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Abstract: Metastasis is a complex process by which cancer cells escape from the primary tumor to
colonize distant organs. RAC1 is a member of the RHO family of small guanosine triphosphatases
that plays an important role in cancer migration, invasion, angiogenesis and metastasis. RAC1
activation has been related to most cancers, such as cutaneous melanoma, breast, lung, and pancreatic
cancer. RAC1P29S driver mutation appears in a significant number of cutaneous melanoma cases.
Likewise, RAC1 is overexpressed or hyperactivated via signaling through oncogenic cell surface
receptors. Thus, targeting RAC1 represents a promising strategy for cutaneous melanoma therapy,
as well as for inhibition of other signaling activation that promotes resistance to targeted therapies.
In this review, we focus on the role of RAC1 in metastatic cutaneous melanoma emphasizing the
anti-metastatic potential of RAC1- targeting drugs.
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1. Introduction

Melanoma is the most aggressive form of skin cancer representing more than 80% of
deaths in cutaneous malignancies [1]. Metastasis is a complex process involving several
steps, including migration, invasion, EMT (Epithelial-Mesenchymal Transition), angiogen-
esis, survival, plasticity and colonization of secondary tissues [2]. Metastatic cutaneous
melanoma is a lethal disease with low survival rates, due to rapid acquisition of resistance
to most available therapies [3].

Rho GTPases are important molecules that regulate cellular functions such as growth,
motility, survival, migration, invasion, and metastasis thereby affecting tumor progres-
sion [4–7]. Rho GTPases are molecular switches that cycle between an active GTP and
an inactive GDP bound form. RAC1 is one of the best characterized Rho GTPases that
regulate crucial processes for melanoma tumorigenesis and metastasis. RAC1 activation
is tightly regulated by activators, including guanine-nucleotide exchange factors (GEFs),
and inhibitors, GTPase-activating proteins (GAPs) and guanine-nucleotide disassociation
inhibitors (GDIs). In addition, RAC1 is regulated by modifications at its C terminus, includ-
ing palmitoylation, carboxymethylation, and geranylgeranylation, as well as numerous
post-translational modifications that influence its localization, activity, and ability to bind
its effectors. RAC1 expression and activity are increased in human malignancies which in
some cases correlates with aggressiveness and poor prognosis.

RAC1 signaling pathway is hyperactivated in human cancers and promotes tumor
initiation, progression, and metastatic dissemination [8]. RAC1 point mutations and
deregulated stability or subcellular localization have been identified as mechanisms that
contribute to tumorigenesis and metastasis. Indeed, The Cancer Genome Atlas (TCGA)
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data shows that RAC1 is upregulated or mutated in over 10% of human cancers, including
melanoma, glioblastoma, skin, esophageal, gastric, bladder, head and neck, liver, pancreatic,
and prostate carcinomas [9,10]. RAC1P29S is the third most commonly mutated codon
in human cutaneous melanoma, after BRAF V600 and NRAS Q61, and one of the most
prominent driver mutations in RAC1 with a frequency of approximately 5% and up to 10%
in chronically sun-exposed melanomas [11].

RAC1P29S mutation leads to gain of function and enhances binding to target proteins
PAK1 and MAP3K11 (MLK3) activating downstream RAC1 signaling. RAC1P29S has a
particular role in early transformation, enhancing cell migration and proliferation [12].
Moreover, this mutation confers resistance to RAF and MEK inhibitors, thus having sig-
nificance in clinical therapeutic strategies [13]. Interestingly, expression of RAC1P29S in
melanoma patients correlates with PD-L1 upregulation contributing to evading antitumor
immune response and potentially serving as a predictive biomarker for therapy resistance
in melanoma [14].

RAC1 has been implicated in RAS-induced neoplastic transformation. Moreover,
malignant melanocytes have elevated RAC1 activity during migration, invasion and metas-
tasis. It has been described that deregulation of GEFs, such as Dbl, Vav, Trio, Ect2, Tiam-1
and P-REX-1 also contribute to aberrant RAC1 signaling in many types of tumors [15–17].

In addition, RAC1 signaling can modulate cell motility and invasion through a variety
of mechanisms such as promoting membrane protrusions and regulating focal adhesions.
RAC1 activation has also been shown to regulate the mode of cell movement to promote
colonization of tumor cells. Efficient regulation of RAC1 signaling may be required for cell
–cell adhesion, tumor cell migration and invasion during metastasis. Inhibition of RAC1
activity could represent an opportunity to develop novel therapeutic approach to target
different stages of tumor cell metastasis [18].

During tumor progression, a significant remodeling of the extracellular matrix (ECM)
is evident [19]. RAC1 is involved in invadopodia-mediated ECM degradation [20]. RAC1
activation drives motility by regulating lamellipodia formation, focal adhesions and MMP
expression [21].

The best-understood effectors for RAC1 are the p21-activated protein kinases (PAKs).
PAKs regulate a multitude of cellular processes including cell motility, survival, prolif-
eration, and organization of the cytoskeleton [22]. PAK1 is overexpressed in a subset of
BRAF wildtype melanomas. RAC1 mutant human melanoma cells are resistant to clinical
inhibitors of BRAF but are uniquely sensitive to PAK inhibitors [23].

RAC1 can be shuttled from the cytoplasm to the nucleus and abnormal localization,
particularly in the nucleus, has been detected in cancer cells. In the nucleus, RAC1 can
induce nuclear alterations through nuclear actin promoting nuclear plasticity during
invasiveness [24]. Moreover RAC1 localization and activity can be regulated by scaffolding
mechanisms. Temporal and spatial localization of RAC1 is tightly regulated by protein-
protein interactions [25,26].

RAC1 signaling is also involved in angiogenesis and required for vertical blood vessel
sprouting associated with tumor-induced angiogenesis [27]. RAC1 plays an important role
in the development of resistance to anti-VEGF therapy, suggesting that the combination of
VEGF/VEGFR-targeted therapies with a RAC1 inhibitor may improve the efficacy of the
anti-metastasic therapies [28].

In this review, we focus on the role of RAC1 in cutaneous melanoma metastasis,
advances in our understanding of key signaling pathways altered by activated RAC1, and
its potential clinical therapeutic implications in metastatic cutaneous melanoma treatment.
RAC1 hyperactivation plays an important role in regulating resistance to targeted therapies,
as well as in the suppression of antitumor immune response, and this highlights the critical
need to develop new therapeutic strategies to target RAC1 signaling (Figure 1).
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RAC1-GTP binds to Bcl-2 leading to the accumulation of S70pBcl-2. Overexpression of 
RAC1 in melanoma cells increased ROS levels that inhibited PP2A preventing thereby 
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PI3K selective inhibitors, including PI3Kα, δ and γ, appeared to be less effective. Another 
study relating AKT signaling to survival described how melanocytes with endogenous 
RAC1P29S had a higher survival rate when cultured in the absence of growth factors or 

Figure 1. RAC1 signaling in metastatic cutaneous melanoma. Schematic diagram of RAC1 activation regulating tumor
growth and survival, migration and invasion, angiogenesis and therapy resistance in cutaneous melanoma.

2. RAC1 Pathway Activation in Melanoma Formation

There is a growing body of evidence indicating that an enhanced activation of RAC1,
either through its overexpression, its hyperactivation by GEFs or the appearance of the P29S
mutation, contributes to cutaneous melanoma formation, often associated with activating
mutations in BRAF or NRAS, or inactivating mutation of NF1 [13,14]. Although the exact
downstream pathways by which RAC1 exerts its effects are still being unravelled, there are
multiple studies pointing to possible mechanisms.

One of the possible signaling pathways of RAC1 in the promotion of melanoma is
through its binding to Bcl-2. It has been shown that Bcl-2 phosphorylated at serine-70
(S70pBcl-2) confers apoptosis resistance to cancer cells [29]. Chong et al. described how
RAC1-GTP binds to Bcl-2 leading to the accumulation of S70pBcl-2. Overexpression of
RAC1 in melanoma cells increased ROS levels that inhibited PP2A preventing thereby
dephosphorylation of Bcl-2. The authors describe a positive feedforward loop between
RAC1-GTP and S70pBcl-2 sustaining an anti-apoptotic signaling in these cells [30].

In addition, RAC1P29S has been reported to increase the expression of PD-L1, not only
with exogenous expression of RAC1P29S in vitro, but also with endogenous expression in
melanoma patients. The exact mechanism by which the oncogene increases the levels of
PD-L1 is still unknown, but the authors postulate that this increment helps melanomas to
evade the immune system and thereby facilitates its growth [14].

A direct target protein of RAC1 is the lipid kinase phosphatidyl inositol-3 kinase
(PI3K)-β [31,32]. Indeed, treatment with selective inhibitors for PI3Kβ in melanoma cell
lines harboring the RAC1P29S mutation showed a decrease in proliferation [33]. Other
PI3K selective inhibitors, including PI3Kα, δ and γ, appeared to be less effective. Another
study relating AKT signaling to survival described how melanocytes with endogenous
RAC1P29S had a higher survival rate when cultured in the absence of growth factors or
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in an anchorage-independent condition. With the use of siRNA and small molecules, the
authors were able to associate these events to AKT signaling [34].

RAC1P29S can induce ERK phosphorylation in melanocytes [9]. This capacity of
activating MAPK pathway also plays a role in protecting melanoma cells with RAC1 and
BRAF mutations from apoptosis when treated with RAF inhibitors. The authors claim
that RAC1P29S sustained the levels of pMEK and pERK in the presence of inhibitors and
that these levels decreased following RAC1P29S knockdown [13]. In line with the role
of RAC1 in this MAPK pathway are the PAKs, one of the best characterized effectors for
RAC1 [22]. These proteins promote, among other processes, cell survival and proliferation
by phosphorylating different substrates. PAKs have been described as key components of
the ERK pathway, not only due to their kinase activity (they are able to phosphorylate c-
RAF at S338 and MEK1 at S298), but also to their scaffolding function [35]. Inhibiting PAKs
function with Frax-1036 in melanoma cells harboring RAC1P29S mutation, resulted in
marked reduction of proliferation and viability. These results were corroborated in in vivo
xenograft experiments [23]. Lionarons et al. also described decreased proliferation after
genetically inhibiting PAK in their animal model [34]. These results point to a RAC1-PAK-
MEK-ERK pathway in the formation of melanoma.

In this last study, the authors also identified another signaling pathway related to the
promotion of survival in melanocytes and melanoma cells, independent of PAK or AKT.
RAC1P29S activates a WAVE-ARP2/3-SRF/MRTF cascade that triggers a transcriptional
program switching the cells to a mesenchymal phenotype characterized by resistance
to apoptosis.

3. RAC1 Signaling in Tumor Cell Migration and Invasion

Cell migration is required for many processes such as embryogenesis or wound heal-
ing, but when deregulated it contributes to dissemination of cancer metastases. Melanoma
cells can invade not only the dermis, but also other organs such as the lungs, the liver
or the brain [36]. RAC1, as a pivotal regulator of the cytoskeleton, plays a main role in
this process. It drives motility by promoting among others, lamellipodia formation, focal
adhesions and MMP expression [37].

Tumor cells can switch between two different modes of movement. RAC1 is re-
sponsible for directing mesenchymal movement, characterized by an elongated cellular
morphology and the requirement of extracellular proteolysis. Sanz-Moreno et al. dis-
covered that when activated, RAC1 suppressed RHOA dependent amoeboid movement
through decreasing actomyosin contractility. An important RAC1 effector is WAVE2, a
member of the WASP-family verprolin-homologous proteins. These proteins regulate the
actin cytoskeleton and therefore have an important role in cell migration and invasion.
The authors were able to trace decrease in phosphorylation of Myosin Light Chain (MLC)
to WAVE2 [38]. Another study pointing to the importance of WAVE2 as a RAC1 effector,
described how in mouse melanoma cells with ectopic overexpression of constitutive active
RAC1, there was an increase in invasiveness that was reverted by WAVE2 RNAi [39].
Regulation of the cytoskeleton by WAVEs takes place through the activation of the actin nu-
cleation complex ARP2/3 [40] which in turn leads to the activation of SRF/MRTF inducing
a transcription program in melanocytes that leads to mesenchymal transition [34].

Another pathway regulated by RAC1 that plays an important role in melanoma is
PI3K-AKT, which has also been described to play a role in EMT [41] and migration [42,43].
PI3K -RAC1 activation regulates EMT in melanoma cells and promotes metastasis.

Regarding MMP expression, there is a study that relates MMP-2 to RAC1 in melanoma
cells. The authors saw how P-REX1 (PIP3-dependent RAC exchange factor-1), a guanine
nucleotide exchange factor that activates RAC1, regulated cell migration and invasion. Cells
bearing overexpression of P-REX1 had increased RAC1-GTP, p-PAK1, p-p38 and MMP-2
levels. To further confirm their results, they used RAC1 and p38 inhibitors in control
cells and in P-REX1 knockdown cells. Control cells exhibited a pronounced inhibition in
migration and invasion, whereas P-REX1 knockdown cells showed no changes. These
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results highlight the importance of the P-REX1/RAC1/PAK1/p38/MMP-2 pathway in
migration and invasion of melanoma cells [43].

RAC1 regulation of invadopodia in melanoma is controversial. Revach et al. ob-
served how expression of wildtype RAC1 in cells led to invadopodia formation, whereas
RAC1P29S harbouring cells, with higher migration rate, showed suppressed invadopodia
and matrix degradation, but enhanced lamellipodia formation. These confusing results
point to different signaling pathways for wildtype and mutant RAC1. Disassembly of
invadopodia has been related to a TRIOGEF-RAC1-PAK1-cortactin pathway [44]. Increased
number of lamellipodia in melanoma cells expressing mutant RAC1 compared to wildtype
has also been described by Mohan et al. [45]. In this study the authors describe how
RAC1P29S induced an enhanced lamellipodial branched actin network conferring the
cells higher migration and the ability to sequester and phosphoinactivate Merlin, a tumor
suppressor known to downregulate cyclin D1 and prevent cell cycle progression [46]. Inter-
estingly, the authors demonstrate how for the inactivation of Merlin, both PAK activation
and the branched actin polymerization driven by mutated RAC1, are necessary. RAC1
through PAK1, Merlin and the cytoskeleton renders the melanoma cells a higher metastatic
potential and higher proliferation rate of metastatic cells.

RAC1 not only exerts its pro-metastatic effect through the actin cytoskeleton, but
also through its ability to act on the microtubule cytoskeleton. We showed how through
PAK1, constitutive active RAC1 acted on the microtubules, and through the Linker of
Nucleoskeleton and Cytoskeleton (LINC) complex, connected to the nucleoskleton and
induced nuclear plasticity. This allowed the cells to pass through smaller pores and
promoted a more invasive phenotype. Disrupting the LINC complex prevented melanoma
cells from undergoing invasion [47].

4. RAC1 Signaling in Angiogenesis

Angiogenesis, the process by which the formation of new blood vessels arising from
pre-existing vasculature occurs, is essential for tumour growth and dissemination [48].
This neovascularization is crucial to maintain oxygen and nutrients supply, and it might
serve tumoral cells as a path to colonize distant organs.

Capillary formation is tightly controlled by a pro- and anti- angiogenic factors balance,
yet this changes during tumour progression, where the scale tilts towards a pro-angiogenic
outcome (angiogenic switch) [49], which ultimately regulates endothelial cells proliferation,
survival and migration [50]. Some molecules have been highlighted as pro-angiogenic
factors during tumour progression, such as RAC1, MMPs, TIMP, and NCK1 [51].

Although other Rho family members are also involved in cancer-related angiogenesis,
RAC1 has been proven to be essential in this process, since its activation controls endothelial
cell morphogenesis and motility to form a lumen [52,53]. Accordingly, RAC1 endothelial
deletion leads to embryonic mortality [54] as a consequence of defects in major vessel
formation and absence of small branched vessels, due to cell migration impairment likely
mediated by an F-actin dependent mechanism [55].

Moreover, RAC1 is crucial to coordinate endothelial cell–cell adhesion into vessel
structures during capillary formation [56]. Hence, with dominant-negative RAC1 mutants,
vascular endothelial cells are unable to endure the morphogenic modifications needed for
capillary organization, whilst RHO and CDC42 do not affect the same processes [57].

For a blood vessel to form, Matrix Metalloproteases (MMPs) are required to degrade
and remodel the vascular basement membrane and ECM, which in turn allows endothelial
cell migration and invasion into the surrounding tissue [58]. During this process pro-
angiogenic factors such as Vascular Endothelial Growth Factor (VEGF), Transforming
Growth Factor-Beta (TGF-β) and others are released, activating a downstream signaling
cascade involving RAC1 [59].

Hypoxia enhances RAC1 activity in cancer cells [60], which in turn is required for
HIF1 accumulation [61–63]. Additionally to being downstream of VEGF, under hypoxic
conditions, there is a positive feedback loop where RAC1 can also upregulate VEGF and
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other angiogenic factors expression, such as Nitric Oxide Synthase (NOS), Platelet-Derived
Growth Factor-Beta (PDGF-β) and Ang-2 in a HIF1-dependent manner [64]. Thus, RAC1
overexpression is associated with high levels of VEGF and Vascular Endothelial Growth
Factor Receptor (VEGFR) [65]; whereas its downregulation in vascular endothelial cells
causes VEGF-mediated tube formation impairment as well as cell migration, invasion and
proliferation inhibition in vitro [66].

RAC1 is also able to modulate VEGF by promoting Reactive Oxygen Species (ROS)
production via NAD(P)H oxidase in vascular cells [67]. Then, VEGF binds VEGFR2 whose
phosphorylation in turn activates downstream signalling molecules such as ERK1/2, Akt
and ROS.

Moreover, it has been demonstrated that IQ motif containing GTPase Activating
Protein 1 (IQGAP1), a scaffold protein that harbours a RAC1 binding domain, binds directly
to VEGFR, mediating ROS-dependent endothelial migration and proliferation [68], while
IQGAP1 knock-out prevents choroidal neovascularization caused by the VEGFR2-RAC1
signalling axis [69].

PAKs have been found to be essential angiogenesis regulators [22], helping in mouse
post-stroke recovery [70]. In this regard, the RAC1-PAK1 pathway has been demonstrated
to be involved in anti-VEGF (Bevacizumab) and anti-VEGFR (Sunitinib) drug resistance,
since its inhibition lessens stem cell properties and overcomes therapy resistance in prostate
cancer [28].

Despite being a promising therapeutical target, the usage of anti-angiogenic com-
pounds in cancer clinical trials yielded disappointing results [71]. Targeted therapy against
RAC1 and its associated signalling pathways needs to be further investigated as it may
prove useful in human diseases involving anomalous vasculature formation and solid
tumour treatment.

5. RAC1 Targeting Therapies and Therapy Resistance

The identification of RAC1P29S substitution as the third most recurrently observed ac-
tivating mutation in cutaneous melanoma [72], has opened new therapeutic opportunities.
Nevertheless, like other small GTPases, to target RAC1 protein itself turns out challeng-
ing. Even so, other therapeutical strategies have been used to treat tumours bearing this
signature, such as: preventing RAC1 localization at the plasma membrane, hampering
GTP binding, blocking GEF/RAC1 interaction or targeting its effector molecules (Figure 2,
Table 1) [10].

Table 1. Compounds developed targeting RAC1.

Compound Name Structure Target Mechanism of Action References

Blocking GEF/RAC1 Interactions

1A-116
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Table 1. Cont.

Compound Name Structure Target Mechanism of Action References

Compound 4
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Table 1. Cont.

Compound Name Structure Target Mechanism of Action References

Targeting RAC1 Effectors

PF8055 PAK PAK inhibitor [23]
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5.1. Preventing RAC1 Localization

To exert its biological activities RAC1 requires membrane targeting, being this associa-
tion achieved via carboxyl-terminal lipid modifications. Regarding its plasma membrane
translocation, it is mediated by geranylgeranyl transferases type I (GGTI) that trigger RAC1
prenylation [84].

Owing to the importance of post-translational modifications mediating RAC1 subcel-
lular localization and activation, several compounds able to block these lipid modifications
have been developed. Among them, GGTI inhibitors have demonstrated promising in vitro
and preclinical outcomes [86], exerting anti-tumorigenic effects in human pancreatic and
non-small cell lung cancer xenograft mouse models [88,89]. Conversely, in some cell types,
it has been shown that GGTI blockade activates RAC1 [90]; this could be a plausible
explanation for the inefficacy shown by GGTI2418 in clinical trials [91].
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Impairing isoprenoid synthesis by using statins to block HMG-CoA reductase also
reduces RAC1 membrane association and activity [85]. In this regard, Simvastatin represses
RAC1-dependent MMP-1 production and reduces RAC1 GTP-bound levels [92]. It has
been shown that with the mode of action of prenylation-independent statins the observed
effects would be due to nuclear RAC1 degradation [93].

Prenylation prepares RAC1 for S-palmitoylation, which is mediated by Palmitoyl
Acyltransferases (PATs), enhancing its stability and membrane association. In fact, RAC1
palmitoylation inhibition interferes with its localization and suppresses RAC1-mediated cell
migration [86,94]. Several PAT inhibitors have been developed [61,62] and their usage has
been shown to increase RAC1 perinuclear localization whilst decrease RAC1 GTP content.

Nevertheless, due to prenylation and palmitoylation, key roles modulating pro-
tein localization and activity, it is necessary to further investigate the consequences of
RAC1 inhibition.

5.2. Hampering Nucleotide Coupling

RAC1 binding to GTP causes its activation, inducing conformational changes that
allow attachment of downstream effectors [63]. EHT-1864 is an inhibitor of the Rac family
GTPases and blocks activation by direct binding to all RAC isoforms [83]. Critically, it
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has been shown to block RAC1-mediated transformation [64], although it has also shown
off-target effects [83].

5.3. Blocking GEF/RAC1 Interactions

Considering GEFs key role coordinating RAC1 signalling and the benefit of inhibit-
ing certain RAC1 functions, blocking GEF-RAC1 interactions represents an interesting
therapeutic option.

NSC23766, the first selective RAC1-GEF blocking agent discovered, inhibits RAC1
interaction with TIAM1 and TRIO [79], countering RAC1 tumorigenic effects in several
cancer models [5]. Regardless of its effects, NSC23766 potency is not sufficient to use
it in clinical applications [95]. This encouraged in silico screening approaches to look
for more potent RAC1-GEF inhibitors, leading to the discovery of ZINC08010136 and
ZINC07949036 molecules that block RAC1-TIAM1 interaction without affecting RHOA and
CDC42 activation [81]. Another inhibitor that was identified, known as “Compound 4”,
impeded RAC1 binding to TIAM1, TRIO and VAV2 [77]. This compound has demonstrated
to repress cell adhesion and RAC1-mediated cellular events as well as RAC1-PDGFβ-
mediated lamellipodia formation [78].

ZINC69391, another virtually screened RAC1-GEF blocking agent, impedes RAC1-
TIAM1 binding and efficiently inhibits highly metastatic breast cancer cell proliferation,
cycle progression and migration, showing anti-metastatic effects in mouse models. A
more potent ZINC69391 analog, 1A-116, that blocks RAC1-REX1 interaction, has shown
anti-metastatic effects in breast cancer models [73].

ITX3 is another blocking agent that impedes RAC1-TRIO binding, although it is not a
good candidate for clinical designs due to its low potency [80].

EHop-016, discovered by optimization of NSC23766 chemical structure, prevents
RAC1-VAV2 binding suppressing RAC1-driven migration of metastatic cancer cells [75].
Nevertheless, these effects could be due to its promiscuity as this compound has also been
proven to lessen PAK1 activation and to target CDC42 [76].

Another NSC23766 derivative, MBQ-167, has demonstrated deep growth inhibition of
xenografted breast cancer cells [96].

Moreover, RAC1-DOCK1 binding blockade genetically or pharmacologically, by us-
ing TBOPP, has demonstrated to cancel RAC1P29S nucleotide exchange and to lessen
melanoma and breast cancer matrix invasion [74].

5.4. Targeting RAC1 Effectors

Regardless of attempts to target RAC1 activators or RAC1 itself, inhibition of specific
RAC1-effector interactions is, to date, the most effective and direct approach for blocking
RAC1 outcomes without affecting other downstream signalling pathways.

Among these effectors, the best described druggable RAC1 effectors are the PAKs,
which take part in ERK, β-catenin, Aurora A and Merlin activation. In these regards,
PAK inhibitors have shown sensibilization of RAC1P29S mutant melanoma cell lines and
xenografts [23]. Considering PAK2 key role in cardiac function, its clinical application
is questionable; nevertheless, PAK1 inhibitors might be refined for RAC1-driven cancer
treatment [97].

Therapeutic potential of RAC1-mediated ROS production inhibition pushed the hunt
for RAC1-p67phox interaction inhibitors, such as Phox-I1 that has been shown to inhibit
ROS generation in neutrophils [98]. In addition, a RAC1 agonist, called Deacetylepoxydiene
(DA-MED), has been developed and its usage induced apoptosis in NSCLC cells due to a
huge production of ROS 2 [82].

Activation of SRF/MRTF transcriptional circuit and WAVE2/ARP2/3 actin axis trig-
gered by RAC1P29S, induces a melanocytic to mesenchymal swap and actin filaments
organization that, in turn, facilitates cell migration and metastasis. This way, MRTF de-
pletion or use of SRF/MRTF inhibitors (CCG-1423 and CCG-203971) in melanoma cells
abolished melanocytic to mesenchymal transition and PLX4720 co-treatment with CCG-
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257081 overcame tumour growth in mice [34]. However, SRF/MRTF inhibitors mechanism
of action is unknown as they have been shown to bind Pirin [99] a transcription factor impli-
cated in melanoma cells senescence, migration and progression [100,101]. Moreover, actin
nucleation and/or polymerization inhibition, for example targeting ARP2/3 or formins,
could be used in the treatment of RAC1 mutant tumours [45].

Regarding the PI3K network, RAC1 activates AKT by selectively interacting with
PI3Kβ [31]. Considering that selective PI3Kβ inhibitors were able to prevent melanoma cell
proliferation and migration driven by mutant RAC1 but not by mutant BRAF, whilst PI3Kα

inhibitors had the opposite effect [87]; and restricted PI3K inhibitors activity in RAC1P29S
melanocytes [34], it would be interesting to further investigate PI3K inhibitors.

Overall, it has been proven the therapeutical advantage of targeting specific RAC1-
effector interactions, while the development of more potent inhibitors that selectively target
RAC1 signalling cascades is still necessary.

5.5. Therapy Resistance

Cancer therapy efficiency has considerably improved thanks to the usage of molecu-
larly targeted drugs. Nonetheless, the main cause of cancer relapse is the appearance of
drug resistance which notably lessens treatment efficacy and even drives it to failure.

Evidence from a clinical study of 45 melanoma patients [102] pointed out RAC1P29S
status as a vemurafenib and dabrafenib resistance marker that might help to prognosticate
patients response to targeted therapy. Moreover, it has been demonstrated that mutant
RAC1 can cause ERK phosphorylation in melanocytes [9] and support MAPK signalling in
the presence of RAF inhibitors, as overexpression of mutant RAC1P29S in A375 cells raised
phosphor-MEK1/2 levels in presence of dabrafenib, thus conferring resistance to MAPK
inhibitors in vitro [13,34].

RAC1P29S triggers the PAK, AKT and WAVE-ARP2/3-SRF/MRTF signalling cas-
cade, inducing a switch from a melanocytic to a mesenchymal-like behavior. As a result,
melanoma cells acquire improved tumorigenic capacities due to apoptosis suppression
and BRAF inhibitor resistance [34]. In the last few years some SRF/MRTF inhibitors have
arisen [103,104] and been used in several preclinical models [105]. In this regard, these
molecules could be used in the clinic together with BRAF inhibitors to address melanoma
resistance [95].

Regarding immune therapy resistance, whereas PD-L1 expression has been demon-
strated to be a poor prognostic factor for malignant melanoma [106], Vu et al. [14] found
PD-L1 to be upregulated when RAC1P29S was expressed, whereas it was downregulated
when RAC1P29S was depleted. Moreover, using melanoma patient samples in TCGA, they
identified a positive correlation between PD-L1 expression and RAC1P29S status when com-
pared to wildtype and other RAC1 mutants. These observations suggest that RAC1P29S
mutation could be promoting an antitumoral immune response suppression [14].

Therefore, it may be valuable to evaluate clinically RAC1 mutational signature as a
predictive biomarker for MEK/RAF inhibitor and anti-PD-1 and PD-L1 therapy resistance
in melanoma patients.

Eventually, considering the latest boost in the development of RAS-targeting inhibitors,
it isn’t unthinkable that direct inhibitors for mutant RAC1 could arise. Those therapies
would attempt avoiding the appearance of drug resistance related to RAC1 mutations,
procuring a new molecular weaponry against cancer.

6. Conclusions and Perspectives

An overwhelming body of data indicates that RAC1 is involved in tumorigenesis,
proliferation, metastatic dissemination as well resistance to targeted therapies. Thus, the
identification of RAC1 driver mutations in melanoma opened new therapeutic avenues for
metastatic melanoma treatment, highlighting the need for the development of potential
drugs to support personalized treatment approaches based on RAC1 inhibition.
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Interestingly, the last studies indicated the role of RAC1 activation in oncogenic
signaling through some expected effectors, such as the PAKs, and new candidates like
SRF/MRTF, which highlights an important link between actin cytoskeleton and oncogenic
transcriptional events. These findings suggest new therapeutic strategies to treat cancers
driven by this mutation. However, because neither PAK and SRF/MRTF inhibitors are
currently in clinical trials, there is still much work to do to translate these findings into
the clinic.

In addition, it has been described that there is a correlation between mutant RAC1
and PD-L1 expression, indicating that the potential use of RAC1 inhibitors in combination
with anti-PD/PD-L1 antibodies or other agents that facilitate antitumor immune responses,
could represent one potential treatment for melanoma. However, additional studies would
be required to check the effectiveness of RAC1 inhibitors as a new immunotherapy treat-
ment for melanoma.

Future work will need to determine the role of RAC1 in therapeutic resistance, and the
possibility of blocking RAC1 signaling inhibiting specific GEFs, and direct effectors, such
as PAK, PI3K, and specific proteins that regulate actin polymerization. Moreover, further
studies might be done to develop direct inhibitors of mutant RAC1.

In summary, the overwhelming data argues for the important roles of the RAC1
signaling pathway in every aspect of cancer progression. The aberrant activity of RAC1,
RAC-GEFs, and RAC1 effectors in cancer, together with their involvement in metastasis
and therapy resistance, emphasize the rich therapeutic opportunities afforded by inhibition
of the RAC1 pathway and will translate into benefits for metastatic melanoma patients in a
clinical setting.
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