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The Coronavirus Disease 2019 (COVID-19) has spread all over the world and impacted
many people’s lives. The characteristics of COVID-19 and other types of pneumonia have
both similarities and differences, which confused doctors initially to separate and
understand them. Here we presented a retrospective analysis for both COVID-19 and
other types of pneumonia by combining the COVID-19 clinical data, eICU and MIMIC-III
databases. Machine learning models, including logistic regression, random forest,
XGBoost and deep learning neural networks, were developed to predict the severity of
COVID-19 infections as well as the mortality of pneumonia patients in intensive care units
(ICU). Statistical analysis and feature interpretation, including the analysis of two-level
attention mechanisms on both temporal and non-temporal features, were utilized to
understand the associations between different clinical variables and disease outcomes.
For the COVID-19 data, the XGBoost model obtained the best performance on the test
set (AUROC = 1.000 and AUPRC = 0.833). On the MIMIC-III and eICU pneumonia
datasets, our deep learning model (Bi-LSTM_Attn) was able to identify clinical variables
associated with death of pneumonia patients (AUROC = 0.924 and AUPRC = 0.802 for
24-hour observation window and 12-hour prediction window). The results highlighted
clinical indicators, such as the lymphocyte counts, that may help the doctors to predict the
disease progression and outcomes for both COVID-19 and other types of pneumonia.

Keywords: the coronavirus disease 2019, pneumonia, statistical analysis, machine learning, attention mechanism,
clinical indicators
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1 HIGHLIGHTS

1. In this study, multiple approaches including statistical
analysis, machine learning and deep learning were utilized
to understand the relationship between clinical variables and
disease outcomes of COVID-19 and pneumonia.

2. The best models obtained good performance on the test sets
when predicting severity of COVID-19 and the mortality of
pneumonia patients in ICUs with AUROC larger than 0.9
and AUPRC greater than 0.8.

3. Feature importance and two-level attention mechanisms
were utilized to interpret the models and highlight clinical
variables associated with disease outcomes. Lymphocyte
counts were found to be an important biomarker shared by
COVID-19 and other types of pneumonia.
2 INTRODUCTION

In December 2019, an outbreak of highly infectious respiratory
disease was reported in Wuhan, China, which was later identified
as Coronavirus Disease 2019 (COVID-19) (Ward et al., 2020;
Yamasaki et al., 2020). Ever since, COVID-19 has spread all over
the world and impacted many people’s lives (Velavan andMeyer,
2020). In order to defeat COVID-19 pandemic, researchers
developed machine learning models to help predict the
outbreak so that the medical system can get ready and allocate
resources ahead of time (Ardabili et al., 2020a; Ardabili et al.,
2020b; Niazkar and Niazkar, 2020). Additionally, machine
learning has also been utilized to help with the diagnosis and
understand the clinical indicators of COVID-19 (Hussain et al.,
2020; Li et al., 2020; Podder and Mondal, 2020; Alballa and Al-
Turaiki, 2021; Podder et al., 2021). One of the major symptoms
caused by COVID-19 is pneumonia, which is also a common
infectious diseases threatening both human health and medical
resources (Zimlichman et al., 2013). Patients with mild
pneumonia only need outpatient treatment, while severe
patients have to be hospitalized or even admitted to the
intensive care unit (ICU) for rescue (Wei, 2020). Timely
treatment for severe patients is significantly associated with
reduced mortality (Attaway et al., 2021). Therefore, it is
important to have early assess of the disease stage and make
effective treatment plans (Watkins, 2020; González-Nóvoa
et al., 2021).

In the early days, to classify the severity of respiratory and
infectious diseases, the disease research societies have proposed
different scoring standards (Liapikou et al., 2009). Among them,
CURB-65, a combination of five endpoints, confusion, uremia,
respiratory rate, blood pressure and age (65 years as a cutoff),
is widely assessed in patients with community-acquired
pneumonia (CAP) (Jones et al., 2011; Satici et al., 2020). For
the COVID-19 patients, researchers also used CURB-65 to
predict the risk of death (Nguyen et al., 2020). In addition to
CURB-65, Zhang et al. (2019) developed a classification and
regression tree (CART) scoring system by machine learning
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
based on demographic data and clinical characteristics to
evaluate the survival of CAP patients in ICUs. The results of
Zhang et al. (2019) showed that the CART obtained better
evaluation performance compared to CURB-65. Goodwin and
Demner-Fushman, (2019) further proposed a deep learning
system, PRONTO, to predict the risk of patient death 1-2 days
ahead. Based on extracorporeal membranous oxygenation
(ECMO), Zhou et al. (2020) designed the pneumonia ECMO-
eligible risk (PEER) system, which can predict the risk of death in
a nomogram for both low-risk and high-risk pneumonia patients
in the future. Yan et al. (2020) developed a machine learning
model to propose a clinical decision rule composed of three
biomarkers for COVID-19 patients, which can predict patient
mortality 10 days in advance. Although many models have been
developed to predict the disease outcomes, fewer studies focused
on feature interpretability or clinical variable analysis across
disease types. Even though some researchers compared
differences between COVID-19 and regular pneumonia (Zhao
et al., 2020), due to heterogenicity of different data sources, more
analysis is helpful for a deeper understanding and better
treatment approaches. Therefore, we compared and analyzed
the clinical features of patients with COVID-19 and other types
of pneumonia and assessed their performance of predicting
disease outcomes.

In this study, a combination of machine learning models,
including XGBoost and deep learning, was developed to predict
the severity of COVID-19 and the patient mortality of other
types of pneumonia in different time windows. Feature
importance of both temporal and discrete clinical variables was
analyzed to understand the association factors for different
disease outcomes. Our goal is to provide early warnings for
patients with dire outcomes so that doctors could have time to
come up with appropriate monitoring and intervention
procedures to prevent a worse situation.
3 MATERIALS AND METHODS

3.1 The Overall Framework
The overall workflow of this study is summarized in Figure 1,
which includes the following steps: (1) data collection of
COVID-19 and other pneumonia data, (2) statistical analysis
and development, training and evaluation of machine learning
and deep learning models, and (3) result analysis including
model evaluation and feature interpretation. The details were
introduced in the following sections.

3.2 Collection and Analysis of COVID-19
Clinical Data
The demographic and clinical data of 80 COVID-19
patients were collected during the diagnosis and treatment
of patients in Hubei province from February 1, 2020 to
March 30, 2020, assisted by a medical team from Fujian
Medical University Union Hospital. The study followed the
principles of good clinical practice (GCP) and relevant national
legal requirements with consent and approval from the patients’
April 2022 | Volume 12 | Article 838749
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families. It was also approved by the Ethics Committee of Fujian
Medical University Union Hospital (No. 2021KY052).

Patients from this dataset were divided into severe COVID-19
(SC) and non-severe COVID-19 (non-SC) groups. Patients
without any severity information were excluded. The missing
clinical measurements were filled with average values.

To analyze the data, mean (along with standard deviation) or
median (along with interquartile range (IQR)) values were
calculated as numeric measurements. The Kolmogorov-
Smirnov normality test was used to examine if the sample data
were normally distributed. Additional statistical analysis
methods including T-test, Kruskal Wallis rank test and Fisher’s
exact test were utilized to summarize and analyze the clinical
features of COVID-19 patients (Zhang et al., 2018). A p value less
than 0.05 was considered statistically significant.

3.3 Collection and Processing of MIMIC-III
and eICU Data
TheMedical Information Mart for Intensive Care (MIMIC-III) is
a database that collected de-identified health records of over
50,000 patients who stayed in critical care units of Beth Israel
Deaconess Medical Center between 2001 and 2012 (Johnson
et al., 2016). Another database, eICU, is a combined clinical
database from many ICUs in the United States. It contains
clinical data of more than 200,000 hospitalized patients from
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
2014 to 2015 (Pollard et al., 2019). Since both the MIMIC-III and
eICU data were harvested much earlier than the COVID-19
pandemic, it is safe to assume there were no COVID-19 patients
in the records. The clinical data included demographics, vital
signs, laboratory test results, diagnoses and other information of
the patients. In this study, more than 3,000 patients with
pneumonia by the International Classification of Diseases,
Ninth Revision (ICD-9) codes of 481, 482 and 486 (Table 1)
were identified in both MIMIC-III and eICU. Multiple filters
were used to filter the patients (Figure 2). Adolescents and
patients who did not stay in an ICU were excluded, and only
patients with lengths of ICU stay no less than 30 hours
were extracted.

The pneumonia patients from MIMIC-III and eICU were
grouped into two groups, survival or death, based on the records
of ICU admission, discharge and death information. We referred
Ng et al. (2016) for data extraction. Given an outcome of ICU
discharge (survival) or death, the period right before the outcome
was considered as the prediction window (6, 12, 24, 36, 48, 60 or
72 hours), and the time before the prediction window was used
as the observation window (24, 48 or 72 hours). The clinical
records in the observation window were used as input to develop
models to predict outcomes (Figure 3). The abnormal values in
the observation windows were deleted according to the criteria of
Harutyunyan et al. (2019).
FIGURE 1 | The overall workflow of this study. EHR, electronic health record; LR, logistic regression; RF, random forest; SBP, systolic blood pressure; WBCs, white
blood cell counts.
April 2022 | Volume 12 | Article 838749
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3.4 Model Development
3.4.1 Traditional Machine Learning Models
We used a series of machine learning models in the following
sections to predict disease outcomes based on the clinical
features for both COVID-19 and other types of pneumonia.

3.4.1.1 Logistic Regression (LR)
Logistic regression (Bouyer, 1991) is a generalized linear model used
to solve classification problems. It is linear regression with a layer of
the sigmoid function to map features towards labels. By introducing
regularization, it can reduce the influence of multicollinearity. Given
n data samples with m features as xj(j∈ (1,2, … ,m)), the predicted
probability ŷi of sample i can be calculated as follows:

by i = 1

1 + e−q
Tx ið Þ
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
qTX ið Þ =  q0 +o
m

j=1
qjx

ið Þ
j

where q represents coefficients.

3.4.1.2 Random Forest (RF)
Random forest (Biau and Scornet, 2016) is composed of multiple
decision trees (classified regression trees, or CARTs). The model
randomly draftsN training subsets M = {M1,M2,…,Mn} based on
bootstraps. The probability P of each sample not being drawn is
calculated as follows:

P  = 1 −
1
N

� �N
TABLE 1 | ICD-9 codes used in this study for pneumonia.

ICD-9 code Description

481 Pneumococcal pneumonia [Streptococcus pneumoniae pneumonia]
482 Other bacterial pneumonia
486 Pneumonia, organism unspecified
FIGURE 2 | The flowchart of pneumonia patient selection from the MIMIC-III database.
FIGURE 3 | Data extraction framework for pneumonia patients in MIMIC-III. DBP, diastolic blood pressure; HR, heart rate; RR, respiratory rate; SBP,
systolic blood pressure.
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The N decision trees T = {T1, T2,…,Tn} are developed based
on their corresponding training subsets. The Gini index is used
for CARTs to select tree nodes. Gini index is calculated as
follows:

G Mð Þ = o
K

k=1

pk 1 − pkð Þ = 1 −o
K

k=1

p2k

Here M is the independent training subset, and pk indicates
the probability that the sample belongs to the k-th category.

3.4.1.3 XGBoost
XGBoost (Chen et al., 2015) is a gradient lifting tree model
composed of multiple CARTs. The algorithm divides samples
into two branches according to the feature thresholds. After
multiple groupings, the end of each CART (leaf node) contains
samples with the same label. Given n samples with m features as
xi(i∈ (1,2,… ,m)), the predicted probability ŷ i of sample i can be
calculated as follows:

by i = oK
K=1

fk xið Þ, fk ∈ F

where fk is the prediction score of a single decision tree, and ϝ is
the space of all trees.

In order to get the optimal solution, the following loss
function with regularization is optimized:

L fð Þ =o
i
l by i, yið Þ +o

k

W fkð Þ

W fð Þ = g T +
1
2
l wik k2

Where L is the loss function, W is the penalty term, T is the
number of leaves, wi is the score of leaf node i, and g and l are the
coefficient parameters.

3.4.1.4 Data Processing
For the COVID-19 data, the latest clinical features measured
during the hospitalization of the COVID-19 patients were used
to train the models to classify the outcomes of severe COVID-19
(SC) and non-severe COVID-19 (non-SC).

For the MIMIC-III and eICU data, the distribution
parameters (maximum, minimum, median, mean and standard
deviation) of vital signs and laboratory measurements in the
observation window, as well as the drug prescriptions were
prepared as features. For the oxygenation indexes (SpO2 and
SaO2), the maximum values were not used since most of them
were close to 100%. The models were trained to predict the
outcome of survival for each patient.

For logistic regression, both L1 and L2 regularizations were
applied. The top 10 most important features in XGBoost were
analyzed to understand the clinical indicators for disease outcomes.

3.4.2 Deep Learning Models
3.4.2.1 Model Design
Since the MIMIC-III and eICU data contain temporal clinical
features, two time-series deep learning models, including
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
bi-directional long short-term memory (LSTM) models
without and with attention (namely Bi-LSTM and Bi-
LSTM_Attn, respectively), were developed to predict survival
of the pneumonia patients. However, due to the limited samples
and discrete features of COVID-19 data, we were not able to
apply these models and had to rely on the traditional models.

For MIMIC-III and eICU data, the clinical features include
vital signs, laboratory measurements and drug usages
(Supplementary Table S1). The clinical data of one-hour
intervals from the observation windows were extracted from
both databases. If there were multiple measurements within a
given hour, their mean values were taken as features. If no data
within the one-hour internal were observed, the mean values of
the entire temporal series were used.

The architecture of the deep learning model (Figure 4) was
developed based on Zhang et al. (Kaji et al., 2019) and the
RETAIN (Choi et al., 2016) model. Taking the bi-directional long
short-term memory (LSTM) model with attention (Bi-
LSTM_Attn) as an example, the hourly data of vital signs and
laboratory measurements in the observation windows were used
as the inputs. Self-attention mechanisms were utilized to
calculate the attention weights of both time-series clinical data
and the discrete drug prescription features. Then both sides were
concatenated by the context vector and a final sigmoid function
was used to make a classification prediction. The model included
three parts: 1) the vital sign and laboratory measurement (VL)
encoder, 2) the drug (DG) encoder and 3) the classification
module, which were introduced in the sections below.

The LSTMmodel without the attention layers (Bi-LSTM) had
a similar but simpler architecture. Since no attention module was
presented, the outputs from the head and tail LSTM modules
were merged with the drug feature vectors and sent to the linear
layers with the sigmoid function for classification.

3.4.2.2 The VL Encoder
To obtain the embeddings of vital signs and laboratory
measurements, we used the bidirectional LSTM (Bi-LSTM)
networks, which combined both the forward and backward
information within a sequence. Given a temporal feature vector
at a specific time (t), Xt

i (i ∈ f1, 2, 3,… ,Ng, t ∈ f1, 2, 3, … ,Tg)
of patient i, the embedding of the input vector X(t)

i was calculated
by the Bi-LSTM model as follows:

h tð Þ
i = Bi − LSTM h t−1ð Þ

i ,X tð Þ
i

� �
The bidirectional output vector h(t)i was defined as h(t)i = ½ h!(t)

i ,
h
 (t)

i �. Since h(t)i contained the sequential information around X(t)
i , in

order to let the model know the importance of each time point in the
observation window, the attention weight of each moment was
calculated by self-attention mechanism. The temporal context vector
ca was calculated as follows:

a tð Þ
i = Softmax WT

ah
tð Þ
i + ba

� �

ca =o
T

i=1
a tð Þ
i h tð Þ

i
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Where WT
a and ba are learnable parameters and a (t)

i is the
attention weight of each time point.

3.4.2.3 The DG Encoder
Given a list of drug prescriptions for each patient as Di = [d0, d1,
d2, …,dM] (di∈{0, 1}, i ∈{1, 2, 3, … , M}), multi-layer artificial
neural networks were used to get the embedding vector of the
prescription vi as vi = [v0,v1,v2,…,vM] follows:

Vi = MLP Dið Þ
Here, the Rectified Linear Unit (ReLU) was utilized as the

activation function. To help the model understand the
importance of the drug prescription features, MLP layers were
used to calculate attention weight bi for the embedding feature
vector Vi of each drug prescription. Then a sum of dot product of
all the embedding vectors Vi and attention vectors bi were
calculated as follows:

bi = Softmax WT
b Vi + bb

� �

cb =o
T

i=1
bi o ̇Vi

WhereWT
b and bb are learnable parameters, ȯ is the element-

wise multiplication and cb is the drug context vector.
Because the sample data we selected is unbalanced, so we use

the class-balanced (CB) loss (Cui et al., 2019) to calculate the
classification loss as follows:
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Loss p, yð Þ = −
1
No

N

i
yilogby i + 1 − yið Þlog 1 − by ið Þð Þ

Bloss p, yð Þ = −
1
Eny

Loss p, yð Þ = 1 − b
1 − bny

Loss p, yð Þ

where N is total sample, b ∈[0,1) is a hyperparameter and ny is
the number of y labels in the sample.

3.4.3 Model Prediction and Evaluation
Since the COVID-19 dataset is a relatively small dataset, the
COVID-19 patients were randomly divided into training
(including validation) and test sets using 4:1 ratio in order to
have enough patients in the test set. For the MIMIC-III and eICU
data, pneumonia patients were randomly divided using 8:1:1
ratio into the training, validation and test sets. The training and
validation sets were combined for 5-fold cross-validations during
the development of traditional machine learning models. For
deep learning models, the training set was used to train the
models; the validation set was utilized to learn and optimize the
hyperparameters and the test set was used to evaluate the models.
The deep learning models contained a single-layer Bi-LSTMwith
256 hidden layers to generate embeddings for temporal features,
and two MLP layers (128 and 103 neurons) to generate
embeddings for the drug prescription features. Both lists of
embeddings were merged and sent to a linear layer of 128
neurons with a sigmoid activation function as the classification
module. The dropout rate of 0.5 was used before the linear layer.
FIGURE 4 | The deep learning model architecture of bi-directional long short-term memory (LSTM) with attention (Bi-LSTM_Attn). It consists of three parts: vital sign
and laboratory measurement (VL) encoder, drug (DG) encoder and the classification module.
April 2022 | Volume 12 | Article 838749
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During training, the Adam optimizer was used with a learning
rate of 0.001, the batch size was set to 32, and the models were
trained by 150 epochs. The area under the receiver operating
characteristic curve (AUROC) and area under the precision-
recall curve (AUPRC) were calculated to evaluate the model
performance. Additional details regarding the evaluation metrics
were attached in Supplementary Materials.
4 RESULTS

4.1 Statistical Analysis of the COVID-19
Data
The statistical analysis for the COVID-19 data was shown in
Table 2. Of the 80 COVID-19 patients, male accounted for
47.50%. The average age was 64.21 ± 20 years with Kolmogorov-
Smirnov normality test p > 0.05, indicating a normal
distribution. Cough (71.25%) and fever (63.75%) were the
most frequent symptoms, while a few patients had other
symptoms, such as shortness of breath (17.50%), diarrhea
(5.00%) and chest pain (3.75%). Some patients had other
diseases, including diabetes (23.75%), heart disease (5.00%),
respiratory system disease (5.00%), other symptoms (28.75%).
The median of eastern cooperative oncology group (ECOG)
score and acute physiology and chronic health evaluation II
(APACHE II) score were 1.00 [IQR, 1.00-2.00] and 5.00 [IQR,
3.00-7.25]. Among the drugs used in the treatment of COVID-
19, arbidol was the most common one (83.75%), followed by
oseltamivir (20.00%) and ribavirin (4.00%). For blood test
results, the medians of albumin, lymphocyte counts and
prothrombin time (PT) were 36.80 g/L [IQR, 33.30-40.65],
1.39×109/L [IQR, 0.97-1.72] and 13.40 seconds (s) [IQR, 13.00-
14.25], respectively.

Of the 80 patients with COVID-19, 13 were severe COVID-19
(SC) patients and 67 were non-severe COVID-19 (non-SC)
patients. The severe patients had an average age of 73.15 ±
13.64 years, while non-severe patients had a younger average age
of 62.48 ± 12.48 years (t-test p < 0.05). Here, age may be a factor
that is associated with the severeness of COVID-19. In addition,
the prognosis scores, including ECOG scores and APACHE II
scores of severe patients, were higher than those of the non-
severe patients both with Kruskal Wallis rank test p < 0.001, as
larger prognosis scores indicate more severe conditions. For
blood test results, albumin and lymphocyte counts were lower
in severe patients than non-severe patients, while the
prothrombin time (PT) was longer in severe COVID-19
patients than non-severe COVID-19 patients (all Kruskal
Wallis rank p values < 0.001).

4.2 Model Performance and Interpretation
for the COVID-19 Data
Figure 5 showed the distribution of AUROC and AUPRC values
of different models after 100 rounds of 5-fold cross-validations
on the COVID-19 data. The hyperparameters of the models
were attached in Supplementary Table S2. All AUROC values
of logistic regression with L1 regularization (LR(L1)), logistic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
regression with L2 regularization (LR(L2)) and XGBoost
models in predicting the severity of patients with COVID-19
were greater than 0.5, and the AUPRC values of LR(L1),
LR(L2) and XGBoost were all greater than 0.25. While
random forest (RF) had slightly worse performance, LR(L1)
(AUROC = 0.986 ± 0.033 and AUPRC = 0.948 ± 0.121), LR
(L2) (AUROC = 0.983 ± 0.032 and AUPRC = 0.931 ± 0.135) and
XGBoost (AUROC = 0.979 ± 0.048 and AUPRC = 0.927 ± 0.154)
were more effective to predict the severity of COVID-19 patients.

For the XGBoost model, we calculated the contributions of
each clinical variables towards the severity of COVID-19 by
information gain, and showed the top 10 most important
features in Figure 6. Results indicate that the APACHE II has
the largest importance, followed by neutrophil counts,
lymphocyte counts and AST (aspartate aminotransferase). In
order to get an interpretable decision tree, we set the parameter
n_estimators to 1 in XGBoost and fed the top 10 features into
XGBoost one by one. Finally, we got the best decision tree from
the APACHE II feature (AUROC = 1.00, AUPRC = 0.833) to
predict the severity of COVID-19 patients (Supplementary
Figure S1). Additionally, the top 10 most important features
from the LR(L1), LR(L2) and RF models were included in
Supplementary Table S3, which were found similar to the top
features from the XGBoost model.

4.3 Model Performance and Interpretation
of the MIMIC-III and eICU Data
For MIMIC-III data, the performance of models was dependent
on the selection of the observation and prediction windows
(Figure 7). From the data point of view, shorter prediction
window or observation window corresponded to more patients
in the test set, especially the survival patients. For model
performance, when the observation window was fixed, the
performance of all models generally decreased as the length of
the prediction window increased. This makes sense since longer
prediction window presents more challenges for the models to
predict the future.

The hyperparameters of LR(L1) and XGBoost models were
attached in Supplementary Table S4 and 10-fold and 15-fold
cross-validation results of these models were included in
Supplementary Table S5. Comparing across different models,
the AUROC values of the traditional machine learning models
(LR(L1) and XGBoost) were higher than the deep learning
models when both the observation and prediction windows
were within 48 hours. However, when both the observation
and prediction window were large (no less than 60 hours), the
Bi-LSTM_Attn model outperformed others in terms of AUROC
[Figure 7(e)]. Since the deep learning models were designed to
learn and infer based on temporal features, it was expected to
obtain a better performance when time windows were longer.

Like before, we calculated the feature importance from the
XGBoost model via information gain and showed the top 10
most important features in Figure 8. Among the 10 features,
norepinephrine, vasopressin, morphine and midazolam were
known drugs for the treatment of patients with pneumonia.
Additionally, we found that the minimum respiratory rates (RR)
April 2022 | Volume 12 | Article 838749
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value, the minimum pH, the average platelet count, the
maximum and average blood urea nitrogen (BUN), and the
lymphocytes minimum were important clinical features affecting
the patient survival with pneumonia in ICUs.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
For eICU data, the performance evaluation of the deep
learning models (Bi-LSTM and Bi-LSTM_Attn) under different
time windows was shown in Supplementary Figure S2.
We found that for the eICU data, the best time window is
TABLE 2 | Statistics of the clinical variables for COVID-19 data.

Variables Overall( n = 80) SC groups (n = 13) Non-SC groups (n = 67) P value

Demographic characteristics
Age, mean (SD) (years) 64.21 (13.20) 73.15 (13.64) 62.48 (12.48) 0.007
Gender, male, n (%) 38 (47.50%) 8 (61.54%) 30 (44.78%) 0.366

Prognostic scoring system, median (IQR)
APACHE II 5.00 (3.00-7.25) 12.00 (11.00-16.00) 5.00 (3.00-6.00) <0.001
ECOG 1.00 (1.00-2.00) 2.00 (1.75-3.00) 1.00 (1.00-1.00) <0.001

Symptoms on onset, n (%)
Chest pain 3 (3.75%) 1 (7.69%) 2 (2.99%) 0.417
Cough 57 (71.25%) 7 (53.85%) 50 (74.63%) 0.180

Diarrhea 4 (5.00%) 2 (15.38%) 2 (2.99%) 0.122
Fever 51 (63.75%) 7 (53.85%) 44 (65.67%) 0.531
Shortness of breath 14 (17.50%) 3 (23.08%) 11 (16.42%) 0.690
Other symptoms 23 (28.75%) 3 (23.08%) 20 (29.85%) 0.747

Drug, n (%)
Arbidol 67 (83.75%) 10 (76.92%) 57 (85.07%) 0.435
Ribavirin 32 (40.00%) 6 (46.15%) 26 (38.81%) 0.759
Oseltamivir 16 (20.00%) 2 (15.38%) 14 (20.90%) 1.000
Other drugs 38 (47.50%) 5 (38.46%) 33 (49.25%) 0.554

Comorbidities, n (%)
Diabetes 19 (23.75%) 3 (23.08%) 16 (23.88%) 1.000
Heart disease 4 (5.00%) 1 (7.69%) 3 (4.48%) 0.448
Hypertension 25 (31.25%) 4 (30.77%) 21 (31.34%) 1.000
Respiratory system disease 4 (5.00%) 2 (15.38%) 2 (2.99%) 0.086
Other diseases 12 (15.00%) 3 (23.08%) 9 (13.43%) 0.390

Laboratory tests (last measurements)
Albumin, median (IQR) (g/L) 36.80 (33.30-40.65) 33.00 (30.30-35.50) 38.60 (34.55-41.25) <0.001
ALT, median (IQR) (U/L) 25.50 (18.00-53.00) 20.00 (14.00-56.00) 26.00 (19.50-51.00) 0.389
APTT, median (IQR) (s) 37.20 (34.60-40.40) 38.80 (36.25-41.95) 36.50 (34.35-40.12) 0.088
AST, median (IQR) (U/L) 25.00 (20.00-35.50) 22.00 (16.00-34.00) 25.00 (20.00-36.00) 0.331
BUN, median (IQR) (mmol/L) 4.30 (3.50-5.45) 8.10 (4.75-10.91) 4.10 (3.50-5.00) 0.005
CD3 T, median (IQR) 76.46 (65.83-83.91) 60.82 (44.78-71.79) 77.85 (67.19-84.56) 0.027
CD4 T, mean (SD) 45.46 (14.10) 42.80 (14.90) 45.77 (14.10) 0.601
CD8 T, mean (SD) 23.87 (10.12) 19.56 (8.31) 24.37 (10.25) 0.237
CK, median (IQR) (IU/L) 61.00 (38.00-88.00) 99.50 (47.00-210.50) 61.00 (38.00-86.00) 0.277
Creatinine, median (IQR) (µmol/L) 76.00 (67.00-89.25) 87.00 (73.00-146.70) 74.00 (67.00-89.00) 0.130
CRP, median (IQR) (mg/L) 3.74 (3.14-18.10) 25.40 (11.97-95.97) 3.37 (2.96-13.45) 0.024
DB, median (IQR) (mg/L) 3.75 (2.70-5.20) 5.30 (4.10-9.60) 3.60 (2.65-4.65) 0.021
Fibrinogen, median (IQR) (g/L) 4.26 (3.29-5.26) 5.01 (3.83-6.21) 4.05 (3.23-5.05) 0.137
Glucose, median (IQR) (mmol/L) 5.59 (5.05-6.54) 6.79 (6.30-7.10) 5.52 (5.04-6.48) 0.089
Hemoglobin, mean (SD) (g/L) 117.99 (16.54) 105.69 (18.88) 120.37 (15.07) 0.003
LDH, median (IQR) (U/L) 187.50 (160.00-222.50) 201.00 (160.00-239.00) 185.00 (160.00-221.00) 0.643
Lymphocyte counts, median (IQR) (109/L) 1.39 (0.97-1.72) 0.68 (0.43-0.84) 1.48 (1.20-1.77) <0.001
Monocyte counts, median (IQR) (109/L) 0.50 (0.35-0.69) 0.43 (0.31-0.70) 0.51 (0.35-0.68) 0.588
Neutrophil counts, median (IQR) (109/L) 3.48 (2.40-4.90) 6.46 (2.76-11.37) 3.40 (2.38-4.46) 0.078
Platelet counts, mean (SD) (109/L) 179.28 (62.48) 166.85 (89.37) 181.69 (56.43) 0.437
Procalcitonin, median (IQR) (µg/L) 0.13 (0.07-0.13) 0.13 (0.13-0.21) 0.13 (0.06-0.13) 0.021
PT, median (IQR) (s) 13.40 (13.00-14.25) 14.60 (14.50-15.65) 13.40 (12.97-14.00) <0.001
TB, median (IQR) (mg/L) 10.95(9.07, 15.53) 15.00(9.70-23.50) 10.60 (8.95-15.00) 0.142
Total protein, median (IQR) (gl-1) 64.90 (60.98-68.90) 58.00 (54.40-63.00) 65.90 (62.45-69.65) 0.007
Troponin, median (IQR) 3.20 (1.65-6.45) 11.20 (8.65-21.70) 2.70 (1.58-5.65) 0.001
TT, median (IQR) (s) 18.00 (17.05-19.00) 17.70 (15.95-19.10) 18.00 (17.10-18.95) 0.441
Uric acid, median (IQR) (mg/L) 267.00 (215.00-326.50) 228.00 (215.00-279.00) 271.00 (215.50-327.50) 0.449
WBCs, median (IQR) (109/L) 5.74 (4.23-7.30) 7.62 (3.48-12.18) 5.53 (4.48-6.87) 0.351
April 2022 | Volume 12 | Article
ALT, alanine aminotransferase; APACHE II, acute physiology and chronic health evaluation II; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; BUN, blood urea
nitrogen; CK, Creatine kinase; CRP, C-reactive protein; DB, Direct bilirubin; ECOG, eastern cooperative oncology group; IQR, interquartile range; LDH, lactate dehydrogenase; non-SC, non-
severe COVID-19; PT, prothrombin time; SC, severe COVID-19; TB, total bilirubin; TT, thrombin time; WBCs, white blood cell counts. For variables with normal distributions (Kolmogorov-
Smirnov normality test p > 0.05), themean and standard deviation (SD, in parentheses) valueswere given, and t-test was used to compare the severeCOVID-19 (SC) group and the non-severe
COVID-19 (non-SC) group. For variables with non-normal distributions, the median and interquartile range (IQR, in parentheses) were provided, and Kruskal Wallis rank test was used to
compare SC vs non-SC groups. For categorical variables, the count and percentage (in parentheses) values were shown, and Fisher’s exact test was utilized to calculate the p values.
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consistent with MIMIC-III data for predicting the mortality of
pneumonia patients during ICU stay (AUROC = 0.856 and
AUPRC = 0.566), which is a 24-hour observation window and
a 12-hour prediction window.

4.4 Visualization of the Attention
Mechanism in the Deep Learning Model
for Predicting MIMIC-III Pneumonia
Since the deep learning model Bi-LSTM_Attn included two
attention layers, we used an example patient to visualize the
attention weights of temporal clinical features from the best
predictive windows (24-hour observation window and 12-hour
prediction window) in Figure 9. For non-temporal drug
prescription features, the top 10 most important features
were ranked by average attention weights and shown in
Supplementary Table S6.
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Figure 9 showed the average vital signs and attention weights
of the patient who suffered from severe pneumonia in MIMIC-
III data, with complications of acute respiratory failure,
congestive heart failure, acute renal failure and other diseases,
and eventually died in the ICU (ICUSTAY_ID = 268985). We
observed that during the first 23 hours of the observation
window, the patient’s heart rate was too high compared to the
normal range (60-100 BMP), possibly due to congestive heart
failure. Since the pneumonia patient suffered acute respiratory
failure, the respiratory rate (RR) increased beyond the normal
range (12-20 BMP), especially in the later part of the observation
window. Though the vital signs fluctuated and changed over
time, the attention weights showed in the bottom row of Figure 9
increased to a relatively larger value after the 17th hour. It
reached its maximum at the 23rd hour, when all the vital signs
of the patients showed a sharp drop afterwards. Though it was
A B

FIGURE 5 | Performance comparison of multiple models during 100 rounds of 5-fold cross-validations on the COVID-19 data. (A) AUROC and (B) AUPRC curve
showing the performance of the classifier using different model using cross-validation on the COVID-19 data.
FIGURE 6 | Top 10 most important features from the XGBoost model on the COVID-19 data. APACHE II, acute physiology and chronic health evaluation I; AST,
aspartate aminotransferase; BUN, blood urea nitrogen; PT, prothrombin time; WBC, white blood cell count; TT, thrombin time.
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still 12 hours before the patient passed away, the model already
picked up some unusual signs at this time point.
5 DISCUSSION

In this study, we collected data of both COVID-19 and other types
of pneumonia and analyzed the clinical variables that may affect
the severity of COVID-19 and other types of pneumonia. Though
the quick detection technology of COVID-19 has been widely
adopted for diagnosis, it is still useful to do a retrospective analysis
on these clinical variables to better understand the disease
characteristics for better prevention towards fatal outcomes.

APACHE II score system is the most commonly used
comprehensive index to assess the severity of pneumonia
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
patients in ICUs. A higher APACHE II score indicates a worse
condition and a greater risk of death for the patient. Wang et al.
(2020) determined that the median of APACHE II in severe
patients with COVID-19 was 17 (IQR: 10-22) and its lower
quartile was slightly greater than the critical value of APACHE
II in Supplementary Figure S1, which indicated that APACHE II
< 8.5 identified by our model could be a useful cutoff to classify
the severity of patients with COVID-19. Studies (Narasaraju et al.,
2011; Liu et al., 2016; Lefrançais et al., 2018) have shown that
excessive activation of neutrophils can release neutrophil
extracellular traps (NETs), and the excessive formation of NETs
can lead to a series of inflammatory reactions. These reactions
may cause permanent damage to the lungs as well as the
cardiovascular and renal systems in COVID-19 patients. In our
results, lymphocytes are the third important factor affecting the
A B

D

E F

C

FIGURE 7 | Performance of different models to predict pneumonia patient survival using different prediction and observation windows based on the test set of
MIMIC-III. The left column showed AUROC values and the right column showed AUPRC values. (A, B) are AUROC and AUPRC of different models under different
24-hour observation windows and different prediction windows, respectively. (C, D) are AUROC and AUPRC of different models under different 48-hour observation
windows and different prediction windows, respectively. (E, F) are AUROC and AUPRC of different models under different 72-hour observation windows and different
prediction windows, respectively.
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severity of patients with COVID-19. During the clinical
observation, the laboratory examination results showed that the
number of lymphocytes in severe patients with COVID-19
decreased significantly, and the numbers of CD3, CD8, and
CD4 T cells also continued to decline, which led to the
aggravation of inflammatory reactions, increased cytokine levels
and seriously damaged lung function (Chen et al., 2020; Tatum
et al., 2020). Neutrophil-to-lymphocyte ratio (NLR) is an effective
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
and convenient inflammatory marker for predicting systemic
inflammation (de Jager et al., 2012; Cataudella et al., 2017;
Tatum et al., 2020). However, NLR can also be used to
determine the severity of the disease in patients with
COVID-19. Liu et al. (2020) found that the NLRs of severe
patients with COVID-19 were higher than non-severe patients.
Severe patients with COVID-19 had symptoms of decreased
lymphopenia and increased neutropenia, which caused the
FIGURE 8 | Top 10 most important features from the MIMIC-III data based on analysis of the XGBoost model. BUN, blood urea nitrogen; RR, respiratory rate.
FIGURE 9 | Clinical features and attention weights of one patient in the 24-hour observation window who passed away after 12 hours (prediction window, not
shown in figure) from MIMIC-III. BMP, beats per minute; DBP, diastolic blood pressure; HR, heart rate; MBP, mean blood pressure; RR, respiratory rate; SBP,
systolic blood pressure.
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increase of proinflammatory cytokine levels in patients. The
cytokine storm may make the immune system to lose control
and damage the host cells, leading to multiple organ failure and
patient fatality (Bermejo-Martin et al., 2020; Tan et al., 2020).
Therefore, clinicians can identify high-risk COVID-19 patients
using NLR. In addition to the clinical indicators discussed above,
other features highlighted in Figure 6 were also found to have
associations with COVID-19. Higuera-De-La-Tijera et al. (2021)
showed the aspartate aminotransferase (AST) levels of severe
COVID-19 patients were significantly higher than non-severe
COVID-19 patients since AST is related to liver function.
Additionally, Bastug et al. (2020) identified total protein and
AST as important clinical indicators of COVID-19 patients
admitted to ICUs. Ou et al. (2020) found that the white blood
cell counts (WBCs) and procalcitonin in severe COVID-19
patients increased significantly, indicating their clinical
predictability of COVID-19 severity. The increase of blood urea
nitrogen (BUN) can lead to renal function injury (STARK, 1980),
which may deteriorate the severity of COVID-19 (Kang et al.,
2021). Lippi and Plebani (2020) reported the procalcitonin levels
of severe COVID-19 patients were twice as much as non-severe
COVID-19 patients, and Oblokulov et al. (2021) found this
indicator helpful to come up with the treatment plan. Zhang
et al. (2020) showed that the prothrombin time (PT) and
thrombin time (TT) of severe COVID-19 patients were
significantly higher than those of non-severe patients, as the
coagulation function were affected in most severe COVID-
19 patients.

Among the top 10 most important drugs for pneumonia,
ipratropium bromide, aspirin and linezolid have treatment
effects. Ipratropium bromide is a safe and effective drug in the
treatment of chronic obstructive pulmonary disease (COPD)
(Taylor et al., 2001). When ipratropium bromide was used in the
treatment of acute exacerbation of COPD, blood oxygenation did
not decrease initially (Ogale et al., 2010), which helped to improve
lung function and reduce the risk of pneumonia. Aspirin has
antiplatelet and anti-inflammatory effects, which can reduce the
risk of cardiovascular disease (Gasparyan et al., 2008). A large
primary care institution in the UK has shown that aspirin can
prevent pneumonia patients from cardiovascular disease, thus
improving the survival rate (Hamilton et al., 2021). Meanwhile,
aspirin and macrolide drugs have a synergistic effect. For ICU
patients with severe pneumonia, taking aspirin and macrolide
drugs at the same time can produce different complementary
effects and moderate the inflammatory reaction caused by
pneumonia (Falcone et al., 2019). The clinical and microbial
experiments of Wunderink et al. (2012) showed that linezolid
was more effective than vancomycin in the treatment of
pneumonia. On the contrary, fluticasone propionate can
aggravate the condition of pneumonia. Fluticasone propionate is
a kind of inhaled corticosteroids (ICS) for the treatment of chronic
obstructive pulmonary disease (COPD). However, it may cause
bacterial infection of the respiratory system due to poor dissolution
and fluid lining in the airway and increase the risk of pneumonia
(Janson et al., 2017).

COVID-19 is an acute respiratory infectious disease caused by
viral infection (Fauci et al., 2020), while a regular pneumonia is a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
respiratory infectious disease caused by bacterial or viral infection
(Bartlett and Mundy, 1995). They may have different pathogens
and treatment strategies. Despite the differences, there are
similarities among the top contributing clinical features of the
two. It is observed that lymphocytes are the third most important
feature to predict COVID-19 (Figure 6) as well as the top 10th
most important features for pneumonia (Figure 8). It was
reported that both COVID-19 and regular pneumonia patients
may experience inflammatory reactions caused by infection and
result in lymphopenia (Yamasaki et al., 2020; Zhao et al., 2020). In
terms of treatment, COVID-19 is mainly treated with antiviral
symptomatic support approaches (Kim et al., 2020), while other
types of pneumonia were usually treated with sensitive antibiotics
according to the pathogen (Lutfiyya et al., 2006). A few drugs may
be useful to treat both conditions. Aspirin, for example, can
reduce inflammation of COVID-19 and other pneumonia by
inhibiting the synthesis of prostaglandins or other substances that
may cause inflammatory reactions (Hamilton et al., 2021).
Among the top 10 important features of both datasets shown in
Figure 6 and Figure 8, lymphocytes and blood urea nitrogen
(BUN) are shared indicators to predict the patient survival in
MIMIC-III as well as the severity of COVID-19. For the COVID-
19 data, except APACHE II, the other nine are laboratory
measurements, while for the MIMIC-III data, there are six
laboratory measurements and four drug treatment features
(norepinephrine, vasopressin, morphine and midazolam).
While the laboratory measurements are very important clinical
features to predict disease outcomes in both cases, compared to
COVID-19 data, the drug treatment features for MIMIC-III
pneumonia patients gained more importance and may be
effective in alleviating the condition of pneumonia. Since
COVID-19 is a relatively new disease and drug treatments are
still in active development, and the severity levels of COVID-19
and pneumonia data are different, it makes sense that more drug
features were found in MIMIC-III pneumonia data. The
understanding of both the similarities and differences of
COVID-19 and other pneumonia may help us to monitor the
critical clinical variables, make effective treatment plans and
minimize fatalities. In the future work, we hope to extend the
models to other disease areas and aid doctors to better understand
diseases and make timely and effective clinical decisions.

The current research has a few limitations. The COVID-19
data from Wuhan, Hubei Province has a small sample size, and
they only represent a very local patient pool and may not be
applicable for patient groups in other regions or other COVID-19
variants. Similar limitation may also exist in the MIMIC-III and
eICU database as their data are mainly from the United States.
Thus, the conclusions of this study need to be tested in other large
databases, cohorts and broader regions, to better identify the
similarity and differences between COVID-19 and other types of
pneumonia and the clinical indicators associated with them.
6 CONCLUSION

In this study, we collected pneumonia data from three sources,
the COVID-19 clinical records, eICU and MIMIC-III. Statistical
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analysis was carried out to analyze the distributions and
differences of clinical variables based on disease severeness. We
developed multiple machine learning models to predict the
severity of COVID-19 patients and the mortality of patients
with other types of pneumonia in ICUs. The models were
evaluated and compared by multiple metrics and different
settings. We further analyzed the important features and
interpreted the models. For the pneumonia patients, we found
the same optimal time window to predict the death of ICU
patients from both MIMIC-III and eICU (24-hour observation
window and 12-hour prediction window). In addition, we
further introduced deep learning models with two levels of
attention mechanisms to visualize and interpret the temporal
clinical variables via attention weights for pneumonia. It is
observed while differences remain between COVID-19 and
other pneumonia, lymphocytes are important biomarkers in
both cases. This study provided a comprehensive analysis and
comparison between COVID-19 and other types of pneumonia,
which may have implications to aid clinicians for better disease
understanding and clinical decision making.
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