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Abstract: The disturbance in gut microbiota composition and metabolism has been implicated
in the process of pathogenic bacteria infection. However, the characteristics of the microbiota
and the metabolic interaction of commensals–host during pathogen invasion remain more than
vague. In this study, the potential associations of gut microbes with disturbed lipid metabolism in
mice upon carbapenem-resistant Escherichia coli (CRE) infection were explored by the biochemical
and multi-omics approaches including metagenomics, metabolomics and lipidomics, and then the
key metabolites–reaction–enzyme–gene interaction network was constructed. Results showed that
intestinal Erysipelotrichaceae family was strongly associated with the hepatic total cholesterol and
HDL-cholesterol, as well as a few sera and fecal metabolites involved in lipid metabolism such as
24, 25-dihydrolanosterol. A high-coverage lipidomic analysis further demonstrated that a total of
529 lipid molecules was significantly enriched and 520 were depleted in the liver of mice infected
with CRE. Among them, 35 lipid species showed high correlations (|r| > 0.8 and p < 0.05) with
the Erysipelotrichaceae family, including phosphatidylglycerol (42:2), phosphatidylglycerol (42:3),
phosphatidylglycerol (38:5), phosphatidylcholine (42:4), ceramide (d17:1/16:0), ceramide (d18:1/16:0)
and diacylglycerol (20:2), with correlation coefficients higher than 0.9. In conclusion, the systematic
multi-omics study improved the understanding of the complicated connection between the microbiota
and the host during pathogen invasion, which thereby is expected to lead to the future discovery and
establishment of novel control strategies for CRE infection.

Keywords: carbapenem-resistant Escherichia coli; lipid disturbance; metagenomics; metabolomics;
lipidomics; association analysis; Erysipelotrichaceae family

1. Introduction

Carbapenem-resistant Escherichia coli (CRE) represent a severe public health prob-
lem [1–3]. Infections caused by CRE, such as complicated urinary tract infections, blood-
stream infections and pneumonia, are alarming in the clinical setting which are often
associated with high mortality [4,5]. Therefore, studies on the pathological mechanism and
treatment strategy against CRE infection are extremely urgent.

Gut microbiome, which is involved in the regulation of multiple metabolic pathways
of the host [6], could assist in the development of new strategies for infectious diseases [7,8].
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One of the major functions of the gut microbiome is to prevent the colonization of pathogens
and overgrowth of indigenous pathogens [9]. Dysbiosis of gut microbiota could lead
to pathologic immune responses, reducing the integrity and function of the intestinal
barrier and accelerating the infection process [10]. There has been increasing evidence
demonstrating the remarkable impact of gut microbiome on determining the susceptibility
to CRE carrying and eventual infection [4,11,12]. A similar finding has been made in
our previous study [13]. The basic view of bacterial pathogenesis during infection is the
ability of an invader to overcome innate host defenses and the barrier of the resident
microbiota [14]. However, the complex interplay between the pathogen, the microbiota
and the host, as well as their metabolic characteristics, remains largely unknown so far.

Lipidomics is becoming an increasingly powerful tool for systems biology, which
greatly expands the fields of traditional repertoire [15–17]. The comprehensive study of
lipidome based on mass spectrum analysis has been representatively applied in medical
microbiology such as infection diagnoses [18]. The metabolically active gut microbial
community has a profound effect on the absorption, digestion, metabolism and excretion
of lipids [19]. Previous studies have suggested that the gut microbiome plays a particularly
important role in the regulation of host cholesterol and sphingolipid homeostasis [20]. The
microbiota-modified triglyceride and phosphatidylcholine species in the liver [21] and the
excessive production of short-chain fatty acids by intestinal bacteria contributed to the
accumulation of lipids in the liver [22].

To the best of our knowledge, there is no publication to investigate the associations of
altered gut microbiome and lipid metabolism that occur during CRE infection. In this work,
the biochemical and multi-omics technologies, including metagenomics, metabolomics
and lipidomics, were used to decipher a key gut microbe which had high association with
the lipid disturbance for CRE invasion, and a few targets potentially responsible were
identified for future study.

2. Materials and Methods
2.1. Chemicals and Bacteria

Methanol, chloroform, acetonitrile, isopropyl alcohol and dichloromethane of HPLC
grade were purchased from Thermo-Fisher Scientific (Fair Lawn, NJ, USA). Butylhydroxy-
toluene (BHT) was purchased from ANPEL Laboratory Technologies (Shanghai, China) Inc.
Ultrapure water was freshly prepared by a Milli-Q reference system (Millipore, Bedford,
MA, USA). The clinical isolate of CRE (No. 1864) from human rectal swabs was obtained
from the Huashan Hospital, Fudan University, China.

2.2. Animals

The experimental protocol was approved by the animal ethics committee of the school
of pharmacy, Fudan University. Six-week-old female ICR mice (16–18 g) were obtained
from SLAC Laboratory Animal Co., Ltd. (Shanghai, China). All mice were fed in a barrier
system with temperature (24 ± 2 ◦C), humidity (60 ± 10%) and 12/12 h light/dark cycle,
and provided with certified standard rat chow and tap water ad libitum. After one week
of acclimatization, mice were randomly assigned into two groups, including the normal
control group (NC, n = 8) and the CRE-infected group (CRE, n = 10). Mice in CRE group
received a single intraperitoneal injection of CRE in saline (1 × 108 CFU/mL, 200 µL),
while mice in NC group were injected intraperitoneally with an equal amount of saline.
After 24 h of infection, including the final 12 h of fasting, mice were sacrificed by cervical
dislocation, and the samples of feces, liver and abdominal adipose tissue were collected. All
samples were promptly frozen in liquid nitrogen, stored at −80 ◦C, pending for biochemical,
metagenomic, metabolomics and lipidomic analyses.

2.3. Biochemical Analyses

Hepatic lipids were extracted by the previously published method [23]. Briefly, the
liver tissues were homogenized with chloroform/methanol (2/1, v/v) to a final volume
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20 times that of the tissue sample and followed by a series of dispersion, agitation and
centrifugation steps. The hepatic levels of triglyceride (TG), total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-c) and low-density lipoprotein cholesterol (LDL-c)
were measured by ELISA kits (Huili Biotech, Changchun, China) and a Chemray 240 fully
automatic biochemical analyzer (Rayto, Shenzhen, China).

2.4. Metagenomics

The feces samples were used for intestinal microbiota analysis using 16S rDNA se-
quencing, as described in detail in our previous paper [13].

2.5. Metabolomics

The serum and fecal samples were pretreated, and the derivatives were detected and
analyzed by Agilent 7890B gas chromatograph system coupled to a Leco Pegasus time-of-
flight mass spectrometer (GC-TOFMS). See the previous report for more details [13].

2.6. Lipidomics
2.6.1. Sample Preparation

Lipids in live samples were extracted by the method reported by Bligh and Dyer [24].
Briefly, 300 µL mixture of methanol/acetonitrile/water (2/2/1 by volume) along with 0.1%
BHT was added in 50 mg of liver tissue and homogenized for 2 min. Then, vortexed for
30 s and centrifuged at 12,000 rpm, 4 ◦C for 5 min. The supernatant was transferred to a
new tube. The extraction was repeated twice. Then, 560 µL of chloroform were added,
vortexed for 30 s and centrifuged at 12,000 rpm, 4 ◦C for 5 min. The under layer organic
phase was transferred to auto-sample vials and concentrated to dryness. The extract was
reconstituted using the 100 µL of dichloromethane/isopropyl alcohol/methanol solution
(1/1/2 by volume). Quality control (QC) sample was prepared by pooling some of the
reconstituted solutions of each sample; then analyzed by the same procedure.

2.6.2. LC-MS/MS Method for Lipid Analysis

An ACQUITY-ultraperformance liquid chromatography (UPLC) system (Waters Cor-
poration, Milford, CT, USA) was used for the separation on a Waters BEH C18 column
(100 × 2.1 mm) with 1.7-micrometer particles at 55 ◦C. The mobile phase consisted of
acetonitrile/water (60:40) with 10 mM ammonium formate and 0.1% formic acid (solvent
A), and isopropanol/acetonitrile (90:10) with 10 mM ammonium formate and 0.1% formic
acid (solvent B), with a flow rate of 0.4 mL/min. The gradient was 95/5~0/100 in 17 min.
The injection volumes were 1 µL for ESI (+) mode and 4 µL for ESI (−) mode, respectively.

The mass spectrometric data were collected using a Thermo Scientific Q-Exactive Plus
mass spectrometry (QE-MS). ESI was used as the ionization source, and the analysis was
carried out in both positive mode and negative mode. The Scan mode was set at DDA
mode, 1 full scan followed by 6 MS/MS scans. Collision energy was NEC 15, 30, 45 to
fragment the ions. Nitrogen (99.999%) was used as collision-induced dissociation gas. The
other conditions for the MS were as follows: capillary temperature of 320 ◦C, the spray
voltage of 3.8 kV in positive mode and 3.0 kV in negative mode, S-Lens RF Level of 50 V
and the scan range of 150 to 2000 amu.

2.6.3. Lipids Identification

Data were processed by XCalibur software (Thermo Fisher Scientific, San Jose, CA,
USA) for peak picking, alignment and normalization to produce peak intensities for reten-
tion time (RT) and m/z data pairs. Compounds were identified based on accurate mass;
fragments in MS/MS using LipidSearch software.

2.7. Statistics

The metabolome and lipidome data were imported into the SIMCA 14.1 software
(Umetrics, Umeå, Sweden) for supervised orthogonal partial least squares discriminant
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analysis (OPLS-DA). The discriminatory metabolites in serum and feces, as well as the
lipid species in live, were identified by the multivariate and univariate statistical analyses,
with the criteria of VIP > 1 in OPLS-DA, p < 0.05 using a two-tailed paired Student’s t-test
and fold change >1.2 or <0.8. False discovery rate (FDR) value was obtained to reduce
the risk of a false positive by the adjusted p value using the Benjamini and Hochberg
method [25]. All the bar plots in this study were generated with GraphPad Prism (version
9.0, GraphPad Software, San Diego, CA, USA). Heatmap was performed using Euclidean
Dist algorithm by TBtools software. Cross-omics association study was performed by
Spearman correlation analysis and presented by SPSS 26.0 (IBM Corp., Armonk, NY, USA)
and R 4.0.5 software until August 2022.

2.8. Network Analysis and Potential Targets Prediction

The lipids data were imported into Cytoscape 3.7.1 (https://cytoscape.org/, accessed
on 26 August 2022) to visualize the associations of lipids and their co-regulating charac-
teristics. The metabolites–reaction–enzyme–gene network was constructed by Metscape.
The genes associated with the significantly changed lipids, which were considered as
the potentially responsible targets for CRE infection, were uploaded to STRING (https:
//cn.string-db.org/, accessed on 26 August 2022) to construct protein–protein interactive
network.

3. Results
3.1. Hepatic Lipid Profile Analysis

The 24 h infection of CRE had no phenotypic effect with the comparable body weight
and white adipose tissue weight relative to controls (Figure 1A). Strikingly, the hepatic
levels of TG, TC, HDL-c and LDL-c were all increased in CRE-infected mice compared with
the control group (Figure 1B). The increases in TC and LDL-c were statistically significant
(p < 0.001 or p < 0.05), which suggested that lipid disturbance had occurred in the early
stage of infection of CRE.
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Figure 1. (A) Abdominal white adipose tissue (WAT) weights. (B) Hepatic lipid profile of TG, TC,
HDL-c and LDL-c in mice. Data are presented as mean ± SEM. p values were determined using an
unpaired, two-tailed Student’s t-test. * p < 0.05, *** p < 0.001.

3.2. Gut Microbiota Composition Analysis

The 16S rDNA sequencing technology was employed to investigate the CRE-related
alterations of gut microbiome in family and genus levels, which were calculated by the sum-
mations of all the OTUs of the corresponding family and genus, respectively. A total of five
families and nine genera were significantly different in the CRE group relative to controls
through LEfSe analysis, as shown in Figure 2A. Three families including Erysipelotrichaceae,
Eubacterium_coprostanoligenes and Clostridium methylpentosum were positively correlated
with hepatic lipids. Among them, the Erysipelotrichaceae family had the highest relative
abundance. Compared with the controls, the relative abundance of Erysipelotrichaceae in
the CRE group increased significantly (Figure 2B). The strong correlation of the intestinal
Erysipelotrichaceae family was found with the hepatic levels of TC (r = 0.794, p < 0.01) and
HDL-c (r = 0.770, p < 0.01) (Figure 2C).

https://cytoscape.org/
https://cn.string-db.org/
https://cn.string-db.org/
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Figure 2. (A) Significantly differential gut microbes at the family and genus levels in CRE infection
group compared with controls (left), and their correlations with the hepatic lipid profile of TG,
TC, HDL-c and LDL-c (right). (B) Relative abundance of intestinal Erysipelotrichaceae at the family
level; (C) correlation plot of Erysipelotrichaceae family with hepatic levels pf TC and HDL-c. Vertical
coordinates are the relative abundance values of Erysipelotrichaceae (%), and the horizontal coordinates
are the TC or HDL-c levels (mmol/L), respectively. Data are presented as mean ± SEM. p values
were determined using an unpaired, two-tailed Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. Serum and Feces Metabolomics Analysis

Untargeted metabolomics analysis showed that a total of 74 metabolites in sera and
129 in feces had a significantly different response to CRE infection (Tables S1 and S2).
Among them, the six metabolites in sera and twelve in feces were involved in the lipid
metabolism. We further investigated the association of the alteration of the intestinal
Erysipeltrichaceae family with these metabolites. As shown in Figure 3, the abundance of
intestinal Erysipeltrichaceae family had significantly positive correlation with the serum
levels of 24,25-dihydrolanosterol (p < 0.01) and capric acid (p < 0.05), and the fecal levels of
2-monopalmitin (p < 0.01), glycerol 1-phosphate (p < 0.01), 1-monopalmitin (p < 0.01), 24,25-
dihydrolanosterol (p < 0.01), heptadecanoic acid (p < 0.05), lanosterol (p < 0.05), linoleic acid
(p < 0.05) and palmitic acid (p < 0.05). In particular, the changes in 24,25-dihydrolanosterol
in both serum and feces were closely related with intestinal Erysipelotrichaceae family, which
is a lipid metabolite produced by commensals–host interaction.
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3.4. Hepatic Lipidomes Analysis

To elucidate the lipid characters of CRE infection, we used the ultraperformance liquid
chromatography-Q Exactive plus mass spectrometer (UPLC-QEMS) to detect the hepatic
lipidome and analyzed the differences.

Data quality was assessed by three QC samples. Correlation analysis showed good
reproducibility between QCs, with the correlation coefficient value of more than 0.99
(Figure 4), showing a stable analysis system of lipidomics.

Totally, 46 and 39 subclasses of lipids in live were detected in electron spray ionization
positive and negative modes, i.e., ESI (+) and ESI (−), respectively, including 24 joint
subclasses between them (Figure 5A). More details were shown in Figure 5B,C, including
2064 lipid species in ESI (+) and 1154 lipid species in ESI (−) mode.

Further, the analyses of the differential subclasses of lipids upon CRE infection were
performed. As shown in Figure 6A, twelve subclasses in ESI (+) mode including Cer, PC,
PG, PIP, AcCa, BiotinylPE, CarE, Hex1Cer, LBPA, LPG, LPS, PG, PIP and PS increased
significantly in the CRE group compared with the controls, while six subclasses of Co, PE,
LPI, MePC, PEt and PMe significantly decreased. Meanwhile, seven subclasses in ESI (−)
mode including Cer, LPA, LPMe, LPS, PEt, PIP2 and PIP3 significantly increased, while six
subclasses including Hex3Cer, MGMG, Hex1Cer, Hex2Cer, MGDG and PAF significantly
decreased upon CRE treatment (Figure 6B).
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To characterize the discriminatory lipid species response to CRE, a multivariable
model of OPLS-DA was used. The mice in the CRE-infected group and the control group
could be well-distinguished, with the model parameters of R2Y = 0.993 and Q2 = 0.871 in
ESI (+) mode and R2Y = 0.981 and Q2 = 0.851 in ESI (−) mode, respectively (Figure 7A,B).
Permutation test was used to verify the validity of the model and avoid the over-fitting.
Figure 7C,D showed that the two OPLS-DA models were robust. Further univariate
statistical assessments were performed by Student’s t-test and the calculation of the fold
changes. Volcano plots were used to highlight the differentially expressed lipid species
between groups (Figure 7E,F). A total of 386 differential lipids were found in the negative
ion mode, of which 193 lipids were significantly enriched in the CRE group and 193 lipids
were significantly depleted compared with the controls. A total of 664 differential lipids
were found in the positive ion mode, of which 336 lipids were significantly enriched and
328 lipids depleted in the CRE group (Figure 8).

3.5. Association Analysis

The Spearman correlation analyses were performed to further identify the potential
associations between the differential lipid species and lipid profiles of TC, TG, HDL-c and
LDL-c in the liver. Results showed that a huge panel of lipid species were strongly correlated
with the hepatic lipid profile, particularly TC and HDL-c. Exactly, in the positive ion mode
of UPLC-QEMS, a total of 278 lipid species were positively and 208 were negatively
correlated with TC, respectively. A total of 293 and 243 lipid species had positive and
negative correlations with HDL-c. A total of 39 and 62 lipids were positively and negatively
correlated with LDL-c. A total of six lipids were positively correlated with TG. Meanwhile,
the levels of 203, 20, 212 and 54 lipid species detected in the negative ion mode were
significantly correlated with the TC, TG, HDL-c and LDL-c, respectively (Table S3).
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Figure 7. OPLS-DA score plot, permutation test and volcano plot for lipidomics in the positive ion
(A,C,E) and negative ion modes (B,D,F). R2, explained variance; Q2, predictive ability of model. The
red and blue dots in volcano plot represent the significantly up-regulated and down-regulated lipids
species, respectively. FC, fold change.

For the lipid species which had strong correlations with TC, TG, HDL-c and LDL-c,
their associations with intestinal Erysipelotrichaceae family were analyzed. As shown in
Table 1, the Erysipelotrichaceae family showed high correlation (|r| > 0.8 and p < 0.05) with 35
lipid species. Particularly, the levels of phospholipids including phosphatidylglycerol (42:2),
phosphatidylglycerol (42:3), phosphatidylglycerol (38:5) and phosphatidylcholine (42:4),
the sphingolipids of ceramide (d17:1/16:0) and ceramide (d18:1/16:0) and the glycolipids
of diacylglycerol (20:2) had higher correlation coefficients of 0.90~0.97 with intestinal
abundance of the Erysipelotrichaceae family.
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3.6. Network Analysis

The lipid species which had strong correlations with the Erysipelotrichaceae family and
lipid profile were mainly involved in four important classes of ceramide, phosphatidyl-
glycerol, phosphatidylcholine and diacylglycerol. These lipids were adopted to construct
the lipids–reaction–enzyme–gene interaction network, as shown in Figure 9A. Although it
is challenging to understand how lipid composition is translated into function, totally, 58
targets were predicted to potentially associate with the abnormal lipid metabolism in mice
infected with CRE. The protein–protein interaction was further analyzed, and the targets of
PPAP2C, CHPT1, PPAP2B, PLD2 and PLD1 with higher degrees in the PPI network could
be the key targets for preventing and treating the lipid metabolism disorder induced by
CRE infection (Figure 9B).
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Table 1. Correlation analyses showing the associations of significantly differential lipid species with intestinal Erysipelotrichaceae family and hepatic total cholesterol
and HDL-cholesterol (p < 0.05, |r|>0.8).

NO. Class Species MODE Adduct CalcMz Formula VIP P FDR FC Ery Correlation (r, p)

TG TC HDL-c LDL-c

1 Sphingolipids Cer (d17:1/16:0) ESI (+) [M+H-H2O]+ 506.4932 C33H64O2N 1.48 1.45 × 10−3 2.3 × 10−3 1.87 0.93 *** ns 0.83 *** 0.86 *** 0.6 *
2 Sphingolipids Cer (d18:1/16:0) ESI (−) [M+HCOO]− 582.5103 C35H68O5N 1.81 2.87 × 10−5 2.52 × 10−4 2.04 0.9 *** ns −0.49 * ns ns
3 Sphingolipids Cer (d18:1/16:0) ESI (+) [M+H-H2O]+ 520.5088 C34H66O2N 1.79 1.49 × 10−5 1.74 × 10−4 2.19 0.87 ** ns 0.77 *** 0.81 *** ns
4 Sphingolipids Cer (d18:1/17:0) ESI (+) [M+H-H2O]+ 534.5245 C35H68O2N 1.62 2.72 × 10−4 8.77 × 10−4 2.41 0.85 ** ns 0.76 *** 0.8 *** ns
5 Sphingolipids Cer (d18:2/16:0) ESI (+) [M+H]+ 536.5037 C34H66O3N 1.57 6.1 × 10−4 1.08 × 10−3 2.04 0.83 ** ns 0.73 *** 0.81 *** 0.54 *
6 Sphingolipids Cer (t17:0/16:0) ESI (+) [M+H-H2O]+ 524.5037 C33H66O3N 1.63 2.76 × 10−4 8.77 × 10−4 2.16 0.88 ** ns 0.83 *** 0.86 *** 0.6 *
7 Sphingolipids Cer (t18:1/16:0) ESI (+) [M+H-H2O]+ 536.5037 C34H66O3N 1.58 5.56 × 10−4 1.08 × 10−3 2.06 0.83 ** ns 0.74 *** 0.81 *** 0.53 *
8 Sphingolipids SM (d33:1) ESI (+) [M+H]+ 689.5592 C38H78O6N2P 1.60 2.78 × 10−4 8.77 × 10−4 1.57 0.88 ** ns 0.69 ** 0.73 *** ns
9 Phospholipids PG (40:8) ESI (+) [M+Na]+ 841.499 C46H75O10PNa 1.41 2.03 × 10−3 2.54 × 10−3 1.62 0.82 ** ns 0.61 ** 0.69 ** ns

10 Phospholipids PG (42:2) ESI (+) [M+NH4]+ 876.6688 C48H95O10NP 1.78 1.2 × 10−5 1.74 × 10−4 2.21 0.9 *** ns 0.8 *** 0.87 *** 0.59 *
11 Phospholipids PG (42:3) ESI (+) [M+NH4]+ 874.6532 C48H93O10NP 1.61 3.01 × 10−4 8.77 × 10−4 2.38 0.92 *** ns 0.74 *** 0.82 *** ns
12 Phospholipids PC (32:2) ESI (+) [M+H]+ 730.5381 C40H77O8NP 1.60 4.48 × 10−4 1.04 × 10−3 0.29 −0.82** ns −0.67 ** −0.73 *** ns
13 Phospholipids PC (34:2e) ESI (+) [M+H]+ 744.5902 C42H83O7NP 1.53 6.48 × 10−4 1.08 × 10−3 1.83 0.89 ** ns 0.73 *** 0.73 *** ns
14 Phospholipids PC (36:3) ESI (+) [M+H]+ 784.5851 C44H83O8NP 1.45 1.77 × 10−3 2.54 × 10−3 4.13 0.82 ** ns 0.59 * 0.65 ** 0.27 ns
15 Phospholipids PC (42:4) ESI (+) [M+H]+ 866.6633 C50H93O8NP 1.12 2.19 × 10−2 2.39 × 10−2 1.29 0.97 *** ns 0.5 * 0.62 ** ns
16 Phospholipids LPC (24:2) ESI (+) [M+H]+ 604.4337 C32H63O7NP 1.06 2.95 × 10−2 2.95 × 10−2 1.32 0.88 ** ns 0.62 ** 0.55 * ns
17 Phospholipids MePC (36:7) ESI (+) [M+Na]+ 812.5201 C45H76O8NPNa 1.42 3.91 × 10−3 4.56 × 10−3 0.77 −0.88 ** ns −0.68 ** −0.66 ** ns
18 Phospholipids PG (18:0/18:2) ESI (+) [M+H]+ 775.5484 C42H80O10P 1.37 3.62 × 10−3 4.37 × 10−3 1.94 0.85 ** ns 0.7 ** 0.72 ** ns
19 Phospholipids PG (18:1/18:2) ESI (+) [M+H]+ 773.5327 C42H78O10P 1.71 5.52 × 10−5 3.82 × 10−4 2.49 0.85 ** ns 0.75 *** 0.82 *** ns
20 Phospholipids PG (38:5) ESI (+) [M+NH4]+ 814.5593 C44H81O10NP 1.43 1.91 × 10−3 2.54 × 10−3 1.76 0.93 *** ns 0.75 *** 0.78 *** 0.51 *
21 Phospholipids LPG (18:2) ESI (+) [M+Na]+ 531.2693 C24H45O9PNa 1.37 7.03 × 10−3 7.93 × 10−3 2.08 0.87 ** ns 0.77 *** 0.86 *** 0.55 *
22 Phospholipids PS (42:0) ESI (+) [M+H]+ 876.6688 C48H95O10NP 1.57 4.13 × 10−4 1.03 × 10−3 2.27 0.9 *** ns −0.52 * ns ns
23 Phospholipids MLCL (62:1) ESI (−) [M-2H]− 653.4657 C71H136O16P2 1.40 2.01 × 10−3 2.54 × 10−3 1.38 0.85 ** −0.49* −0.5 * −0.37 ns ns
24 Phospholipids PIP (52:3) ESI (+) [M+Na]+ 1187.747 C61H114O16P2Na 1.14 2.56 × 10−2 2.64 × 10−2 1.57 0.82 ** ns 0.54 * 0.63 ** ns
25 Phospholipids PIP2 (18:1/20:4) ESI (−) [M-H]− 1043.467 C47H82O19P3 1.65 3.28 × 10−4 8.84 × 10−4 2.12 0.87 ** ns 0.8 *** 0.87 *** 0.58 *
26 Glycerolipids DG (20:2) ESI (+) [M+NH4]+ 414.3214 C23H44O5N 1.94 2.42 × 10−7 8.45 × 10−6 10.69 0.92 *** ns 0.77 *** 0.82 *** 0.55 *
27 Glycerolipids DG (34:1e) ESI (+) [M+Na]+ 603.5323 C37H72O4Na 1.70 8.05 × 10−5 3.82 × 10−4 2.01 0.82 ** ns 0.66 ** 0.7 ** ns
28 Glycerolipids DG (36:4e) ESI (+) [M+H]+ 603.5347 C39H71O4 1.70 8.05 × 10−5 3.82 × 10−4 2.01 0.82 ** ns 0.66 ** 0.7 ** ns
29 Glycerolipids DG (38:6e) ESI (+) [M+H]+ 627.5347 C41H71O4 1.57 6.54 × 10−4 1.08 × 10−3 2.24 0.87 ** ns 0.66 ** 0.78 *** ns

30 Glycerolipids TG
(17:0/11:2/11:2) ESI (+) [M+NH4]+ 690.5667 C42H76O6N 1.53 5.94 × 10−4 1.08 × 10−3 1.54 0.83 ** ns 0.72 ** 0.72 ** ns
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Table 1. Cont.

NO. Class Species MODE Adduct CalcMz Formula VIP P FDR FC Ery Correlation (r, p)

TG TC HDL-c LDL-c

31 Glycerolipids TG
(22:6/12:4/14:4) ESI (+) [M+Na]+ 801.5065 C51H70O6Na 1.68 8.72 × 10−5 3.82 × 10−4 2.44 0.83 ** ns 0.82 *** 0.83 *** 0.56 *

32 Fatty acyl
and others AEA (18:2) ESI (+) [M+H]+ 324.2897 C20H38O2N 1.14 2.3 × 10−2 2.44 × 10−2 2.77 0.82 ** ns 0.92 *** 0.91 *** 0.69 **

33 Fatty acyl
and othes AEA (20:3) ESI (+) [M+H]+ 350.3054 C22H40O2N 1.47 1.96 × 10−3 2.54 × 10−3 1.56 0.87 ** 0.52* 0.89 *** 0.82 *** 0.71 **

34 Fatty acyl
and others AcCa (22:1) ESI (+) [M+H]+ 482.4204 C29H56O4N 1.54 5.2 × 10−4 1.08 × 10−3 2.37 0.83 ** ns 0.64 ** 0.72 ** ns

35 Fatty acyl
and others PEt (18:1/22:6) ESI (−) [M-H]− 773.5127 C45H74O8P 1.50 1.78 × 10−3 2.54 × 10−3 1.89 0.9 *** −0.49* ns ns ns

VIP was obtained from OPLS-DA with a threshold of 1.0. p values were calculated from Student’s t-test; FDR was obtained from the adjusted p values based on the Benjamini and Hochberg
method; FC was calculated from the arithmetic mean values of CRE-treated group to control. * p < 0.05, ** p < 0.01, *** p < 0.001. Abbreviations: Ery, Erysipelotrichaceae; Cer, ceramide;
PG, phosphatidylglycerol; PC, phosphatidylcholine; DG, diacylglycerol; TG, triacylglycerol; AEA, N-Acylethanolamine; AcCa, Acyl Carnitine; LPC, lysophosphatidylcholine; LPG,
lysophosphatidylglycerol; MePC, Methyl phosphatidylcholine; MLCL, Mono-lyso cardiolipin; PEt, Phosphatidylethanol; PIP, Phosphatidylinositol phosphate; P1P2, Phosphatidylinositol
diphosphate; PS, phosphatidylserine; SM, sphingomyelins.



Metabolites 2022, 12, 892 13 of 19

Metabolites 2022, 12, x FOR PEER REVIEW 13 of 20 
 

 

3.6. Network Analysis 
The lipid species which had strong correlations with the Erysipelotrichaceae family and 

lipid profile were mainly involved in four important classes of ceramide, phosphatidyl-
glycerol, phosphatidylcholine and diacylglycerol. These lipids were adopted to construct 
the lipids‒reaction‒enzyme‒gene interaction network, as shown in Figure 9A. Although 
it is challenging to understand how lipid composition is translated into function, totally, 
58 targets were predicted to potentially associate with the abnormal lipid metabolism in 
mice infected with CRE. The protein‒protein interaction was further analyzed, and the 
targets of PPAP2C, CHPT1, PPAP2B, PLD2 and PLD1 with higher degrees in the PPI net-
work could be the key targets for preventing and treating the lipid metabolism disorder 
induced by CRE infection (Figure 9B). 

 
Figure 9. (A) The lipids‒reaction‒enzyme‒gene interaction network. The red hexagon represents 
differential lipids; the pink hexagonal represents in-direct metabolites. The green square represents 
protein (enzyme). The purple circle represents genes that code for the protein. (B) Protein‒protein 
interaction network on the targets potentially responsible for the altered lipid metabolism during 
CRE infection. 

Figure 9. (A) The lipids–reaction–enzyme–gene interaction network. The red hexagon represents
differential lipids; the pink hexagonal represents in-direct metabolites. The green square represents
protein (enzyme). The purple circle represents genes that code for the protein. (B) Protein–protein
interaction network on the targets potentially responsible for the altered lipid metabolism during
CRE infection.

4. Discussion

Systematic integration of multiple layers of omics datasets has been indicated to obtain
more reliable results and reduce the false-positive risk [26,27], which can provide a basis
for generating testable hypotheses and gaining mechanistic insights into the pathophys-
iology of multiple complex diseases in post-integration analyses [28,29]. In this study,
the multi-omics technologies, including metagenomics, metabolomics and lipidomics,
comprehensively characterized the alterations of gut microbiome and lipid metabolism
occurring during the early infection of CRE in mice. Further integrated analyses revealed
that the intestinal Erysipelotrichaceae family had a strong association with hepatic levels of
total cholesterol, HDL-cholesterol and a large panel of lipid metabolites in mice with or
without CRE exposure, which suggested the potential collusion effect of Erysipelotrichaceae
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during CRE infection. Lastly, a few targets were identified as potentially responsible for
lipometabolic disturbances induced by CRE through network analysis.

Carbapenem resistance is more easily transferred horizontally and, therefore, spreads
faster worldwide. The main mechanism for carbapenem antibiotics resistance in Enterobac-
teriaceae is the production of carbapenemase, a diverse family of β-lactamases [30] which
worked by binding to the drug, breaking the amide bond of a four-membered azetidi-
none ring and preventing it from binding to the penicillin-binding protein of the bacterial
cell wall [31]. Anyway, Enterobacteriaceae have alternative mechanisms for carbapenem
resistance, including the production of other β-lactamases, porin loss and efflux pump
overexpression [32], which block the penetration of the antibiotic within the bacterial cell.
Cefiderocol, a recently emerging antibiotic with a unique chemical structure [33], exhibits
excellent in vitro activity against many clinically relevant Gram-negative pathogens, includ-
ing multidrug-resistant strains [34]. There is increasing evidence that cefoxiridol is well-
suited to help address the growing number of infections caused by carbapenem-resistant
and multidrug-resistant Gram-negative bacilli, including broad-spectrum β-lactamases
and carbapenemase-producing strains [35].

Diverse roles of the gut microbiota in human health and disease have been recog-
nized [36,37]. The 16S ribosomal RNA gene (16S) sequencing is a culture-free technique
to identify the composition of intestinal microbial communities [38], aiming to look for
correlations between the microbiota and disease or phenotype, to promote its application
in exploring the microbial diversity of functional and pathogenic microorganisms and their
interactions in biotechnology processes [39]. These culture-independent and reference-free
approaches have proved to be successful strategies for species discovery and characteriza-
tion [40,41]. Lots of studies have addressed the effect of antibiotic administration on the
intestinal microbiota using sequencing technologies [42], revealing the ecological distur-
bances in the microbiota after antibiotic administration, especially for specific members
of the bacterial community that are susceptible or resistant to antibiotics [43]. This post-
antibiotic dysbiosis is usually characterized by a loss of diversity, a loss of certain important
taxa, shifts in metabolic capacity and reduced colonization resistance against invading
pathogens [44].

Infection altered the composition and diversity of gut microbiome, resulting in gut
dysbiosis [45]. The family Erysipelotrichaceae has been reportedly linked to the host’s
immune [46], which was also identified as a harmful bacterium due to the proinflammatory
effect, and associated with elevated serum cholesterol levels [47]. Consistently, we found
that the intestinal Erysipelotrichaceae family was strikingly increased upon CRE infection
compared with controls and positively correlated with hepatic TC levels. The integrated
analysis based on gut and metabolomics further showed that intestinal abundance of
Erysipelotrichaceae and serum level of 24,25-dihydrolanosterol had a significantly positive
association. The 24,25-dihydrolanosterol is an important cholesterol intermediate and
is involved in the biosynthesis of steroids [48,49]. HDL-c mediates reverse cholesterol
transport. In this study, hepatic levels of HDL-c unexpectedly increased in mice infected
with CRE. Previous studies indicated that HDL-c has potent anti-inflammatory properties
that may be critical for protection against infection [50]. The molecular mechanisms of how
HDL-c can modulate inflammation is an interesting issue to be explored further.

Bacterial pathogens can recruit and use the lipids of a host and can hijack host lipid
metabolism that facilitates the persistence of pathogens in the host [51]. For example, the
survival of Chlamydia requires lipids from host cells and the absorption of sphingolipids
and cholesterol from the host cells [52]. M. tuberculosis can alter the host lipid metabolism
to create an environment that allows these intracellular pathogens to survive [53]. The
invasion of exogenous pathogens can cause changes in enzymes and lipids that affect
specific reactions [54]. Pseudomonas aeruginosa increased the enzymatic activity of the acid
sphingomyelinase of macrophages, causing ceramide binding on the raft to activate the
organism’s defenses [55]. Viral infection could induce the changes in the expression of
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cholesterol metabolic enzymes and metabolites in host cells, and the cholesterol metabolism
regulated the antiviral response of host cells [56].

The liver, as the central organ in whole-body metabolism such as lipids, is the major
source of fatty acid synthesis, as well as the lipoproteins released into the blood [57–59].
Our high-coverage lipidomic analysis showed that a huge panel of lipid species were
significantly differential upon CRE infection. Further integrated analysis identified several
lipid subclasses, belonging to sphingolipids, phospholipids and glycerolipids, that were
significantly correlated with hepatic TC, HDL-c and the intestinal Erysipelotrichaceae family.
Previous studies have shown that sphingolipid metabolism played a key role in the regula-
tion of inflammatory signaling pathways [60], including bacterial pathogen infection, B cell
activation and release of cytokines during infection [61]. Sphingolipids could also affect
inflammation-related diseases by inhibiting intestinal lipid absorption [62,63], altering the
intestinal microflora [64] and activating anti-inflammatory nuclear receptors [65,66]. Mam-
malian cell membranes primarily consist of phosphatidylcholine and cholesterol, while
bacterial cell membranes are rich in amphoteric phosphatidylethanolamine, anionic phos-
phatidylglycerol and polyanionic cardiolipin. Pathogens can adapt to their biological sites
by changing the composition of the membrane in order to evade the immune mechanisms
of the antimicrobial substances and the host [67–69]. Triglycerides are located in adipocyte
lipid droplets with vesicular transport and cell signal transduction functions, and it is the
key to maintaining lipid balance [70].

The identification of the potential targets in this study could lead to a deeper un-
derstanding of the lipometabolic disturbance occurring during CRE infection. Phospho-
lipid phosphatase of PPAP2C and PPAP2B participated in the ceramide metabolic pro-
cess [71]. Cholinephosphotransferase families of CHPT1 and phosphatidylethanolamine
N-methyltransferase (PEMT) were found to participate in the phosphatidylcholine biosyn-
thetic process [72]. Phospholipase families of PLD2 and PLD1 were determined as targets
for dyslipidemia [73] and can activate MAPK [74]. Cytosolic phospholipase families of
PLA2G6, PLA2G1B, PLA2G2F and PLA2G4A played a major role in the remodeling of
membrane lipids and the biosynthesis of lipid mediators of the inflammatory response [75].
Sphingomyelin phosphodiesterase families, such as SMPD2 and SMPD4, were associated
with the internalization of pathogens, intracellular activation of signaling pathways, induc-
tion of apoptosis in infected cells and release of cytokines [76]. Several important metabolic
pathways, including arachidonic acid metabolism, glycerophospholipid metabolism, gly-
cosphingolipid metabolism and linoleate metabolism, were found through our metabolites–
reaction–enzyme–gene network analysis. Previous studies have shown that the metabolic
pathways of linoleic acid and arachidonic acid were up-regulated in the Mycoplasma gal-
lisepticum and Escherichia coli co-infection model [77].

This study had some strengths and weaknesses. To the best of our knowledge, we
firstly reported the potential association of the intestinal Erysipelotrichaceae family with
hepatic lipid metabolism upon CRE infection. The integration of multi-omics analyses
provided a novel insight to reveal the molecular characteristics of CRE infection. However,
the mechanisms in which CRE infection affects commensal microbiota and their interplay
within the host’s lipid metabolism need to be further studied. Second, adipose tissue plays
a central role in systemic metabolic homeostasis. The adipose tissue morphology and
the expressions or activities of the vital proteins, such as lipases, were not analyzed in
this study, and the weights of brown adipose tissue were not measured. A recent study
explored the response of adipocytes to bacterial infection and found that the expression
of genes involved in fat metabolism decreased after infection, and the genes related to
immune function and cytokine receptor genes were up-regulated, which indicates that the
function of adipocytes during infection has changed significantly from lipid metabolism
to host defense [78]. Therefore, the metabolomic and lipidomic analyses of adipose tissue
upon CRE infection demand exploration in the future.
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5. Conclusions

This pilot study provided a novel insight into CRE infection by a system biology
strategy. Hepatic lipid accumulation and the systemic disturbance of gut microbiota were
revealed during the early infection of CRE. Metabolomics and lipidomics comprehensively
characterized the alterations of circulating metabolites related to lipids metabolism and
hepatic lipids compositions response to CRE exposure. The increased intestinal colonization
of the Erysipelotrichaceae family was strongly associated with the alterations of TC, HDL-c
and a panel of lipid species, particularly those belonging to ceramide, phosphatidylglycerol,
phosphatidylcholine and diacylglycerol. The integrated multi-omics study highlighted
the interplay of commensals and pathogens for host’s lipid metabolism, which may lead
to new therapeutic approaches against infectious diseases in the future. Further studies
are needed to explain how host–microbiota–pathogen interactions favorably or negatively
influence host survival during CRE infection.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12100892/s1, Table S1: Metabolomics analysis
showing 74 significantly different metabolites in serum during early infection of CRE. Table S2:
Metabolomics analysis showing 129 significantly different metabolites in feces during early infection
of CRE. Table S3: Correlation analyses showing the associations of significantly differential lipid
species with TC, TG, HDL-c and LDL-c levels in liver. * p < 0.05, ** p < 0.01, *** p < 0.001.
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