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Abstract

In this paper, we propose and verify a theoretical model of the development of 

dispersion quality of aqueous carbon nanotube (CNT) colloid as a function of 

sonochemical yield of the sonication process. Four different surfactants; Triton 

X-100, Pluronic F-127, CTAB and SDS were studied. From these four SDS had 

the lowest dispersion performance which was surprising. Optical dispersion quality 

results fits well with proposed theoretical model.
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1. Introduction

There is one significant feature requiring attention when it comes to

CNT-nanocomposites and colloids; a dispersion quality. Dispersion quality, i.e. 

dispersed nanotubes divided by the total number of nanotubes, has a huge impact 

on the effective surface area of the interaction between the matrix and the filler. In 
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order to optimize the performance one needs to know how to control the dispersion 

quality during each step of the manufacturing process.

CNTs forming large agglomerates creates challenges to process and stabilize colloids 

made of them. To optimize a dispersion process, enough energy density needs to 

be generated to overcome internal forces holding the aggregates together. Typical 

methods are shear-mixing [1] and sonication [2]. Of these two methods, sonication 

is superior especially for low viscosity systems where conventional mixing methods 

cannot create the required high strains rates. The dispersion process using sonication 

is based on inertial cavitation where imploding microscopic cavities generate 

intensive streams of molecules with high energy densities inside the liquid. Cavities 

are known to preferably exist at the boundaries of different materials [3] which makes 

sonication a very effective and precise method for dispersing nanotubes. Prolonged 

sonication however can cause damages to the tubes and must be avoided [4].

After the CNTs have been detached from aggregates, there is a possibility of re-

agglomeration. To stabilize the system in water based dispersions, different types 

of surfactants such as ionic (anionic and cationic), non-ionic, polymer based and 

their combinations have been used comprising current state-of-the-art [5,6,7,8,

9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]. The basic idea is to 

enable surfactant molecules to be adsorbed on the surface of CNTs via hydrophobic 

interactions, 𝜋-𝜋 bonds, hydrogen bonds or electrostatic interactions [29,30].

The nanotube dispersing efficiency of surfactants is linked to the length of an alkyl 

chain of the surfactant, presence of benzene ring, and the functional (terminal) 

group [10], concentration [22] and charge [31]. An optimum surfactant-CNT weight 

ratio has been reported to vary, ranging from 1:1 to 1:10 [10,32]. It has been reported 

that an efficient CNT dispersion is possible only when the surfactant concentration 

is above the CMC value [27,33,34,35]. It has also been reported that dispersing 

agents can form stable dispersions below and equal to their CMC limit [5,7,12,36]. 

Moreover, it has been noted that the best result can be reached with a concentration 

of 0.5 CMC, and that any further increases in the concentration of the surfactant has 

only a minor effect [36]. Even with a absence of consensus using too high surfactant 

concentration may affect the properties of CNT network in the end product, using 

too low surfactant concentration can cause re-aggregation in colloid since a sufficient 

amount is needed to cover all CNT surfaces [32].

During the sonication, there is a dynamic equilibrium of concentrations between 

individual, surfactant coated nanotubes and nanotube agglomerates. As more energy 

is brought into the system, more nanotubes are being detached from the agglomerates 

and a dispersion quality is approaching unity. There are number of methods 

available for studying the quality of CNT-dispersions and they include; atomic force 

microscopy (AFM) [10], transmission electron microscopy (TEM) [32], Raman 
on.2018.e00787
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spectroscopy [37] and UV–Vis spectroscopy [38]. Of these methods, UV–Vis 

spectroscopy has been shown to represent the most accessible and versatile method 

to determine the dispersion quality of CNT dispersions especially for liquid systems. 

In the method, the light passing through a sample of colloid experiences scattering 

and absorbance. Both of these phenomena scale linearly with the concentration of 

colloidal particles and, therefore, the opacity 𝛼 of the dispersion can be used to 

measure the number of nanotubes (individual tubes or dispersed small aggregates) 

in the supernatant [23]. At a fixed wavelength, UV–Vis spectroscopy can be used 

to determine the onset point of 𝛼 as a function of the applied acoustic sonication 

energy. At this point, the system is close to its optimal dispersion state and further 

sonication would only damage the nanotubes without improving the quality of the 

dispersion.

In the previous studies the parameters to describe sonication have been total energy 

and time [38,39]. These parameters work well with specific processes but are 

insufficient for comparing different studies since different sonication systems have 

different yields of transforming electrical energy to acoustic energy and individual 

systems also produce different amounts of inertial cavitation (vs. non-inertial). 

Inertial cavitation is mainly responsible of exfoliation of nanotubes whereas non-

inertial cavitation is related to surface damages of the tubes [40]. In order to 

generalize all types of sonication systems parameter of sonochemical yield should 

be used; like first proposed by Koda et al. [41].

This article introduces theoretical framework for controlling the dispersion quality 

of aqueous carbon nanotube colloids during a sonication process. This framework is 

indifferent towards the sonication system, used energies and times.

2. Theory

We propose that for an ultrasound system, where the re-agglomeration of carbon 

nanotubes is inhibited by using surfactants the rate of opacity increase is related to 

effective acoustic energy in a following way:

d𝛼
d𝐸

= (𝛼𝑚𝑎𝑥 − 𝛼)𝑓 (1)

where 𝐸 is the effective acoustic energy divided by CNT mass, 𝛼𝑚𝑎𝑥 is the maximum 

achievable opacity of the system and 𝑓 is a shape function. By separation we arrive 

to

d𝛼
(𝛼𝑚𝑎𝑥 − 𝛼)

= 𝑓d𝐸 (2)

Integration, rearrangement, and then using both sides as exponents 𝑒𝑥 leads to

𝛼 = 𝛼𝑚𝑎𝑥 − 𝐶𝑒− ∫ 𝑓d𝐸 (3)
on.2018.e00787
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For a system where 𝑓 is a positive constant, and by applying boundary conditions, 

𝛼(0) = 0 and lim𝐸→inf 𝛼(𝐸) = 𝛼𝑚𝑎𝑥, 𝛼 can be expressed as

𝛼(𝐸) = 𝛼𝑚𝑎𝑥(1 − 𝑒−𝜅𝐸) (4)

where, 𝜅 is a system-specific constant related to the types and quantities of the 

chemical components in the colloid.

In order to generalize (4) for all types of sonication systems, sonochemical yield is 

used instead of energy. In our experiments we used the concentration of iodine-ions 

𝐼−3 divided by CNT mass, 𝐶𝐼−3
as a parameter [42].

It is known that sonolysis of water produces hydrogen peroxide 𝐻2𝑂2 via hydroxyl 

and hydrogen radicals and it causes oxidation of 2𝐼− to 𝐼2 from dissolved potassium 

iodide. 𝐼2 then reacts with 𝐼− to produce 𝐼−3 , which has a peak absorbance at 355 nm 

and which can be detected by using UV–vis spectroscopy. The method, also known 

as Weissler reaction, has been proposed to be used as a standard method for the 

calibration of sonication systems [41]. The chain of chemical reactions is induced 

only by inertial cavitation, which is mainly responsible of the de-agglomeration of 

CNT aggregates. Therefore, Weissler reaction can be used to measure and compare 

effective dispersive processes of different sonication systems.

Thus, using 𝐶𝐼−3
with Equation (4), it leads to

𝛼(𝐶𝐼−3
) = 𝛼𝑚𝑎𝑥(1 − 𝑒

−𝜅𝐶𝐼−3 ) (5)

where the value of 𝐶𝐼−3
is determined based on an experimental graph of electrical 

energy 𝐸𝑒 versus concentration of iodine-ions.

For determination of sonochemical yield of 𝐼−3 versus electrical energy consumed 

by the sonicator concentrations of 𝐼−3 were analyzed using the Beer–Lambert law

𝛼 = 𝜖𝑏𝑐 (6)

where 𝛼 is the absorbance, 𝜖 is the molar attenuation coefficient of 𝐼−3 , 𝑏 is the length 

of the optical path (in cm), and 𝑐 is the concentration of 𝐼−3 . Linear fitting was used 

to interpolate 𝐼−3 production as a function of electrical energy and slope of the fitting 

was used to calculate values for the sonochemical yield.

3. Materials & methods

3.1. Materials

In this study, we used Nanocyl7000 multiwall carbon nanotubes (Nanocyl SA., 

Sambreville, Belgium) and four different surfactants: octyl phenol ethoxylate (Triton 
on.2018.e00787
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X-100), polyoxyethylene-polyoxypropylene block co-polymer (Pluronic F-127), 

sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), all 

from Sigma Alrdich (Merck KGaA, Darmstadt, Germany). For the Weissler reaction 

potassium iodide (KI) (Merck KGaA, Darmstadt, Germany) was used.

3.2. Weissler reaction

For determination of sonochemical yield of 𝐼−3 versus electrical energy consumed 

by the sonicator, 200 ml of 0.1M KI solution was sonicated using different total 

energies and corresponding concentrations of 𝐼−3 were detected by measuring 𝐼−3
specific absorbance with Shimadzu UV-1800 spectrophotometer (Shimadzu Corp., 

Kyoto, Japan).

3.3. Dispersion of carbon nanotubes

160 samples with 0.40 ± 0.01 g of Nanocyl NC 7000 multiwall carbon nanotubes, 

four different surfactants (Triton X100, Pluronic F-127, CTAB, and SDS) with four 

different surfactant masses (0.1 ±0.01 g, 0.2 ±0.01 g, 0.4 ±0.01 g and 0.8 ±0.01 g) and 

deionized water were weighed in 100 ml glass beakers so that all samples weighted 

80 ± 0.1 g. Dispersions were sonicated using 10 different electrical energies with 

QSonica Q700 sonicator (Qsonica L.L.C, Newtown, USA). A 12.7 mm diameter 

titanium probe was used and the vibration amplitude of a sonotrode was set to 60 μm. 

To guarantee identical sample preparation throughout the series, the tip was always 

placed in the same position inside the beaker (15 mm ± 2 mm from the bottom) 

and an external cooling bath with c. 200 W cooling capacity was used to limit the 

temperature variations during the sonication. The applied acoustic energy was varied 

by controlling the sonication time and it was monitored by an internal calorimeter 

of the QSonica Q700 sonicator. A power reading given by the sonicator remained 

between 100–120 W for all the sonications. An opacity at 500 nm, directly related 

to the concentration of carbon nanotubes in the dispersed state, was used to measure 

the quality of the sonicated dispersions. A portion of each dispersion was collected, 

let settle for five days, and its supernatant was diluted with to 1:300 with deionized 

water to get the solutions transparent. The opacity of the diluted dispersions were 

measured by using Shimadzu UV-1800 spectrophotometer and plastic cuvettes with 

1 cm optical path length.

3.4. Imaging

The CNT agglomerate size was evaluated by drying a droplet of the dispersions on 

a metal plate and characterizing them by scanning electron microscopy (FIB-SEM, 

Zeiss Crossbeam 540).
on.2018.e00787

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00787
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article No~e00787

6 https://doi.org/10.1016/j.heliy

2405-8440/© 2018 The Authors. Pub

(http://creativecommons.org/licenses/
Figure 1. Concentration of 𝐼−3 as a function of electrical energy 𝐸𝑒𝑙 used by the sonicator. The 
sonochemical yield/energy for this particular sonication system was 0.371 mmol dm−3 kJ−1. An error 
from sample preparation and measurements were estimated to be ± 10 mmol dm−3.

4. Results

4.1. Weissler reaction

Figure 1 shows the development of 𝐼−3 concentration as a function of electrical 

energy consumed by the sonicator. It can be observed that the production rate was 

higher in the beginning of the sonication. This is caused by the dissolved gases, 

which accelerate the hydrogen peroxide production by participating in the chemical 

reactions (oxygen) and by lowering the inertial cavitation threshold [43]. After 

dissolved gases have fully diffused and consumed by the process, the rate of 𝐼−3
conversion slightly slows down. Linear fitting still gives a good approximation for 

𝐶(𝐼−3 ) versus 𝐸𝑒 and was used in all future calculations.

4.2. Dispersion of CNTs

As the applied sonication energy gets higher, the supernatant of the dispersion 

becomes darker indicating an increase in the concentration of CNTs in dispersed 

state (Figure 2). The dark appearance was found to be stable up to several weeks.

Figure 3 shows that the opacity at 500 nm follows the proposed dependence on 

sonochemical yield (5). It can be seen that Triton X-100 and CTAB can disperse 

CNTs close to the maximum dispersion quality at a lower surfactant/CNT mass ratios 

compared to Pluronic F-127 and SDS. It is also evident that the acoustic energy 

required to disperse CNTs with SDS is significantly higher compared to others, 
on.2018.e00787
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Figure 2. Series of diluted supernatants of CNT-dispersions corresponding different acoustic energies of 
sonication. Evolution of the dispersion quality can be seen from samples a to j. As solutions get darker, 
more individual nanotubes are being dispersed in to the liquid.

Figure 3. The development of opacity as a function of 𝐶(𝐼−3 ) with different surfactant/CNT ratios: ■ 1:4, 
● 1:2, ▲ 1:1 and ▼ 2:1 for a) Triton X-100, b) Pluronic F-127, c) CTAB and d) SDS.

and that the rate of development of dispersion quality is respectively lower. This is 

somewhat surprising since SDS is widely used in many of the reported studies and 

yet it seems to be more difficult to use in order to optimize the dispersion quality.

In Figure 4, a fitted opacity function (5) gives a theoretical asymptote for the 

maximum opacity, 𝛼𝑚𝑎𝑥, with a theoretical infinite yield. Possible deviations from 

(5) with higher yields are due to the fracture (damage) of CNTs as the sonication 

progresses causing additional opacity, which is not related to the surfactant-assisted 

exfoliation of the aggregates.

In Figure 5 it can be seen that investigating dispersion quality with dried samples is 

rather challenging. One can say that larger agglomerates do disappear as a function 
on.2018.e00787
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Figure 4. Measured opacity of sonicated 1:2 Triton X-100/CNT dispersion as a function of sonochemical 
yield of the sonicator together with a fitted opacity function (5).

Figure 5. FIB images of dried 1:2 Triton X-100/CNT dispersions. a) Non-sonicated and b) sonicated with 
maximum opacity. It can be seen that most of the large agglomerates have been dispersed and the metal 
plate is coated with individual CNTs. Still some larger particles exists.

of sonochemical yield, but calculating a number describing the dispersion quality 

is basically impossible. Dried sample for FIB microscopy is not an accurate 2D 

presentation of the 3D situation. During the drying process the surface tension of 

water affects how 2D-structure is being formed. Therefore SEM or FIB microscopy 

is not optimal for studying dispersion quality of water based CNT colloids.

Variation of maximum absorbance can be seen for different surfactant/CNT ratios 

depending on the surfactant type (Figure 6). It is noticeable that there is a sharp 

change in the development of the maximum opacity as the surfactant/CNT ratio 

increases. Below this threshold value of surfactant/CNT ratio, the highest reachable 

opacity (indicating the maximum dispersion quality) is to be low. On the other 

hand, when the ratio matches the threshold value, the maximum opacity gets also 

rapidly reached and further increase in the ratio does not improve the dispersion. For 

applications where surfactant assisted dispersions are necessary, the determination 
on.2018.e00787
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Figure 6. Measured maximum opacities as a function of surfactant/CNT ratio for three different 
surfactants; ■ Triton X-100, ● Pluronic F-127 and ▲ CTAB.

Figure 7. The factor 𝜅, indicating a growth speed of the opacity as a function of surfactant/CNT for 
■ Triton X-100, ● Pluronic F-127 and ▲ CTAB.

of an optimum surfactant ratio is critical since excess surfactant remaining, for 

example in a nanocomposite matrix, will diminish the physical properties. SDS is not 

included in Figure 6 since the applied acoustic energy range was not high enough to 

reach the saturation in the opacity. SDS was the only surfactant which did not reach 

saturation point of the opacity with used energies even with highest concentrations. 

All sonications except the lowest concentration of SDS were above critical micelle 

concentration.

The factor 𝜅 in Equation (5), indicating the rate of opacity increase as a function 

of acoustic energy, is implicitly dependent on the surfactant/CNT ratio (Figure 7). 
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𝜅 can be observed to have a different local minimum for different surfactants, which 

is most likely related to the adsorption mechanism of the surfactant on the CNT 

surface. Depending on surfactant concentration, the assembly on the CNT surface 

is different. The tendency to improve the dispersion along with the increase in the 

acoustic energy is weaker the stronger is the surfactant layers internal binding on 

the initial agglomerates. Also, the response in the acoustic energy transfer by the 

surfactant layer can hinder the CNT agglomerate dispersion yet it is challenging to 

theoretically verify the difference in this response between different surfactants.

5. Conclusions

A theoretical equation for a development of the dispersion quality of aqueous CNT 

colloid as a function of sonochemical yield was proposed. Sonication experiments 

with four different surfactant types and different surfactant/CNT ratios and inertial 

cavitation activities were performed. The inertial cavitation activity was determined 

using the Weissler reaction. It was shown that the proposed equation fits well with the 

performed measurements and that the maximum opacities, received via fitting the 

equations, follows an S-curve as a function of surfactant/CNT ratio. The revealed 

sonochemical yield-dispersion (SCY-D) relation indicates that there is a threshold 

for the minimum surfactant/CNT ratio to achieve the optimal dispersion quality 

for a CNT-surfactant system. Here, we determined the lower and upper values of 

the threshold region of surfactant/CNT ratios for three different surfactants, namely 

Triton X-100, Pluronic F-127, and CTAB.
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