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This article prosecutes a case against the zoonotic pathogen Mycobacterium avium ss.
paratuberculosis (MAP) as a precipitant of Alzheimer’s disease (AD). Like the other major
neurodegenerative diseases AD is, at its core, a proteinopathy. Aggregated extracellular
amyloid protein plaques and intracellular tau protein tangles are the recognized protein
pathologies of AD. Autophagy is the cellular housekeeping process that manages protein
quality control and recycling, cellular metabolism, and pathogen elimination. Impaired
autophagy and cerebral insulin resistance are invariant features of AD. With a backdrop of
age-related low-grade inflammation (inflammaging) and heightened immune risk
(immunosenescence), infection with MAP subverts glucose metabolism and further
exhausts an already exhausted autophagic capacity. Increasingly, a variety of agents have
been found to favorably impact AD; they are agents that promote autophagy and reduce
insulin resistance. The potpourri of these therapeutic agents: mTOR inhibitors, SIRT1
activators and vaccines are seemingly random until one recognizes that all these agents
also suppress intracellular mycobacterial infection. The zoonotic mycobacterial MAP causes a
common fatal enteritis in ruminant animals. Humans are exposed to MAP from contaminated
food products and from the environment. The enteritis in animals is called paratuberculosis or
Johne’s disease; in humans, it is the putative cause of Crohn’s disease. Beyond Crohn’s,
MAP is associated with an increasing number of inflammatory and autoimmune diseases:
sarcoidosis, Blau syndrome, autoimmune diabetes, autoimmune thyroiditis, multiple sclerosis,
and rheumatoid arthritis. Moreover, MAP has been associated with Parkinson’s disease. India
is one county that has extensively studied the human bio-load of MAP; 30% of more than
28,000 tested individuals were found to harbor, or to have harbored, MAP. This article asserts
an unfolding realization that MAP infection of humans 1) is widespread in its presence, 2) is
wide-ranging in its zoonosis and 3) provides a plausible link connecting MAP to AD.
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Dow Paratuberculosis and Alzheimer’s Disease
INTRODUCTION

AD as a Proteinopathy
Common age-related neurodegenerative diseases are Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s disease
(HD) and amyotrophic lateral sclerosis (ALS). While these
diseases are distinct clinical entities, at their core, they are all
proteinopathies and share a common feature: misfolded and
aggregated proteins. For AD, the proteins are amyloid and
tau; for PD, synuclein; for HD, Htt; and for ALS, TDP-43
(1). In disease, these proteins lose their physiological
functions, aggregate and acquire neurotoxic potential (2). In
AD, impairment of protein elimination is central to amyloid
accumulation; there is stable production, but inadequate amyloid
clearance (3).

Autophagy
Autophagy is the conserved phylogenetic mechanism critical
for intracellular clearance and recycling of aged and/or
damaged protein elements occurring in all cell types,
including neurons. In the brain, astrocytes and subtypes of
microglia play important “janitorial” roles in the phagocytosis
and subsequent autophagic elimination of neurotoxic
proteins (4).

Autophagy is also critical for the regulation of a wide range of
immune responses including innate immunity, inflammation,
and antibacterial defense (5, 6). When pathogenic microbes are
the target of autophagy the process is called “xenophagy,” a form
of selective autophagy (7).
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Infection and Alzheimer’s
Consideration of an infectious contribution to AD is not new. The
“usual suspects” are herpes simplex virus 1 (HSV-1),
Cytomegalovirus CMV), Borrelia burgdorferi, Chlamydia
pneumoniae, Helicobacter pylori and Porphyromonas gingivalis (8,
9). Giving credence to a microbial cause of AD is the recognition
that amyloid is an antimicrobial peptide (AMP), and the
accumulation of this AMP may be reflective of an increasing
infectious burden (10, 11). Indeed, the risk of AD appears to
increase as the number of concurrent infections increases (12).

This article presents an additional potential AD precipitant,
the zoonotic pathogenMycobacterium avium ss. paratuberculosis
(MAP). MAP has been killing livestock, contaminating food
products and has been associated with human inflammatory and
autoimmune diseases at a steadily increasing global rate for 100
years (13–15). Moreover, MAP can contribute to cellular and
metabolic invariant features of AD; namely dysfunctional
autophagy and insulin resistance (Figure 1).

Before an in-depth discussion of MAP and AD, it is relevant
to review systemic states that are at the intersection of age and
AD: inflammaging and immunosenescence.

Inflammaging
Inflammaging, coined by Franceschi in 2001 (16) refers to a low-
grade inflammatory state manifest by 1) expression of genes
linked to inflammation 2) higher levels of cytokines in serum and
3) activation of nuclear factor (NF) signaling, the master
regulator of inflammatory responses (17–19). Inflammaging is
associated with a decline in autophagic capacity impairing
FIGURE 1 | MAP can impair autophagy and promote insulin resistance; these respectively, are the cellular and metabolic changes seen in Alzheimer’s disease.
Mycobacterium avium subspecies paratuberculosis – MAP is a notable bacterium responsible for disease of animals, contamination of food and water and
associated with an increasingly long list of human diseases.
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cellular housekeeping which leads to protein aggregation and
accumulation of dysfunctional mitochondria (20). This age-
related phenotype is a risk factor for morbidity and mortality
of the elderly and is implicated in the pathogenesis of a number
of human maladies including type-2 diabetes, coronary artery
disease and Alzheimer’s (21, 22).

Immunosenescence
Paralleling inflammaging is an age-related reduction in immune
competency termed immunosenescence (23). Immunosenescence
not only lessens the capacity to respond to infections but also
contributes to a number of age-related non-infectious diseases
(24, 25). While aging of the immune system has been often
described as a shift from naive lymphocytes to memory
lymphocytes, that shift is relative; aging itself is not the sole
determinant of an accumulation of memory T cells and B cells.
For instance, cytomegalovirus infection is associated with an
acceleration of immunosenescence (26) as well as increased risk
of mycobacterial infection (27, 28).
MICROBES AND ALZHEIMER’S DISEASE

There is a bi-directional communication, a crosstalk, between the
gut microbiota and CNS; the gut-brain-microbiome axis is
increasingly understood to play a major role in the
pathogenesis of many neurodegenerative disorders including
Alzheimer’s disease (AD) (29).

Amyloid as an Antimicrobial Peptide
There is increasing evidence suggesting that the development of
the hallmark pathologic features of AD, amyloid plaque, and tau
tangles, can be linked to microbes (30). This is tied to the
aforementioned function of amyloid as an antimicrobial
peptide (AMP). Studies found that amyloid exerts
antimicrobial activity against eight common, clinically relevant
microorganisms. Previously unrecognized as an AMP, this
contrasting model of amyloid-mediated pathology has
important implications for ongoing and future AD treatment
strategies (31). Though none of the tested microbes were
mycobacteria, it is hoped that this manuscript would prompt
future testing of mycobacteria, specifically MAP.

Microbiome and Alzheimer’s
While there are known factors associated with AD: cerebral
ischemia, hypertension, type 2 diabetes metabolic syndrome,
high and low body weight, tobacco use and traumatic brain
injury (32), change to the microbiome is considered a newly
added factor (33–35).

Microbial residents of the intestine are able to modulate the
activities of distant sites including the brain via bidirectional
communication of the GI tract through interactions between the
enteric nervous system (ENS) and central nervous system (CNS)
(36, 37). Metabolic products of a healthy microbiome are
required for the optimal function of the CNS (38).

The largest reservoir of tissue macrophages in the body is
contained within the gastrointestinal system. Macrophage
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response to bacterial presence results in phagocytosis. The
response to MAP, however, is blunted due to the fact that
MAP prevents phago-lysomal maturation allowing MAP to
persist within the macrophage (39).

There is broad acceptance of mycobacterial presence in
pulmonary disease, certainly for tuberculosis, and increasingly
so for non-tuberculous mycobacteria (40). Conversely, it is
unlikely that MAP would be reported in an enteric
microbiome report: molecular targets fail to report or under
report MAP as it is in low abundance and very difficult to extract
from the cell (41, 42); the target genetic sequences are not MAP
specific; assays are performed on the gut contents, not the
submucosa where MAP thrives (43, 44); MAP overcomes its
host, not by sheer numbers but by MAP’s own virulence
factors (45).

The proposed mechanism by which MAP promotes AD is the
following: MAP persists by inhibition of phagosome maturation,
inhibition of toll-like receptor signaling and inhibition of
interferon-gamma (IFN-g) signaling by MAP (13), altered
composition of the enteric microbial community by MAP
“bio-load” causes and increased mucosal inflammation which
loosens epithelial tight junctions, “leaky gut” (46, 47). This
permits MAP and/or its byproducts to enter the circulation
that contribute to a permeable blood-brain barrier (BBB)
allowing their introduction into the brain wherein they
produce inflammation and amyloid accumulation/aggregation
promoting AD (30).

Although nascent, the study of gut bacteria metabolites upon
the brain is an area of active investigation (48). In addition to
regulation of both the intestinal barrier and the BBB, several gut
microbiota metabolites are able to cross both the intestinal
barrier and the BBB presenting a means of communication
between the microbiota and the brain. An animal study
looking at dietary polyphenols showed minimum absorption
with the remainder extensively metabolized by the gut
microbiota. Twenty-three polyphenol microbial metabolites
were isolated then given intravenously; the brain was found to
be a targeted organ for ten of the metabolites (49). Short-chain
fatty acids (SCFAs), such as butyrate, are speculated to have a key
role in microbiome brain communication; the SCFAs are
produced in the gut by bacterial fermentation of dietary fiber
(50). These key products of microbiome fermentation may
directly or indirectly mediate these interactions via signaling
routes including immune, endocrine neural and humoral
pathways (50).

Humans lack the pathway to produce essential aromatic
amino acids; for instance, humans rely on gut bacteria for
biosynthesis of phenylalanine, tyrosine, and tryptophan.
Multiple studies demonstrate reduced plasma tryptophan levels
in probable AD and in clinical AD (51). MAP infection results in
upregulation of the enzyme that controls tryptophan
metabolism; indoleamine 2,3 –dioxygenase (IDO) levels are
increased in MAP infected monocytes, infected ileum and in
peripheral blood of infected ruminants. IDO breaks down
tryptophan reflected by decreased plasma tryptophan levels
and correlated with onset of clinical paratuberculosis (52). This
offers a conceptual link between MAP infection and AD.
August 2021 | Volume 12 | Article 714179
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A recent longitudinal study measuring nine cytokines of 298
cognitively normal elderly found that a higher IFN-g level was
associated with slower cognitive decline independent of amyloid
deposition (53). IFNg plays a central role in immune defense
against a variety of intracellular pathogens, including
mycobacteria (54). MAP, specifically, inhibits IFN-g signaling
(13), presenting an additional plausible mechanism for the
association or MAP and AD.

Only one country, India, has assessed the “bio-load” of MAP
in a human population study: over 30% of nearly 30,000 tested
positive for MAP: this represents a composite result: 1/3 of serum
ELISA tests were positive (past or present exposure), 8.8% of
blood samples tested positive by PCR and 22.4 of stool samples
tested positive by PCR (55).
MYCOBACTERIUM AVIUM SUBSPECIES
PARATUBERCULOSIS – MAP

Tuberculosis, Leprosy and
Paratuberculosis
There are greater than 140 known Mycobacterium species; most
of which are considered non-pathogenic or “environmental”
(56). M. tuberculosis maintains such a prominent place within
the species that all others are referred to as non-tuberculous
mycobacteria (NTM), many of which have clinical significance
particularly in immunocompromised individuals (57).

Based upon genetic sequencing, the mycobacteria responsible
for tuberculosis, leprosy and paratuberculosis, are proposed to
have gone through an “evolutionary bottleneck” about 10,000
years ago. It is speculated that this was due, in part, to the
domestication of and living closely with animals (58). Two of
these mycobacteria are well known and studied: tuberculosis has
claimed more lives than any other bacterium and a third of the
world population is latently infection with M. tuberculosis (59).
M. leprae, responsible for leprosy, is literally biblical in presence
and continues today. Official World Health Organization figures
report there were more than 202,000 new cases in 2019 (60).

The third mycobacterial agent emerging through this
evolutionary bottleneck, MAP, is the long-recognized cause of
Johne’s disease. MAP infection known also as paratuberculosis,
and recognized worldwide, is an enteric inflammatory infectious
disease, mostly studied in ruminant animals: cattle, sheep,
and goats.

Finding MAP
It is very difficult to diagnose the MAP infection in the early,
subclinical stage of the disease.

MAP will colonize the intestines of infected animals for years
while the animal exhibits no symptoms. However, sub-clinically
infected animals continue to shed MAP bacilli in their milk (61)
and feces contaminating pastures, the environment, and the food
chain (62).

A majority of the dairy herds in the United States and Europe
have infected animals within the herd (63). Indeed, according
to the USDA, the herd-level prevalence of MAP infection in
Frontiers in Immunology | www.frontiersin.org 4
US dairy herds has markedly increased from 21.6% in 1996 to
91.1% in 2007 (64).

As noted, paratuberculosis is a global disease. Extensive
testing in India describes an increasing MAP “bio-load” in
cattle (43%), buffalo (36%), goats (23%) and sheep (41%).
Moreover, in this same geographic area, 30.8% of 28,291
humans (via serum ELISA, blood PCR and stool PCR) tested
positive for MAP (48). Similarly, testing of ruminants in Saudi
Arabia found MAP: 26% of sheep, 27% of goats, 30% of cattle
and 15% of camels (65).

MAP in Food
Milk and related dairy products are considered to be the primary
source of MAP infection in humans (66); products from
pasteurized milk constitute a risk as pasteurization only
reduces the MAP load originally present in milk (66, 67). MAP
is present in yogurt (68), cheese (69), muscle meat (70) and
hamburger (71).

MAP and Human Disease
Though the link of MAP zoonosis to Crohn’s disease has been
controversial for over one hundred years (13), validation of this
association has come from studies showing Crohn’s disease
resolution with anti-mycobacterial therapy targeted against
MAP (72–75). Moreover, MAP is now linked to an increasing
list of inflammatory and autoimmune diseases (13, 76). To date,
MAP has been causally associated with granulomatous diseases:
Crohn’s (77), sarcoidosis (78, 79) and Blau syndrome (80).
Through molecular mimicry from mycobacterial heat shock
protein (hsp65) (81), MAP induces autoantibodies in
autoimmune diabetes (T1D) (82), multiple sclerosis (83, 84),
autoimmune thyroiditis (85), lupus (86), rheumatoid arthritis
(87, 88) and possibly, Sjogren’s syndrome (89).
ALZHEIMER’S: IMPAIRED AUTOPHAGY,
INSULIN RESISTANCE AND
MYCOBACTERIA

Alzheimer’s and Impaired Autophagy
Neuronal homeostasis is dependent upon autophagy; the soma of a
neuron is the primary site for the degradative pathways while the
axon, which extends to synaptic sites as far as a meter away, traffics
the lysosome cargo to the soma to complete the degradative process
(90). Axonal lysosomes are abundant but are separated from the
soma by a selectivity filter that regulates trafficking of the lysosomes
to the soma (91). Evidence suggests that amyloid deposits cause a
local impairment of retrograde axonal transport of lysosomes
leading the further amyloid accumulation.

Anti-Mycobacterial Agents That Boost
Autophagy and Benefit Alzheimer’s
Although an enormous effort has been given to develop AD
therapies, there has been little success in finding effective
treatments. Currently FDA-approved cholinesterase inhibitors
and memantine, while addressing some AD symptoms, lack the
August 2021 | Volume 12 | Article 714179
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ability to slow or stop disease progression (92). Considering the
impact of dysfunctional autophagy on both pathogenic
mycobacterial infection and AD, perhaps the most compelling
argument for mycobacterial involvement in AD can be found in
reviewing therapeutic agents that have been found to favorably
impact AD and mycobacterial infection. A complex interaction
between macrophages and pathogenic mycobacterial agents
determines the outcome of an infection with these organisms
(93). For example, MAP has the ability to retard lysosomal
maturation by limiting acidification which improves its
virulence and facilitates its survival (45). The remainder of this
section identifies therapeutic agents that boost autophagy and by
doing so, have potential benefit in both pathogenic mycobacterial
infection and AD.

mTOR Inhibitors, Rapamycin
The mammalian target of rapamycin (mTOR) signaling pathway
is a well described controller of autophagy. Rapamycin and
related “rapalogs” are protein kinases that inhibit mTOR (94).
As neurons are small, polarized and are post-mitotic they are
sensitive to the accumulation of aggregated and damaged cellular
proteins and as such are dependent upon efficient autophagy for
survival (95). Mounting evidence suggests that AD may be
related to mTOR protein synthesis and impaired autophagy
(96, 97). Rapamycin is also an effective inhibitor of MAP; its
benefit may have unknowingly been an anti-MAP antibiotic (98).

Everolimus
Everolimus, as a rapalog, inhibits mTOR and boots autophagy. It
has been studied and showed benefit in animal models of AD
(99, 100) as well as in mycobacterial infection (101, 102). This
includes MAP infection wherein, like with rapamycin, it may act
as an anti-MAP antibiotic (98). Both rapamycin and everolimus
are from the macrolide antibiotic family of medications, amongst
the most potent anti M. avium antibiotic families (103).

SIRT1 and L-Serine
The silent information regulator 1 (SIRT1) function is linked to
cellular metabolism and is activated by L-serine (104). SIRT1
induces autophagy (105) and plays a critical role in controlling
mycobacterial disease (106). Activation of SIRT1 reduces the
intracellular growth of both drug-susceptible and drug-resistant
strains of M. tuberculosis and induces phagosome maturation
fusion and autophagy in a SIRT1-dependent manner (107).
Serine, a dietary amino acid, is currently being studied for early
stage AD: ClinicalTrials.gov Identifier: NCT03062449, (108).

Calcitriol, Cathelicidin, LL-37
Vitamin D has had an increasingly recognized roll in an expanding
variety of diseases including mycobacterial disease and AD;
calcitriol causes a dose-dependent inhibition of MAP (109).
Calcitriol induces the synthesis of the archetypical antimicrobial
peptide LL-37, (cathelicidin), which enhances autophagy (110–
113). Specific binding interactions between LL-37 and amyloid
complexes may inhibit amyloid aggregation (114).
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Rifampin and Dapsone
A 1992 epidemiological study revealed that Japanese patients
treated with anti-mycobacterial drugs for leprosy had a
significantly lower incidence of AD dementia compared with
an untreated group (115). Moreover, subsequent histological
analyses indicated that non-demented, treated Japanese leprosy
patients aged over 70 years showed significantly lower levels of
senile plaques in the brain than age-matched non-demented
non-leprosy subjects (116, 117). These studies have brought
attention to the anti-mycobacterial drugs rifampin and
dapsone. Dapsone, an anti-leprosy drug, has neuroprotective
effects (118); there is a single reported case of an individual who
recovered from AD to mild cognitive impairment, MCI, while on
dapsone (119).

Rifampin may have the greatest potential as a repurposed
drug for AD (120). Rifampicin is a well-known antibiotic used in
the treatment of mycobacterial infections including tuberculosis
and leprosy. Rifampin is available for oral and intravenous use;
rifampin induces autophagy (121). Clinical trials of therapies
that target amyloid-b in patients with AD have revealed that
initiating therapy after the onset of clinical symptoms has little
effect on cognitive function (122–124) suggesting that preventive
therapy should start prior to clinical symptoms. Treatment
efforts with rifampin failed in cohorts of mild and moderate
AD individuals (125). However, when rifampin was used in
preclinical and prodromal AD, it showed preventative effects
(126). This amplifies the need for novel plasma biomarkers that
identify AD risk which then can be used in clinical trials of
individuals with prodromal AD (127). As attractive as
repurposed rifampin may be for AD clinical trials, it is notably
hepatotoxic (128) and has multiple adverse drug-drug
interactions (129).

The nasal route of drug administration has several advantages
over oral or intravenous administration, which include non-
invasiveness, self-administration, shorter time to onset of effect
and higher bioavailability due to avoidance of hepatic first-pass
metabolism (130).

Intranasal rifampin delivery has direct access to the brain due
to the olfactory and trigeminal neural pathways that connect the
nasal mucosa with the brain (131). Moreover, rifampin has
advantages for the treatment of AD as it can cross the BBB
preventing production of amyloid aggregates as well as amyloid-
associated cellular toxicity (132, 133). The permeability-
glycoprotein (P-gp) is considered the most important
transporter modulating the entry of drugs into the central
nervous system (CNS) (134); rifampin, as a potent P-gp inducer,
facilitates reduced accumulation of amyloid (135). Thus,
intranasal rifampin can access the brain directly via ante grade
olfactory nerve access, retrograde trigeminal nerve access and via a
favored permeability status through the BBB.

A further benefit of the anti-mycobacterial agent rifampin, as
suggested from animal studies, is that it works favorably in
carriers of the ApoE4 allele (136). Also, as with AD, rifampin
has a neuroprotective role in Parkinson’s disease (137, 138).
MAP has also been associated with Parkinson’s disease
(139, 140).
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Alzheimer’s and Insulin Resistance
Accumulating evidence indicates that AD is an age-related,
metabolic disease. Impaired cerebral glucose metabolism is an
invariant pathophysiological feature in AD and its occurrence
precedes cognitive dysfunction and pathological alterations even
for decades (141). Compared with age-matched controls, AD
individuals show regional glucose metabolism impairment in
parieto-temporal lobe, posterior cingulate cortex, and the frontal
areas during disease progression (142). Some investigators refer
to AD as “Type 3 diabetes mellitus” (143). Insulin has been
implicated in clearance of amyloid across the BBB, in tau
phosphorylation, and in memory via its effects on synaptic
function and long-term potentiation (144).

There is a proposed bi-directional relationship between
insulin resistance and mycobacterial infection (145, 146); this
occurs to the degree that insulin resistance could be considered
both a biomarker and risk factor for active mycobacterial
infection (147). Insulin resistance is associated with
Alzheimer’s disease reflected in a two to five fold increased
probability of a type 2 diabetic developing AD (148).

As with rifampin, enhancing brain insulin function with
intranasal delivery may be a viable approach to ameliorating
AD symptoms and attenuating AD-related pathophysiologic
processes (149); this is accomplished without perturbation of
the peripheral glucose level as little of the intranasal peptide
reaches the peripheral circulation (150). Unlike rifampin,
cerebral insulin treatment appears to have less benefit for those
carrying the ApoE4 allele(s) (151).
BCG AND ALZHEIMER’S

BCG – Background
The primary use of BCG is for the prevention of tuberculosis
(152). There is increasing evidence that BCG provides protection
against NTM infections (153–155). This extends to leprosy (156).
This is unsurprising as BCG, a live attenuated vaccine, shares
epitopes with mycobacteria other than tuberculosis (157).

BCG and Alzheimer’s
A recent population study found an inverse relationship between
the incidence of Alzheimer’s disease and BCG vaccination. The
populations studied showed a lower prevalence of AD in
countries with high BCG coverage. The authors hypothesized
that exposure to BCG decreases the prevalence of AD due to a
modulation of the immune system. They proposed testing their
hypothesis by evaluating bladder cancer patients who received
BCG comparing them to bladder cancer patients for whom BCG
Frontiers in Immunology | www.frontiersin.org 6
was not part of their recommended treatment (158). They found
that bladder cancer patients treated with BCG were significantly
less likely to develop AD compared to those not similarly treated.
The mean age at diagnosis of bladder cancer was 68 years. ADwas
diagnosed at a mean age of 84 years. BCG dramatically reduced
the risk of developing AD. Those treated with BCG had four-fold
less risk for developing AD compared to patients not treated with
BCG. The authors state that confirmation of their retrospective
study would support prospective studies of BCG in AD (159). A
follow up multi-cohort study again showed protective benefit of
intravesicular BCG and risk of AD; it also showed protection
against Parkinson’s disease (160). Increasingly appreciated is the
protective benefit of not only BCG, but also other live-attenuated
vaccines against all-cause infection (161–163).

BCG for MAP Associated Diseases
BCG vaccination for autoimmune diseases type 1 diabetes (T1D)
and multiple sclerosis (MS) have shown benefit in these disparate
diseases; both diseases associated with MAP: T1D (164, 165) and
MS (166, 167) The positive response to BCG in T1D (168) and
MS (169), may be due to a mitigation by BCG of the
consequences of MAP infection.
DISCUSSION

The role of microbial agents in AD is gaining recognition. The
current and projected demographics of AD is dire and mandates
broad approaches to mitigate the impact AD, not only for
individuals and families, but also for global social and health
systems. MAP is closely related to the greatest pathogen in
human history, M. tuberculosis, a microbe that continues to
latently infect one third of the world population. MAP may have
a role in AD. This article suggests steps to further investigate this
potentially fertile line of inquiry: 1) determine population-based
MAP “bio-load”, 2) use optimized blood-based biomarkers to
determine AD risk, 3) test for MAP in those with elevated AD
risk vs. healthy controls. Concurrently, interventions could be
initiated to 1) eliminate MAP from animals, the environment,
and the food chain, 2) initiate clinical trials to test iterations of
anti-mycobacterial agents shown to have benefit for AD.
Parsimoniously, when searching for new directions in the
efforts against AD, look at the MAP.
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56. Porvaznik I, Solovič I, Mokrý J. Non-Tuberculous Mycobacteria:
Classification, Diagnostics, and Therapy. Adv Exp Med Biol (2017)
944:19–25. doi: 10.1007/5584_2016_45

57. Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of Tuberculosis and
non-Tuberculous Mycobacterial Infections - A Comparative Analysis of
Epidemiology, Diagnosis and Treatment. J BioMed Sci (2020) 27(1):74.
doi: 10.1186/s12929-020-00667-6

58. Frothingham R. Evolutionary Bottlenecks in the Agents of Tuberculosis,
Leprosy, and Paratuberculosis. Med Hypotheses (1999) 52(2):95–9.
doi: 10.1054/mehy.1997.0622

59. Available at: https://www.who.int/en/news-room/fact-sheets/detail/
tuberculosis (Accessed 7.1.2021).

60. Available at: https://www.who.int/en/news-room/fact-sheets/detail/leprosy
(Accessed 7.1.2021).

61. Shankar H, Singh SV, Singh PK, Singh AV, Sohal JS, Greenstein RJ.
Presence, Characterization, and Genotype Profiles of Mycobacterium
Avium Subspecies Paratuberculosis From Unpasteurized Individual and
Pooled Milk, Commercial Pasteurized Milk, and Milk Products in India
by Culture, PCR, and PCR-REAMethods. Int J Infect Dis (2010) 14(2):e121–6.
doi: 10.1016/j.ijid.2009.03.031
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