression patterns, that is, their tran-
scriptomes, and which are at the same time distinct from other
cells. Conceptually similar problems have been studied in anthro-
pology (Driver and Kroeber 1932) and psychology (Zubin 1938) al-
most a century ago; since then, this so-called cluster analysis has
become one of the most well-studied problems in unsupervised
machine learning. Numerous methods have been proposed for
clustering scRNA-seq data sets (Duo et al. 2018; Tian et al. 2019),
with Seurat (Satija et al. 2015) and its underlying Louvain cluster-
ing algorithm (Blondel et al. 2008) being arguably the most widely
used one. More recently, attempts have been made to design algo-
rithms for the analysis of ultralarge scCRNA-seq data sets, owing to
the ever-increasing throughput of droplet-based sequencing tech-
nologies that allow profiling genome-wide expression for hun-
dreds of thousands of cells at once. At the heart of such methods
often lies a sampling technique that reduces the size of the data an-
alyzed by a clustering algorithm. Cluster labels of cells in this so-
called sketch are subsequently transferred to the remaining cells
using, for example, a nearest neighbor algorithm. dropClust
(Sinha et al. 2018), for example, includes a structure-preserving
sampling step, but initially picks a small set of cells simply at ran-
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dom. Similarly, Seurat applies random subsampling before its near-
est neighbor search.

The quality of the final clustering, however, strongly depends
on how well the data sketch represents the overall cluster structure
and how accurate the cluster labels of cells in the sketch can be in-
ferred from incomplete data. Inaccurate labels of subsampled cells
will likely lead to an inaccurate labeling of the full data. In addi-
tion, sampling cells proportional to their abundance might render
rare cell types invisible to the algorithm. Geometric sketching was
therefore recently proposed as an alternative sampling method
that selects cells according to the transcriptomic space they occupy
rather than by their abundance. Nevertheless, labels need to be in-
ferred from partial data.

Spectral methods for clustering have been applied with great
success in many areas such as computer vision, robotics, and bio-
informatics. They make few assumptions on cluster shapes and are
able to detect clusters that form nonconvex regions. On a variety of
data types, this flexibility has allowed spectral clustering methods
to produce more accurate clusterings than competing methods
(Shi and Malik 2000). The high computational complexity, how-
ever, renders its application to large-scale problems infeasible.
For n data points, spectral clustering computes eigenvectors of
an nxn affinity matrix, which incurs a computational cost of
O(n®). For scRNA-seq data sets with n in the order of ten thousands
up to the millions, this presents a prohibitive cost that has thus
prevented the application of spectral clustering to large-scale sin-
gle-cell data sets. Furthermore, spectral clustering methods are sen-
sitive to the right choice of parameters used to model the similarity
between data points (von Luxburg 2007), that is, RNA expression
measurements of single cells. Data sets derived from different bio-
logical samples showing different cell population structures
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obtained using different sequencing technologies typically require
a different set of parameter values to achieve accurate clustering
results.

We introduce a new method, Specter, which addresses the
challenges of computational complexity and parameter sensitivity
to allow a tailored version of spectral clustering to be used in the
analysis of large scRNA-seq data sets as well as measurements of
multiple modalities of single cells (Zhu et al. 2020).

Results

Overview of Specter

In contrast to methods that cluster only a (random) subsample of
the data, Specter takes a fundamentally different approach that
avoids learning from unlabeled partial data. We adopt the idea of
landmarks (Cai and Chen 2015), a random sample of cells that
are used to create a sparse representation of the full data from
which a spectral embedding can then be computed in linear
time. We use the speed of this approach to systematically explore
the parameter space by a co-association-based consensus cluster-
ing scheme, also known in literature as cluster ensembles (Strehl
and Ghosh 2003): Instead of picking one set of parameters, in
Specter we explore different choices of parameters and reconcile
the resulting clustering information into a single (consensus) clus-
tering. In addition to aggregating clusterings obtained in different
runs of the algorithm on the same data, consensus clustering can
also be used to reconcile clusterings of cells based on different mo-
lecular features. CITE-seq (Stoeckius et al. 2017), for example, mea-
sures both gene expression and surface protein levels of individual
cells, and Specter’s consensus clustering scheme can help to re-
solve subpopulations of cells that cannot accurately be distin-
guished based on transcriptomic differences alone. We combine
consensus clustering with a novel selective sampling strategy that
uses clustering information obtained from the full data set to
achieve overall linear-time complexity. Finally, we transfer cluster
labels to the remaining cells using supervised k-nearest neighbors
classification. We provide an overview of the approach in Figure
1A-C and a detailed description of our algorithm in Methods.

Specter is more accurate than competing methods

We compared the performance of Specter to representative SCRNA-
seq clustering methods SC3 (v1.10.1) (Kiselev et al. 2017), Seurat
(v2.3.4) (Satija et al. 2015), dropClust (v2.1.0) (Sinha et al. 2018),
RCA (v2.0) (Li et al. 2017), TSCAN (v1.24.0) (Ji and Ji 2016),
RaceID3 (v0.2.1) (Herman et al. 2018), CIDR (v0.1.5) (Lin et al.
2017), and RtsneKmeans (Duo et al. 2018) as well as to a geometric
sketching-based clustering approach (Hie et al. 2019b). SC3 and
Seurat consistently showed superior performance over competing
methods in several clustering benchmarks (Duo et al. 2018; Tian
et al. 2019) and are routinely used in scRNA-seq-based cell type
analyses. The graph-based Louvain clustering approach used by
Seurat has an additional speed advantage over SC3, which applies
a consensus clustering scheme to obtain particularly accurate clus-
terings. dropClust was recently proposed for the analysis of ultra-
large scRNA-seq data sets and follows a strategy outlined above.
It first reduces the size of the data to a maximum of 20,000 cells us-
ing random sampling. After a second sampling step based on
Louvain clusters, it applies average-linkage hierarchical clustering
on the sampled cells. Cluster labels are then transferred to the re-
maining cells using a Locality Sensitive Hashing forest (Bawa
etal. 2005) for approximate nearest neighbor searches. In contrast,

the geometric sketching algorithm proposed in Hie et al. (2019b)
samples cells evenly across the transcriptional space rather than
proportional to the abundance of cell types as uniform sampling
schemes do. Experiments by Hie et al. (2019b) showed that cluster-
ing a geometric sketch using the graph-based Louvain algorithm
followed by propagating labels to the remaining cells via k-near-
est-neighbor classification accelerates clustering analysis and
yields more accurate results than uniform sampling strategies.
We include the same geometric sketching-based clustering meth-
od in our benchmark and refer to it simply as geometric sketching
throughout the text. We further included methods RCA, TSCAN,
RaceID3, and CIDR to cover a diverse set of algorithms commonly
used to cluster scRNA-seq data (for recent benchmarks, see Duo
et al. 2018; Freytag et al. 2018; Tian et al. 2019), from nearest-
neighbor-based graph clustering to hierarchical clustering to k-
medoids to model-based clustering. Finally, we included general
purpose k-means clustering (RtsneKmeans) as a baseline that per-
formed well in Duo et al. (2018) compared to methods specifically
developed for clustering scRNA-seq data.

Data sets and evaluation

We evaluated Specter and competing methods on 21 public
scRNA-seq data sets and 24 simulated data sets (Supplemental
Tables S1, S2). The former includes 16 data sets for which cell
type labels were inferred in the original publication from cluster-
ings of scRNA-seq measurements, which typically underwent
manual refinement and annotation, as well as all real data sets ex-
cept one that were used in Duo et al. (2018) to benchmark cluster-
ing methods based on cell phenotypes defined independently of
scRNA-seq. Identically to Duo et al. (2018), we used “true” cell
types annotated by FACS sorting in the Koh data set, and parti-
tioned cells by genetic perturbation and growth medium in the
Kumar data set. In data sets Zhengmix4eq and Zhengmix4uneq,
Duo et al. (2018) randomly mixed equal and unequal proportions,
respectively, of presorted B cells, CD14 monocytes, naive cytotox-
ic T cells, and regulatory T cells. Data set Zhengmix8eq additionally
contained roughly equal proportions of CD56 NK cells, memory T
cells, CD4 T helper cells, and naive T cells. Again, annotated cell
types were used as reference partitioning of cells in the evaluation.
We excluded a single data set from Duo et al. (2018) in which
ground truth labels correspond to collection time points that all
methods tested in Duo et al. (2018) failed to reconstruct. Data
sets vary in size and number of cell populations and are described
in Supplemental Table S1. We used Splatter (Zappia et al. 2017) to
simulate 24 data sets that varied in the relative abundance of cell
types that were either all equal (Geq), unequal (Gnegq), or based
on cell type abundances among peripheral blood mononuclear
cells (PBMCs) in healthy individuals (Gpbmc), in number of cells
(N1k, N2k, N5k), and in the probability of a gene being differen-
tially expressed in a group, which was either 0.01 (DEI), 0.02
(DE2), 0.05 (DES), or differed between groups (DEneq). Following
the introduction to Splatter (https://bioconductor.org/packages/
devel/bioc/vignettes/splatter/inst/doc/splatter.html), we set the
number of genes to 1000 or 10, 000 (D10k). Supplemental Table
S2 lists the characteristics of all simulated data sets.

We apply standard and uniform preprocessing (Duo et al.
2018) on all real and simulated data sets, including
natural log-transformation of gene counts after adding a pseudo-
count of 1, selection of the top 2000 most variable genes (omitted
for simulated data sets with fewer than 2000 genes), follow-
ed by dimensionality reduction to 100 principle components
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Cluster ensembles of single-cell multimodal data
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Figure 1. Overview of Specter. lllustrations are based on t-SNE visualizations of a random subsample of scRNA-seq data by Griin et al. (2016). (A)
Standard spectral clustering constructs an affinity matrix that captures (transcriptional) similarities between all pairs of cells (left), which renders its eigen
decomposition prohibitively expensive for large data sets. (Right) In contrast, describing each cell (small circles) with respect to its nearby landmarks (big
circles) that were initially selected as the means computed by k-means clustering, creates a sparse representation of the full data that speeds up the com-
putation of a spectral embedding. Cells are colored to distinguish sorted hematopoetic stem cells (blue) from other mouse bone marrow cells (red) assayed
by Griin et al. (2016). (B) Specter does not rely on a single set of parameters but performs multiple runs of landmark-based clustering using different sets of
landmarks of different size and different measures of similarities between cells (parameterized by o). Three clusterings closely resemble the true labeling
shown in A, but one differs substantially. (C) Specter reconciles all individual clusterings into a consensus clustering. It clusters a carefully selected subset
of cells (marked by circled stars) based on their co-association across all individual clusterings in B, indicated by the width of the corresponding edge. The
thicker an edge, the more often its two end points were placed in the same cluster. Here, the four red stars and the two blue stars correctly form two groups
of cells, whose labels are finally propagated to the remaining cells using one-nearest-neighbor classification. The final clustering shown in C closely resem-

bles the true clustering in A.

(https://www.mathworks.com/matlabcentral/fileexchange/47132-
fast-svd-and-pca, retrieved October 30, 2020). We show results for
Specter when using 20 ensemble members (Specter20E) and 50 en-
semble members (Specter5SOE). We motivate this choice of the num-
ber of ensemble members below through experiments addressing
the dependence of Specter’s accuracy on this parameter. The re-
sults for these two variants are nearly identical and we therefore
simply refer to them as Specter unless we explicitly distinguish
these two settings. Owing to our clustering ensemble scheme, no
additional tuning of parameters is required to apply Specter to
the 45 data sets. Following the strategy in Duo et al. (2018), all
methods were provided identical gene counts, but additional pre-
processing steps were performed as recommended by each meth-
od. The geometric sketching-based Louvain clustering was
provided the same preprocessed data as Specter. Consistent with
the original publication (Hie et al. 2019b), geometric sketches
ranging from 2% to 10% of the original number of cells were com-

puted and clustered as described above. All methods were provided
the correct number of clusters, or corresponding parameters were
tuned accordingly. All experiments were run on an Intel Xeon
CPU at 2.30 GHz with 320 GB memory. Methods SC3, RCA,
RaceID3, and CIDR failed to run on the three largest data sets
that included more than 450, 000 cells (Supplemental Table S1)
because of insufficient memory. In fact, with a running time
that grows cubic with the number of cells, SC3 is not designed
for large data sets. On data set chen, for example, it takes SC3 5 h
to cluster 14,000 cells. Similarly, on the three largest data sets we
replaced the R (R Core Team 2020) implementation of the
Louvain clustering algorithm called in the Seurat clustering pipe-
line by a more efficient Python implementation of the same algo-
rithm in the scanry package (v1.4.6) (Wolf et al. 2018). scanry was
specifically designed for the analysis of large-scale gene expression
data sets and was used originally (Cao et al. 2019) to identify cell
types in data set trapnell comprising more than 2 million cells.
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Consistent with other benchmarks (e.g., Duo et al. 2018;
Freytag et al. 2018; Sinha et al. 2018), we used the Adjusted Rand
index (ARI) (Hubert and Arabie 1985) to measure the similarity be-
tween the inferred clusterings and the ground truth clustering that
is based on the biological cell types annotated or presorted in the
original study or was provided by the simulator. We additionally
applied routinely used (Freytag et al. 2018) clustering metrics
Normalized Mutual Information (NMI) (Studholme et al. 1999)
and a homogeneity score (Rosenberg and Hirschberg 2007) to pro-
vide a more detailed analysis of clustering performance.

Evaluation on real data

Consistent with previous benchmarks, SC3 and Seurat overall out-
perform existing methods, with RCA showing a competitive per-
formance especially with respect to homogeneity scores (Fig. 2;
Supplemental Figs. S1, S2). Specter, however, improves mean clus-
tering accuracy over both methods in all three metrics. The biggest
improvement can be observed with respect to ARI and homogene-
ity scores, whose mean values (excluding the three largest data sets
for which SC3 failed to run) achieved by Specter (Specter50E) are
0.88 and 0.89, respectively, compared to 0.69 and 0.76 for Seurat
and 0.78 and 0.84 for SC3. Overall, most methods achieved higher
scores in NMI than in the other two metrics. On 17 of 21 real data
sets, Specter obtained more accurate clusterings than Seurat in all
three metrics and without exception achieved higher ARI scores
than sampling-based methods dropClust and geometric sketch-
ing, even when sampling as many as 10% of cells in the latter ap-
proach. A similar preeminence can be observed when applying
metrics NMI and homogeneity score. On many instances, the im-
provement was substantial. Results for smaller sketch sizes are
shown in Supplemental Figure S3. In fact, on average, methods
dropClust and geometric sketching achieved slightly lower scores
with respect to all three metrics than baseline algorithm RtsneK-
means that simply applies standard k-means clustering on t-SNE
projected cells. Note that the ground truth labeling of cell types
in data sets trapnell, CNS, and saunders was obtained in the original
publication using Seurat or its underlying Louvain clustering algo-
rithm. Despite the additional manual refinement applied in some
studies (Saunders et al. 2018; Zeisel et al. 2018; Cao et al. 2019),
this might positively impact the evaluation results of Seurat and
the geometric sketching-based Louvain clustering. On several in-
stances, Specter achieved considerably higher ARI scores than
SC3, whereas on others their performance was similar (within
<10% difference in ARI). Note, however, that SC3 is not designed
to cluster large data sets and had to be excluded from the compar-
ison on the three largest data sets for computational reasons.

Evaluation on simulated data

As expected, simulated data sets Gpbmc that reflect the unbalanced
cell type composition among PBMCs pose the biggest challenge to
clustering algorithms, whereas uniform cell type abundances (Geq)
or a larger number of marker genes (DEneq* D10k or DES) facilitate
the detection of transcriptionally distinct groups of cells (Fig. 2;
Supplemental Figs. S1, S2). Consistent with results on real data
sets, Specter achieved the highest accuracy in terms of mean ARI,
NMI, and homogeneity score across 24 simulated data sets, with
scores in NMI being generally higher for most methods than in
the other two metrics. Again, SC3 performed the best among the
remaining methods in terms of mean ARI and mean homogeneity
score, which may be attributed to a consensus clustering scheme
that it applies similarly to Specter. With respect to NMI, Seurat

and TSCAN achieved slightly higher mean scores than SC3, mainly
owing to the two presumably most difficult instances in which
SC3 returned clusterings with a score of O (in all three metrics)
and is thus no better than a random partition of cells. Seurat per-
formed well on data sets with equal cell type proportions (Gegq)
and on data sets in which groups are identified by a large number
of marker genes (DE5), whereas a substantial drop in ARI and ho-
mogeneity score can be observed on the remaining data sets.
Seurat’s NMI scores show a similar but less pronounced pattern.
Geometric sketching, which uses the same Louvain clustering al-
gorithm as Seurat, behaves similarly. TSCAN performed better on
synthetic than on real data sets (in all three metrics), but the oppo-
site is true for RCA. The baseline algorithm RtsneKmeans yields ac-
curate clusterings, especially on data sets with balanced cell type
composition. On more difficult data sets, however, its accuracy
drops significantly compared to several methods tailored to
scRNA-seq analysis, especially in terms of ARI and homogeneity
score. dropClust, on the other hand, achieved mean accuracy
scores on synthetic data sets that are close to the baseline algo-
rithm'’s ones (ARI 0.63 vs. 0.57, homogeneity score 0.65 vs. 0.63,
NMI0.67 vs.0.71). We show in Supplemental Figure S4 how high-
er performance scores translate into a more meaningful represen-
tation of cell types.

In addition, we compared Specter to the original implementa-
tion of the landmark-based spectral clustering (LSC) algorithm to
show the effectiveness of our hybrid landmark selection strategy,
the clustering ensemble approach and the novel selective sam-
pling scheme (Supplemental Note 1; Supplemental Figs. S5, S6). Fi-
nally, we show that Specter can use even a small number of
ensemble members to improve clustering accuracy substantially
and that Specter’s performance is robust to the choice of parameter
y that controls the bandwidth of the Gaussian kernel (Supplemen-
tal Note 2; Supplemental Figs. S7, S8).

Specter identifies rare cell populations with high sensitivity

We evaluated Specter’s sensitivity to rare cell populations by devis-
ing three simulation experiments with an increasing degree of dif-
ficulty. First, we repeated the experiment performed by Sinha et al.
(2018) and randomly sampled a rare population of cells that com-
prise between 1% and 10% of total cells. More specifically, starting
from two (equal size) groups of 2000 cells each that were simulated
using Splatter (data set RareCellExpl in Supplemental Table S2),
we randomly down-sample one group to comprise 1% —10% of
the total number of cells. We repeat the experiment five times
for each group; similar to Sinha et al. (2018), we report the average
F, score over the 10 runs in Supplemental Figure S9. The F; score
denotes the harmonic mean of the recall and precision, which
we define identically to Sinha et al. (2018) with respect to the pre-
dicted cluster with the largest number of rare cells. Although sev-
eral methods performed well on a sample of 10% of cells (SC3
being a notable exception), only Specter and Seurat are able to ac-
curately detect a cell population composed of only 1% of cells.
Additionally, we performed an experiment in which we randomly
sampled cells from a group that is initially smaller (1000 cells) than
the second group (9000 cells) (data set RareCellExp2 in
Supplemental Table S2). Compared to the previous experiment,
the rare population of cells will then occupy a smaller transcrip-
tional space relative to the larger group, which may represent a
more realistic, but also a more challenging scenario for clustering
methods. The smaller group initially consists of 10% of total cells
and was therefore down-sampled to comprise 1% — 5% of cells.
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Figure 2. Clustering performance measured in ARI of Specter and competing methods on real and synthetic scRNA-seq data sets. Methods are ordered
by mean ARI score across data sets decreasing from top to bottom. In the calculation of mean scores, we excluded for each method the data sets for which
the method did not run successfully. For the rightmost five real data sets, ground truth labels are based on cell phenotypes defined independently of scRNA-
seq (Supplemental Table ST). Synthetic data sets are ordered from left to right by increasing mean ARl over all methods. SC3, RCA, RacelD3, and CIDR failed
to run on the three largest data sets CNS, saunders, and trapnell because of insufficient memory. TSCAN failed to run on data sets chen and skin for unknown
reasons. Geometric sketching refers to the Louvain clustering of 10% of the cells sampled using geometric sketching. Results for different sketch sizes are

shown in Supplemental Figure S3.

Again, each sampling experiment was repeated 10 times and the
average F; scores are shown in Supplemental Figure S10. Here, sev-
eral methods obtained an F; score of close to 0 even when sam-
pling 5% of cells, underlining the added difficulty of clustering

unbalanced cell types. After further reducing the abundance of
the rare cell type to 1%, only Specter achieved an almost perfect
F; score (0.96), followed again by Seurat with an F; score of 0.78.
In the most challenging scenario, we randomly down-sampled
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naive cytotoxic or regulatory T cells that partly overlap in the
Zhengmix4eq data set (Supplemental Fig. S11) to comprise 1% —
10% of the total number of cells and repeated this experiment
five times for each group. Average F; scores are shown over the
10 runs in Supplemental Figure S12. Even though Specter consis-
tently shows the highest accuracy among all methods, its F; score
monotonically decreases from close to 1 for 10%, to 0.26 for just
1% of cells, highlighting the intrinsic difficulty of detecting rare
cell types that are transcriptionally similar to more abundant cell
populations.

Finally, we confirmed Specter’s sensitivity to rare cell types on
a rare population of inflammatory macrophages that was reported
and experimentally validated by Hie et al. (2019b), who applied
Louvain clustering to a geometric sketch of 20,000 cells sampled
from a data set of 254,941 human umbilical cord blood cells. In
their experiments, Hie et al. (2019b) observed that this rare sub-
type is invisible to Louvain clustering, the algorithm used by
Seurat, unless cells are initially sampled evenly across transcrip-
tional space to better balance the abundance of common and
rare cell types. In contrast, Specter reveals a similar population of
inflammatory macrophages characterized by the same set of mark-
er genes CD74, HLA-DRA, B2M, and JUNB (AUROC>0.9) without
any prior preprocessing (Fig. 3).

Specter uses multimodal data to resolve subtle transcriptomic
differences

We showed the ability of Specter to use complementary informa-
tion provided by multimodal data to refine the clustering of single
cells. More specifically, we reanalyzed two public data sets of 4292
healthy human PBMC (Mimitou et al. 2019) and 8617 cord blood
mononuclear cells (CBMC) (Stoeckius et al. 2017), for which both
mRNA and protein marker expressions (ADT, antibody-derived
tags) were measured simultaneously using CITE-seq (Stoeckius
et al. 2017). In these experiments, the investigators used 49 and

13 antibodies, respectively, that recognize cell-surface proteins
used to classify different types of immune cells.

Consistent with previous analyses of CITE-seq data (https://
satijalab.org/seurat/v3.1/multimodal_vignette.html; Kim et al.
2020), we used the Seurat R package (Butler et al. 2018) to prepro-
cess RNA and ADT counts. We normalized ADT expression using
centered log-ratio (CLR) transformation and log-transformed
RNA counts after adding a pseudocount of 1. After selecting the
top 2000 most variable genes, the expression of each gene was
scaled to have mean expression 0 and variance 1, followed by di-
mensionality reduction to 20 principal components.

Doublets in the PBMC data set were removed using the same
cell hashing-based approach with identical parameters as in Kim
et al. (2020). Similar to the analysis in Stoeckius et al. (2017), a pu-
tative cluster of doublets coexpressing different RNA and protein
lineage marker was removed from further analysis. On the
CBMC data we relied on the doublet removal of Seurat performed
in a prior analysis (https://satijalab.org/seurat/v3.1/multimodal_
vignette.html) of this data set.

We annotated clusters based on differential expression of
marker genes (Wilcoxon rank-sum test) for immune cell types list-
ed in Supplemental Table S3. The analysis of both data sets is doc-
umented at GitHub (https://github.com/canzarlab/Specter).

On both data sets, both Seurat and Specter fail to accurately
distinguish naive CD4 T cells and CD8 T cells based on transcrip-
tomic data alone (Fig. 4A,C; Supplemental Fig. S13). Many
CD47/CD8" T cells identified by protein measurements (ADT) in
the CBMC data set are wrongly grouped together with CD4 T cells
by Seurat and Specter. Similarly, CD4 and CD8 T cells are mixed in
the PBMC data set by both methods.

On the other hand, dendritic cells and megakaryocytes
cannot be identified in the CBMC data set based on protein marker
expression (see analysis using Seurat) (https://satijalab.org/seurat/
v3.1/multimodal_vignette.html). Similarly, Figure 5 shows that
ADT-based clustering by Specter is not able to separate CD14"
from FCGR3A™ monocytes nor megakaryocytes from other cell
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Figure 3. Clustering of 254,941 umbilical cord blood cells by Specter. (Left) Among macrophages defined by CD14 and CD68 marker gene expression,
Specter detects a rare subpopluation of inflammatory macrophages that was recently discovered (Hie et al. 2019b). This rare subtype can be distinguished
in Specter’s clustering by the expression of the same set of inflammatory marker gene expression (CD74, HLA-DRA, B2M, and JUNB) used for its identification

in Hie et al. (2019b).
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Figure 4. Comparison of unimodal and joint clustering by Specter. CBMCs (A, B) and PBMCs (C,D) with coordinates of protein expression (ADT) along
the CD4 and CD8 axes. Cells are clustered by Specter into CD4 T cells (blue) and CD8 T cells (red) either based on mRNA expression alone (A, C) or jointly
from mRNA and surface protein expression (B,D). The mixing of CD4 T cells and CD8 T cells in the mRNA-based clustering is corrected through the co-

association of both modalities by Specter.

types in the PBMC data set. This can be analogously observed in
the clustering by Seurat (Supplemental Fig. S13).

We therefore aimed to correct and improve the individual
clusterings of RNA and surface marker protein measurements by
combining the two distinct species through our clustering ensem-
ble approach. In particular, Specter first produces an identical
number of clusterings (here 200) for each modality. It then com-
bines the transcriptome-based clusterings and the protein-based
clusterings through a co-association approach (Methods).

The joint clustering of RNA and protein expression by Specter
profits from both modalities yet differs from both unimodal anal-
yses: On the PBMC data set, an ARI score of 0.78 comparing mul-
timodal and RNA-based clustering and a score of 0.72 between
multimodal and ADT-based clustering indicate complementary as-
pects of cellular identity used in their joint clustering. On the
CBMC data set, higher ARI scores of 0.87 and 0.91 between the
multimodal clustering and RNA and ADT-based clusterings, re-
spectively, reflect a higher agreement between the two modalities.

More specifically, the joint clustering of RNA and protein ex-
pression of CBM and PBM cells allows Specter to more accurately
separate CD4 T cells and CD8 T cells compared to a simple tran-
scriptome-based clustering (Fig. 4B,D). In contrast to ADT expres-
sion-based clustering of PBM cells, the joint clustering of RNA and
surface protein expression by Specter correctly identifies megakar-
yocytes, CD14*, and FCGR3A™ monocytes (Fig. 5; Supplemental
Table S3). In addition, only the combined clustering of ADT and
RNA allows Specter to discriminate between CD27~ DR* and
CD27~ DR~ subpopulations of CD4" memory T cells. In contrast

to the clustering of protein data of CBM cells, Specter also correctly
detects dendritic cells and megakaryocytes based on the markers
listed in Supplemental Table S3 (see Fig. 5).

We compared the joint clustering by Specter to the results of
CiteFuse (v0.99.10) (Kim et al. 2020), a method that was recently
proposed specifically for the computational analysis of single-cell
multimodal profiling data. As proposed initially for the combina-
tion of (bulk) genome-wide measurements across, for example, pa-
tients (Wang et al. 2014), CiteFuse applies the similarity network
fusion algorithm to combine RNA and ADT expression of single
cells and then clusters the fused similarity matrix using spectral
clustering. We ran CiteFuse as originally described (Kim et al.
2020), including the removal of doublets and the (internal) selec-
tion of highly variable genes.

Overall, the clusters of CBM and PBM cells as computed by
Specter and CiteFuse are highly similar, as indicated by a high
ARI score of 0.94 and 0.86 for the two data sets (Supplemental
Figs. S14, S15). In both data sets, however, only Specter is able to
identify a rare population of megakaryocytes (Supplemental
Table S3). Furthermore, in contrast to the analysis performed in
Kim et al. (2020), CiteFuse was not able to discriminate between
CD27~ DR* and CD27~ DR subpopulations of CD4" memory
T cells in the PBMC data set, neither when using identical param-
eters as in Kim et al. (2020) nor when applying more conservative
parameters in the doublet removal, using parameters taken from
CiteFuse tutorial (Supplemental Fig. S16; https://sydneybiox
.github.io/CiteFuse/articles/CiteFuse.html). Kim et al. (2020) attri-
bute this discrepancy to a different selection of highly variable
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Figure 5. t-SNE visualization of clusters identified by Specter. Clusters of PBM cells were inferred from protein expression (ADT) alone (left) or from com-

bined mMRNA and protein expression (middle). In contrast to the joint clustering of both modalities, ADT-based clustering cannot discriminate CD14* and
FCGR3A™ monocytes, does not detect megakaryocytes (red), and does not allow to discriminate between CD27~DR* and CD27"DR™ subpopulations of
CD4™ T cells. The simultaneous clustering of RNA and protein expresssion in CBM cells (right) additionally reveals a rare population of megakaryocytes (red).
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genes applied in an earlier version of the software used to produce
the results in Kim et al. (2020).

The major advantage of Specter over CiteFuse, however, is
its speed and scalability. CiteFuse requires 15 min and nearly 2
h to jointly cluster the 3880 PBM cells and 7895 CBM cells (after
doublet removal), respectively, and is thus not expected to scale
well on much larger data sets owing to the computational expen-
sive fusion of networks. In contrast, Specter returns a high-reso-
lution clustering of the two data sets in just 20 and 50 sec,
respectively.

Scalability

Here, we show the scalability of Specter to large single-cell data
sets. To experimentally confirm the theoretical linear-time com-
plexity of our algorithm, we devised different size-simulated
data sets containing between 1000 and 1 million cells (with char-
acteristics DE1Geq) (Supplemental Table S2). As expected (Cai
and Chen 2015), the landmark-based sparse representation of
the data allows us to compute a spectral embedding in linear
time (Supplemental Fig. S17). Furthermore, the experiment con-
firms that our novel selective sampling strategy reduces the qua-
dratic complexity of the hierarchical clustering step that
reconciles multiple ensemble members (Methods) to an overall
linear dependence on the number of cells. As expected, the rate
of increase in running time, that is, the slope of the lines shown
in Supplemental Figure S17, is larger when Specter includes mul-
tiple clusterings (here 20) in the ensemble scheme. More precise-
ly, we observed a linear increase in running time with the size of
the clustering ensemble, that is, with the number of independent
runs of the core algorithm (Supplemental Fig. S18). However, as
shown in our experiments assessing the importance of individual
algorithmic components in Specter, a relatively small number of
runs is sufficient to improve accuracy of the resulting consensus
clustering substantially. Even more, the independent computa-
tion of individual clusterings in an ensemble lends itself to paral-
lel processing. In Supplemental Figure S19, we therefore explored
how the use of multiple threads can speed-up the clustering en-
semble approach and thus counterbalance the inclusion of an in-
creasing number of ensemble members. With just four threads,
the time required to compute a consensus clustering from 50 in-
dividual clusterings of 100,000 cells reduced from around 92 sec
to just 34 sec. Increasing the number of threads further has a de-

creasing effect on total running time, reaching 15 sec total com-
putation time using 20 threads. Again, we observed a roughly
linear increase in running time with increasing sample size for
a fixed number of threads (Supplemental Fig. S20), in which
four threads reduced the running time of 50 runs in the cluster-
ing ensemble to a time that is nearly identical to the time a single
thread needs to compute a consensus clustering from 20 ensem-
ble members.

In Figure 6, we compared Specter’s running time to all meth-
ods that ran successfully on the three largest real data sets. For all
methods except TSCAN and dropClust, we measured the running
time of the core algorithm and excluded preprocessing. The time
Specter required to preprocess the data (using a single thread), in-
cluding log-transformation, the selection of highly variable genes,
and principle component analysis, is negligible (Supplemental
Tables S4, S5). Seurat was run with a call to the more efficient
scanpy implementation of the Louvain clustering algorithm.
Even in single-threaded mode, Specter’s running time that includ-
ed 20 individual clusterings of 1 million cells is considerably faster
(7.6 min) than Seurat which required 23 min for a single Louvain-
based clustering of the same set of cells (Supplemental Table S4).
Note that 20 ensemble members were used by Specter in Figure 2
(and Supplemental Figs. S1, S2) to achieve overall more accurate
clusterings than competing methods. With just four threads,
Specter’s running time further drops to 3.2 min (Supplemental
Fig. S20), whereas Seurat’s clustering algorithm cannot be run
with multiple threads. dropClust required 6.8 min to preprocess
and cluster 1 million cells but is not able to make use of multiple
threads. The running time of geometric sketching increases the
fastest, whereas RtsneKmeans is as expected the slowest method
(Supplemental Fig. S21). As one potential use of clustering results,
visualization by FIt-SNE (Linderman et al. 2019) required ~8 min
for 1 million cells (Supplemental Table S5).

Finally, Supplemental Table S6 gives the CPU times in min-
utes on the three largest real data sets used in this study. Again,
we excluded preprocessing for all methods except TSCAN and
dropClust. We additionally report the total running time of
Specter including all prior preprocessing. In this analysis of real
data sets, we exploited the full performance potential of Specter
and used 20 threads to compute consensus clusterings from 50 in-
dividual runs, which outperformed all other methods in terms of
accuracy in Figure 2 and Supplemental Figures S1 and S2. In this
setting, Specter required around 15 min to cluster 2 million cells
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Figure 6. Runtime and peak memory usage as a function of sample size. Seurat was run with a call to the more efficient scanpy implementation of the
Louvain clustering algorithm. Running times exclude preprocessing for all methods except TSCAN and dropClust, whose implementation did not allow us
to isolate the core algorithm. Memory usage of Specter, Seurat, and geometric sketching are nearly identical and cannot be distinguished in this plot. For
ease of visualization, we show runtime results of method RtsneKmeans in Supplemental Figure S21.
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(23 min including single-threaded preprocessing) and was 5-10
times faster than Seurat that is unable to use multiple threads.
On the largest data set, dropClust was the fastest method (12
min total computation time) even though it uses just a single
thread. In contrast to Specter, however, dropClust considers only
~1% of the data (20,000 cells) and its simplified model comes at
the cost of a substantial loss in accuracy (Fig. 2; Supplemental
Figs. S1, S2). Again, RtsneKmeans is the slowest among methods
that terminate successfully on these large data sets.

Furthermore, Figure 6 shows peak memory usage as a func-
tion of number of cells on the same simulated data sets used to
evaluate runtime performance. Together with Seurat and geomet-
ric sketching, Specter required the least amount of memory (<7 GB
for 1 million cells), whereas the memory usage of methods TSCAN
and dropClust increased rapidly for data sets containing more than
200,000 cells.

Discussion

We have introduced Specter, a novel method that identifies tran-
scriptionally distinct sets of cells with substantially higher accu-
racy than existing methods. We adopt and extend algorithmic
innovations from spectral clustering, to make this powerful
methodology accessible to the analysis of modern single-cell
RNA-seq data sets. We have shown the superior performance of
Specter across a comprehensive set of public and simulated
sCRNA-seq data sets and illustrated that an overall higher accura-
cy also implicates an increased sensitivity toward rare cell types.
At the same time, its linear-time complexity and practical effi-
ciency makes Specter particularly well-suited for the analysis of
large scRNA-seq data sets. Besides technological advances, the in-
tegration of cells from multiple experiments spanning different
tissues or diseases may yield data sets with massive numbers of
cells. Coupled with data integration methods such as
Scanorama (Hie et al. 2019a) or Harmony (Korsunsky et al.
2019) that can remove, for example, tissue-specific differences,
Specter can help to leverage such reference data sets to reveal hid-
den cell types or states. When combining different samples from
the same experiment, simpler linear methods such as ComBat
(Johnson et al. 2007) might be preferable (Luecken and Theis
2019) to correct for batch effects between samples before identi-
fying groups of cells with distinct gene expression profiles using
Specter.

Furthermore, we have illustrated how the flexibility of its un-
derlying optimization model allows Specter to harness multimod-
al omics measurements of single cells to resolve subtle
transcriptomic differences between subpopulations of cells. The
application of our cluster ensemble scheme to the joint analysis
of multimodal CITE-seq data sets yielded a slightly more fine-
grained distinction of cell (sub)populations compared to the re-
cently proposed multimodal clustering method CiteFuse. More
importantly, in contrast to CiteFuse whose running time increased
~ eightfold after doubling the number of cells, Specter will scale
well to much larger data sets produced by droplet-based approach-
es that can measure multiple modalities of up to millions of cells
together. Although the consensus clustering approach applied
by Specter can in principle integrate the ensemble of clusterings
generated from various molecular features, this work has focused
on the combination of mRNA and protein marker expression as
measured by CITE-seq or REAP-seq (Peterson et al. 2017). The prac-
tical suitability and potential limitations as well as necessary re-
finements of this strategy when applied to other assays

that simultaneously measure, for example, accessible chromatin
and gene expression (Cao et al. 2018), or more than two modalities
at the same time (Clark et al. 2018), will need to be addressed in
future experiments. Taken together, we believe that Specter will
be useful in transforming massive amounts of (multiple)
measurements of molecular information in individual cells to a
better understanding of cellular identity and function in health
and disease.

Methods

Spectral clustering uses eigenvectors of a matrix derived from
the distance between points (here, cells) as a low-dimensional
representation of the original data, which it then partitions
using a method such as k-means. More precisely, given n data
points x1, Xz, ..., X, € R™ and a similarity matrix (affinity matrix)
W = (Wjj)uxn, Where w;; measures the similarity between points x;
and x;, the graph Laplacian is defined as L=D - W or L=1-D~"/?
WD™12 in case of a (symmetric) normalized Laplacian. Here, D is
a diagonal matrix whose entries are column sums (equivalently,
row sums) of W. Spectral clustering then uses the top k eigenvec-
tors of L to partition the data into k clusters using the k-means
algorithm.

In the following description of our algorithm, we assume a
given number of clusters k. In Specter we determine the number
of clusters based on the Silhouette index (Rousseeuw 1987), which
performed particularly well in recent benchmark studies (Arbelaitz
et al. 2013; Chouikhi et al. 2015).

Landmark-based spectral clustering of single cells

Several methods have been proposed to accelerate the spectral
clustering algorithm (Fowlkes et al. 2004; Shinnou and Sasaki
2008; Cai and Chen 2015). In particular, LSC has been shown to
perform well in terms of efficiency and effectiveness compared
to state-of-the-art methods across a large number of data sets
(Cai and Chen 2015). In short, LSC picks a small set of p represen-
tative data points uy, u, ..., u, € R™, that is, the landmarks, which
it then uses to create a representation matrix Z € R”"" whose col-
umns represent the original data with respect to the landmarks ac-
cording to X ~ UZ. Here, columns i of Ue R"”” contain landmarks
u;, and columns i of X contain the original input points x;. Let
the Gaussian kernel K(x, y) = exp (— || X — y [|?/20%) measure the
similarity between two points x and y, then matrix Z = (z;;)pxn is
computed using Nadaraya-Watson kernel regression (Hérdle
1990) as

K(xi, uy)
zji =\ Ljev.. K up)
0 otherwise,

lf] e Ui~

where U<;- is the set of r nearest landmarks of x;. That is, z; is set to
zero if y; is not among the r nearest neighbors of x;, which naturally
leads to a sparse representation of the data. Motivated by non-neg-
ative matrix factorization that uses k (i.e., number of clusters) basis
vectors to represent each data point (Xu et al. 2003), we set r to be
equal to k in Specter (and in all experiments). Then each original
point x; can be approximated by

P
5(,' = Z Zjill;.
j=1

From this landmark-based representation of the complete
data it computes the Laplacian matrix L= 77", where
Z = D7Y2Z and D is the diagonal matrix whose (i, i)-entry equals
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the sum of the ith row of Z. Then, this graph Laplacian L admits a
fast eigen decomposition in time O(17) as opposed to O(n®) in the
general case, which is described in more detail in Cai and Chen
(2015).

Here, we tailor the idea of landmark-based spectral clustering
to the characteristics and scale of modern scRNA-seq data sets. In
particular, the choice of bandwidth o used in the (Gaussian) kernel
to smooth the measure of similarity between pairs of data points
heavily depends on the type of data and can have a strong impact
on the final clustering. In the original approach, parameter o is set
to the average Euclidean distance between data points and their k
nearest landmarks, that is, to the average value of all elements in
matrix Z. We empirically find that replacing the average by the
maximum value, that is, by setting o=y xmean [max(Z)], where
max(Z) denotes a vector of maximum values for each row in Z
and y arandomly chosen parameter between O and 1, is able to bet-
ter capture the transcriptional similarity between single cells and
yields more accurate clusterings of cells.

Furthermore, we pair the theoretical reduction in time com-
plexity from O(n®) to O(n) with a practical speed-up of the LSC al-
gorithm by applying a hybrid strategy when selecting the
landmarks. The choice of representative data points (here, single
cells), plays a crucial role in the quality of the final clustering.
Random selection or k-means clustering were originally proposed
as procedures for picking landmarks (Cai and Chen 2015).
Random selection of representative cells is very efficient but often
yields random sets of cells that do not represent the full data well,
thus leading to poor clustering results. k-means, on the other
hand, better takes into account the structure of the data when se-
lecting landmark cells but its higher computational cost makes it
impractical for large scRNA-seq data sets, where it accounts for
~90% of the overall running time in our experiments. Our hybrid
strategy seeks to balance the efficiency of random sampling and
the accuracy of k-means-based landmark selection. It first picks a
set of p' candidate landmarks uniformly at random with p’' <n
(by default, p’ =10p), from which it subsequently selects p<p’ final
landmark cells using the k-means algorithm. Despite the initial
random sampling, the full data are represented by the final set of
landmarks.

Finally, for data sets that contain a small number of clusters,
we adjust the spectral embedding based on which original data is
clustered using k-means in the last step of spectral clustering. For
a small number of clusters (e.g., k < 4), the top k eigenvectors used
in the original approach typically do not contain enough infor-
mation to represent the full data well. In this case, we therefore
use the top k+2 eigenvectors to compute the spectral
embedding.

Clustering ensembles across parameters and modalities

Different data types require a different choice of parameter values,
and there is no general rule how to select the best one. To address
this issue, we used consensus clustering, also known in literature as
cluster ensembles (Strehl and Ghosh 2003), in the same way as en-
semble learning is used in supervised learning. In particular, we
generate a series of component clusterings by varying the number
of selected landmarks p and the kernel bandwidth. We randomly
select parameter y, which controls the bandwidth of the
Gaussian kernel from interval [0.1, 0.2] and choose p from interval

[min(8klog(k), [n/37), min(10klog(k), [n/27)].

This choice of p is motivated by a result by Tremblay et al.
(2016), who used a sampling theory of bandlimited graph-signal
developed in Puy et al. (2018) to prove that clustering a random
subset of size O(k log(k)) is sufficient to accurately infer the cluster

labels of all elements. To avoid sampling too many landmarks for
small data sets (i.e., small number of cells n), we additionally set
upper bounds [n/ 3] and [n/ 2] for the left and right boundaries
of the interval, respectively. All clusterings produced by the differ-
ent runs of our tailored LSC algorithm are then summarized in a
co-association matrix H (Fred and Jain 2005) in which entry (i, j)
counts the number of runs that placed cells i and j in the same clus-
ter. We compute the final clustering through a hierarchical cluster-
ing of matrix H. Our LSC-based consensus clustering approach is
summarized in Algorithm 1.

Different parameter choices (e.g., kernel bandwidths) provide
different interpretations of the same data. In the same way as clus-
tering ensembles can help unify these different views on a single
modality, they can help reconcile the measurements of multiple
modalities, such as transcriptome and proteome, of the same
cell. More specifically, Specter produces an identical number of
clusterings for each modality in step 2 of Algorithm 1, which it
then combines through the same co-association approach (steps
3 and 4).

Algorithm 1: LSC ensemble

1. Input: Cells xq, ..., x,; number of clusters k.

2. Run the tailored LSC algorithm for different kernel bandwidths and
varying numbers of landmarks.

3. Summarize all clusterings in a co-association matrix H.

4. Apply the single linkage hierarchical clustering algorithm to H to
obtain the final k clusters.

Time complexity

The time complexity of the tailored LSC algorithm is O(n), and sin-
gle linkage hierarchical clustering requires O(n?) time, yielding an
overall complexity of O(n%) for Algorithm 1, assuming k is small
enough to be considered a constant.

Selective sampling—based clustering ensemble

With a running time that scales quadratically with the number of
cells, the application of Algorithm 1 to large-scale scRNA-seq data
sets becomes infeasible. We therefore apply step 3 of our clustering
ensemble approach (Algorithm 1) to a carefully selected sketch of
the data. However, the co-association matrix H built in step 3 of the
algorithm is based on cluster labels that were learned from the full
data in step 2 using our tailored LSC algorithm. In addition, we
propose a simple sampling technique that uses all clusterings com-
puted in step 2 to guide the selection of cells.

Selective sampling

Sampling cells uniformly at random is naturally fast, because the
decision to include a given cell into a sketch does not depend on
any other cell. At the same time, these independent decisions ig-
nore the global structure of the data such as the abundance of
different cell types and may thus lead to a loss of rare cell types
(Hie et al. 2019b). We therefore propose a sampling approach
that uses the clusterings of the data computed in step 2 of
Algorithm 1 to inform the (fast) selection of cells. More specifi-
cally, let 1={ny, 72, ..., 7}, Where z;= (7, 72, ..., mx) is the ith
clustering returned in step 2 of Algorithm 1,i=1, 2, ..., m. We se-
lect a sketch § of size [ky/n1] that contains roughly the same num-
ber of cells in each cluster z; for all i and j. This selective
sampling procedure iterates through all clusters contained in all
clusterings from which it randomly picks a cell not already con-
tained in the sketch, until the size of the sketch reaches [ky/7]
(see Algorithm 2).
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Algorithm 2: Selective sampling

1. Input: Component clusterings I1={ry, 75, ...
clusters k.

, Tm}, NUMber of

2. Initialization: S = ¢.
3. while |§] < ky/ndo
4 fori=1 tomdo
5. for j=1to kdo
6. Randomly select a cell s from m;\$
7. S=5SU{s}
8. end
9. |end
10. end
Inference

Given a selectively sampled sketch S, we apply steps 3 and 4 in
Algorithm 1 to cells in S, using labels obtained from the full data
in step 2. That is, we construct a co-association matrix whose en-
tries count the number of times the two corresponding cells in §
were placed in the same cluster by a run of the LSC algorithm in
step 2. From this matrix, we compute a consensus clustering of S
using hierarchical clustering and finally transfer cluster labels to
the remaining cells using supervised k-nearest-neighbors classifica-
tion. That is, we assign each cell not in § to the cluster that the ma-
jority of its k nearest neighbors were placed in by the preceding
consensus clustering of S. Our selective sampling-based cluster en-
semble approach is summarized in Algorithm 3.

Algorithm 3: Selective sampling-based clustering ensemble

1. Input: Cells x4, ..., x,; number of clusters k.

2. Run the tailored LSC algorithm for a varying number of landmarks
and different kernel bandwidths. Let T1={ry, 75, ..., 7} be the set of
m clusterings.

3. Run selective sampling (Algorithm 2) on IT to obtain a sketch $ of
size || = [ky/n].

4. Summarize all clusterings of cells in S computed in step 2 in a co-
association matrix H°.

5. Apply single linkage hierarchical clustering to H* to obtain k clusters
for S.

6. Transfer labels to full data using k-nearest-neighbors classification.

Time complexity

Landmark-based spectral clustering performed in step 2 of
Algorithm 3 takes O(n) (see above). Because we selectively sample
a sketch of size |S] = O(y/n) in step 3, the complexity of steps 4
and 5 now reduces to O(n). Together with the k-NN classification
that runs in O(n) in step 6, our selective sampling-based cluster en-
semble scheme scales linearly with the number of cells n.

Publicly available data used in this study

The original publication of data sets used in this study to assess
the accuracy of Specter in comparison to existing methods are list-
ed in Supplemental Table S1. The real data sets in Duo et al. (2018)
were downloaded from https://github.com/markrobinsonuzh/
scRNAseq_clustering_comparison. All other real data sets smaller
than 15,000 cells were downloaded from https:/hemberg-lab
.github.io/scRNA.seq.datasets; the three largest data sets from
http://mousebrain.org (CNS), http://dropviz.org (saunders),
and https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu
.mouse.rna/downloads (trapnell). The umbilical cord blood cell
data (Hie et al. 2019b) were downloaded from http://cb.csail.mit
.edu/cb/geosketch.

Software availability

The Specter software is available at GitHub (https://github.com/
canzarlab/Specter) and as Supplemental Code under the open-
source MIT license. The Specter repository also includes all code
necessary to reproduce the results of this manuscript as well as a
step-by-step documentation of the analysis of the PBMC and
CBMC CITE-seq data sets (Stoeckius et al. 2017; Mimitou et al.
2019) as described in this study.
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