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Abstract: This paper proposes a method to solve the problem of localization and mapping of a
two-wheeled inverted pendulum (TWIP) robot on approximately flat ground using a Lidar–IMU–
Odometer system. When TWIP is in motion, it is constrained by the ground and suffers from motion
disturbances caused by rough terrain or motion shaking. Combining the motion characteristics of
TWIP, this paper proposes a framework for localization consisting of a Lidar-IMU-Odometer system.
This system formulates a factor graph with five types of factors, thereby coupling relative and absolute
measurements from different sensors (including ground constraints) into the system. Moreover, we
analyze the constraint dimension of each factor according to the motion characteristics of TWIP
and propose a new nonholonomic constraint factor for the odometry pre-integration constraint and
ground constraint factor in order to add them naturally to the factor graph with the robot state node
on SE(3). Meanwhile, we calculate the uncertainty of each constraint. Utilizing such a nonholonomic
constraint factor, a complete lidar–IMU–odometry-based motion estimation system for TWIP is
developed via smoothing and mapping. Indoor and outdoor experiments show that our method has
better accuracy for two-wheeled inverted pendulum robots.

Keywords: Lidar-IMU-Odometer system; two-wheeled inverted pendulum robot; ground constraints;
nonholonomic constraint factor

1. Introduction

In recent years, Simultaneous localization and mapping (SLAM) for intelligent mobile
robots has become a research hotspot [1,2]. Under GPS-denied and unknown environ-
ment conditions, mobile robots must be able to utilize onboard sensors to construct an
environment map that can be used for navigation [3] and then rely on this environment
map for navigation, collision avoidance, and path planning. Many solutions have been
proposed based on different sensing methods, mainly divided into vision-based [4–6],
lidar-based [7–9], and a combination of the two [10,11]. Meanwhile, in order to cope with
complex environments, sensors such as IMUs and encoders that are less affected by the
environment can be used to assist with visual [12,13] or lidar [14–18] localization. Although
vision-based methods are particularly suitable for position recognition, their sensitivity to
initialization, illumination, and range as well as their high depth computation cost makes
them unreliable when supporting autonomous navigation systems.

On the other hand, lidar can directly obtain depth information about the surrounding
environment, and lidar are immune to illumination changes. Many impressive LiDAR-
based localization and mapping algorithms have been proposed. In these algorithms, the
IMU, encoder and other high-frequency output sensors are usually used to assist with
lidar localization and the deskew point cloud. In [7], the authors present lidar odome-
try and mapping (LOAM) for low-drift real time state estimation and mapping. In this
algorithm, the IMU is only used to de-skew the point cloud and does not participate in
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lidar localization. Here, for the localization algorithm of the lidar–IMU system, we divided
it into filter-based and optimization-based segments according to the coupling method.
Filter-based methods typically utilize extended Kalman filtering to couple measurements
from lidar and IMU to estimate the state of the robot frame-by-frame. In [14], Lynen et al.
proposed a modular method that uses EKF to fuse IMU measurements with relative pose
measurements from cameras, lidars, etc. In [15], the authors present a lidar-inertial state
estimator called R-LINS, which uses a recursive error-state Kalman filter to estimate the
robot’s state. In [16], the authors propose a fast, robust and general LiDAR–IMU odometry
framework based on an efficient and tightly-coupled iterative Kalman filter for fast, ro-
bust, and accurate LiDAR navigation. Optimization-based methods usually use nonlinear
optimization to combine a fixed number of lidar keyframes and IMU pre-integration in
order to estimate the optimal pose. In the literature [17], a tightly coupled framework
lio-mapping of lidar and IMU has been introduced which uses a framework similar to
VINS and achieves good accuracy; however, it cannot run in real time. In [18], the authors
proposed a framework LIO-SAM for tightly coupling lidar and IMU via smoothing and
mapping, achieving highly accurate real-time localization and mapping. Filtering-based
methods usually only consider the influence of the previous frame on the current frame,
which incurs lower computational costs. The optimization-based method usually adopts
the sliding window method to evaluate the constraint relationship between the robot states
of the previous n frames (including the current frame). The optimization-based method is
more computationally expensive than the filtering-based method, however, it has accuracy.
With improved hardware performance, optimization-based methods can run in real time,
and should gradually become the mainstream of research. However, in scenarios with
sparse structural features, such as long tunnels, wide roads, etc., lidar lacks constraints in
certain directions, resulting in decreased localization accuracy. In [19], the authors found
that when their mobile robot had constant acceleration or no rotation, the VINS system was
unable to distinguish the magnitude of the true body acceleration and the direction of the
local gravitational acceleration from that of the accelerometer bias. Similar situations can
appear in scenarios where Lidar is degraded.

The localization of mobile ground platforms with unique system architectures has
not previously been thoroughly investigated and discussed. Due to ground constraints,
many vision-based [20,21] and lidar-based [22,23] SLAM algorithms use the SE(2) pose.
However, the ground is rough in the natural environment, and a ground-mobile robot will
be disturbed by motion disturbance. In order to better adapt to the natural environment,
Ref. [24] proposes a new constraint model, stochastic SE(2) constraints, which usually
parameterizes the robot pose on SE(3), allowing for slight disturbance in dimensions other
than SE(2). Fan Zheng [25] extended the work of the above article and proposed a complete
motion estimation system that utilizes SE(2) constraints and SE(3) pose parameterization.

In this paper, a factor graph is formulated to couple the lidar, IMU, and encoder
measurements for the localization and mapping of TWIP robots on an approximately
flat road surface. Inspired by the SE(2) constraint–SE(3) pose method used in [24], we
propose a new factor with constraints to introduce the encoder’s pre-integration and
ground constraints, which we achieve by analyzing the motion profile of the robot and
its deviation from planar motion (e.g., due to terrain unevenness or motion vibration)
and formulating stochastic (i.e., “soft”) instead of deterministic (i.e., “hard”) constraints.
This allows us to properly model the TWIP’s almost-planar motion, as shown in Figure 1.
Moreover, we use Lie algebra to represent the rotation in the pose imitation process. Lie
algebra has no redundant parameters. Compared with Euler angles, Lie algebra does
not have gimbal locking problems, and rotation integration based on Lie algebra can be
integrated into a closed form, whereas Euler angles are only exact up to the first order [26].
The main novel contributions of this work are as follows:

• A complete LIDAR–IMU–encoder-coupled state estimation and mapping framework
is proposed for a two-wheeled inverted pendulum robot. This method extends the
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LIDAR–IMU to process odometric measurements and improves the system’s localiza-
tion accuracy.

• A new nonholonomic factor is proposed to introduce encoder pre-integration con-
straints and ground constraints, which are naturally coupled to the factor graph
optimization of the system.

• Indoor and outdoor experiments demonstrate the improved localization accuracy
and robustness of the proposed lidar–IMU–odometry coupling framework when the
controller is mounted on a two-wheeled inverted pendulum robot navigating on an
approximately flat surface.

The rest of the paper is organized as follows: Section 2 provides an overview of
the entire methodology; Section 3 reviews the basic knowledge which is be used later
in the paper; Section 4 details the five types of factors introduced in our algorithm; and
Section 5 describes several experiments we conducted to demonstrate the effectiveness of
the proposed method.
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Figure 1. Constraint model: (left) deterministic constraints and (right) stochastic constraints, consid-
ering the motion perturbations addressed in this article.

2. Methodology Overview

This paper aims to estimate the motion state of a two-wheeled inverted pendulum
robot (TWIP) via lidar–IMU–Odometry coupling. Compared with a six-degrees-of-freedom
robot, TWIP cannot move sideways, and is constrained by the ground. Compared with
autonomous vehicles on the ground, TWIP swings back and forth during movement to
maintain the balance of movement. If we directly parameterize the robot pose on SE(3)
without considering the ground constraints, the state estimation accuracy and robustness
is depressed due to fewer constraints in the vertical direction of the lidar. If only ground
constraints are considered, that is, the deterministic constraint, the performance of system
motion estimation is degraded because the six dimensions of the pose are highly coupled
with sensor observations. Therefore, neither accurate pose parameterization considering
ground constraints nor 3D pose parameterization can satisfactorily represent the pose of
the ground robot, because the former suffers from out-of-constraint motion while the latter
does not use plane motion constraints. This prompted us to study the state estimation of
the two-wheeled inverted pendulum robot through a lidar–IMU–Odometry system.

This paper proposes a framework for localization using a Lidar–IMU–Odometer
system. The flow chart of this framework is shown in Figure 2. When the system receives
a lidar scan, it first uses the measurement of the IMU to de-skew the point cloud, then
extracts the line and surface feature points. If the pose exceeds a pre-set threshold, the
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current frame is selected as a keyframe; otherwise, it is discarded. Measurements from
the IMU provide the initial pose. Then, the keyframes are matched to the global map to
obtain the rough global pose and construct the lidar pose factor. The IMU and odometer
measurements between two adjacent lidar keyframes are used to construct constraint
factors via pre-integration techniques. Meanwhile, we use the random constraint model
to construct the ground constraint factor. Finally, all factors are included in the factor
graph and jointly optimized to obtain the optimal robot pose. The factor graph formulated
for TWIP, which is shown in Figure 3, incorporates the measurement data of each sensor
as a factor in our optimization system. In addition to the above four factors, this factor
graph contains closed-loop factors grouped into two categories. The IMU pre-integration
factor, the lidar pose factor, and the loop closure factor constrain each dimension of the
robot pose, and are named holonomic constraint factors. However, the odometry pre-
integration factor and the ground constraint factor only constrain part of the dimensions of
the robot’s pose, and thus are named non-holonomic constraint factors. For these factors we
propose a nonholonomic constraint factor to add them to the system, inspired by the SE(2)
constraint SE(3) parameterization method used in [24]. Utilizing such a constraining factor,
a complete lidar–IMU–odometry-based motion estimation system for TWIP is developed
via smoothing and mapping.
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Figure 2. The flowchart of our algorithm.

Figure 3. Factor graph optimization.

3. Preliminaries

This paper formulates the state estimation problem based on the Lidar–IMU–Odometry
system in terms of a factor graph, that is, a nonlinear optimization problem involving the
quantities existing on smooth manifolds. Before delving into details, we review several of
the related practical geometric concepts.

3.1. On-Manifold Pose Parameterization

We usually use the Matrix Lie group to describe three-dimensional rotation, which is
defined as follows:

SO(3) =
{

R ∈ R3x3, RTR = I
}

(1)
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However, the rotation combination operation in the SO(3) involves matrix multiplica-
tion in the optimisation process, which cannot be directly operated as Euclidean vectors
can. Due to Lie groups having the properties of differential manifolds, the tangent space to
the manifold (at the identity), called the Lie algebra, can be introduced as a representation
of the most diminutive vector form, and is related to Lie groups through matrix exponents
and logarithms. Lie algebra is defined as the follows:

so(3)=
{

φ ∈ R3, Φ = φ∧ ∈ R3×3
}

(2)

where φ is the rotation vector of R3, corresponding to a 3 × 3 skew-symmetric matrix. The
hat operator (•)∧ is used to find the antisymmetric matrix of a vector, and its form is

Φ = φ∧=

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

φ=

 φ1
φ2
φ3

 (3)

At the same time, we define the inverse mapping of the hat operator (•)∨ as follows:

φ=

 φ1
φ2
φ3

=Φ∨ (4)

For any two 3D vectors r and s and the rotation matrix R, the skew-symmetric matrix
has the following properties:

r∧s = −s∧r (5)

(Rs)∧ = Rs∧RT (6)(
r∧
)T

= −r∧ (7)

r∧r∧ = rrT−I3×3 (8)

Lie algebra can be transformed into a Lie group by exponential mapping (Rodriguez
formula):

exp
(
φ∧
)
= I +

sin(‖φ‖)
‖φ‖ φ∧ +

1− cos‖φ‖
‖φ‖2

(
φ∧
)2 (9)

A first-order approximation of the exponential map used later on is

exp
(
φ∧
)
≈ I + φ∧ (10)

In the optimization process, we often use a left-multiplicative perturbation on the man-
ifold through the left Jacobian matrix, approximating a local on-manifold transformation
with Lie algebra:

exp
(
δφ∧

)
exp

(
φ∧
)
= exp

((
J−1

l (φ)δφ + φ
)∧)

(11)

where the left Jacobian matrix is

Jl(φ)=
sin θ

θ
I +

(
1− sin θ

θ

)
aaT +

1− cos θ

θ
a∧ (12)

where θ and a are the norm and direction of the rotation vector φ, φ=θa . The inverse of
the left Jacobian matrix is

J−1
l (φ)=

θ

2
cot

θ

2
I +

(
1− θ

2
cot

θ

2

)
aaT − θ

2
a∧ (13)
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Another valuable property of the exponential map is

RExp(φ)RT = exp
(

Rφ∧RT
)
= Exp(Rφ) (14)

3.2. Factor Graph Optimization

As TWIP moves, lidar measurements are continuously collected to estimate the robot’s
motion state and model the surrounding environment. This process can be described
by a factor graph, where the robot states to be estimated are state nodes. The continu-
ously collected measurements are introduced as factor nodes connected by edges to the
involved state nodes (see Figure 3). In general, we assume that these measurements are
independent of each other and are affected by Gaussian noise. The robot state estimation
problem represented by the factor graph above can be formulated for maximum a poste-
riori estimation. Therefore, we formulate the above problem as the following nonlinear
least-squares problem:

x̂ = arg min
x ∑

i
‖ri(x)‖2

∑i
(15)

where ri is the zero-mean residual associated with measurement i, x is the parameter
vector to be optimized, Σi is the measurement covariance, and ‖ri‖2

Σi
= rT

i Σ−1
i ri is the

energy norm.
The above least squares problem can be solved iteratively using the Gauss–Newton

method. At each GN iteration, we approximate the optimized objective function (the
residual function) by first-order Taylor expansion at the current estimated state x̂−:

∆x̂ = arg min
∆x

∑
i
‖ri(x⊕ ∆x)‖2

∑i

= arg min
∆x

∑
i
‖ri(x)+Hi∆x‖2

∑i

(16)

where Hi=
∂ri
∂x is the Jacobian matrix of the ith residual for the robot state and ∆x is the

increment of the state obtained at each iteration. We define the generalized update opera-
tion, ⊕, which maps a change in the error state to one in the entire state. After solving the
linearized equation, the current state is updated as x̂+=x̂− ⊕ ∆x. This linearization process
is then repeated until convergence

4. State Estimation with Accurate Parameterization of TWIP
4.1. Pose Parameterization of TWIP

Compared with a six-degrees-of-freedom robot, TWIP cannot move sideways and is
constrained by the ground. Compared with autonomous vehicles on the ground, TWIP
swings back and forth during movement to maintain the balance of movement. Therefore,
we cannot characterize its motion state completely in SE(2) or SE(3) space. A simplified
diagram of this movement is shown in Figure 4.
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Figure 4. Simplified diagram of TWIP motion.

In order to analyze the movement of TWIP more conveniently, its coordinate system is
defined as follows:

Lidar coordinate system (L): The lidar frame originates at the lidar center. The y-axis
points to the left, the z-axis points upward, and the x-axis points forward, coinciding with
the positive direction of TWIP.

IMU coordinate system (I): The IMU is located below the lidar; its frame originates at
the IMU measurement center. The x-, y-, and z-axes are parallel to (L), pointing in the exact
directions, and the z-axis points forward, coinciding with the z-axis of the lidar frame.

Robot body coordinate system (B): As shown in Figure 4, the robot body frame is
connected to the robot body during the movement process. Its origin is at the midpoint of
the line connecting the centers of the two wheels. The x-, y-, and z-axes are parallel to (L),
pointing in the exact directions, and the z-axis points forward, coinciding with the z-axis of
the lidar frame.

World coordinate system (W): The world frame is the gravity-aligned coordinate
system, which is initially coincident with the robot body coordinate system (B).

All of the above frames follow the right-hand rule. We calibrate the transformation
between the lidar frame and the robot body frame and between the IMU frame and the
robot body frame. The transformation between the robot body coordinate system and the
world coordinate system is the motion state of the robot, that is, the target parameters
for optimization. Figure 5 shows the posture of TWIP as obtained by the Attitude and
Heading Reference System (ARHS) during movement. As seen from the figure, when
TWIP moves, there are movements on the two-dimensional plane (yaw) and front and
back swings (pitch), as well as movement disturbances in the roll direction. Therefore, we
parameterize the robot’s pose on SE(3). The motion state of the robot corresponding to the
lidar keyframe Fi at time i is

Ki =
[

RW
Bi

PW
Bi

]
(17)

where PW
Bi
=
[

xi yi zi
]T is the translation and RW

Bi
∈ R3x3 is the robot’s rotation. Be-

cause the rotation matrix is not additive, it is not convenient for iterative optimization; thus,
we use Euler angles and Lie algebra to represent the robot’s rotation in the following deriva-
tion. Euler angles easily distinguish the constraint dimension of each factor, and the pitch
does not reach ±90 degrees during the movement of TWIP, avoiding any problems with
gimbal lock. In this paper, θ=

[
θr θp θy

]T represents the Euler angle and θr, θp, θy
represents the values of the roll, pitch, and yaw angles, respectively. The rotation integral
based on Euler angles is only exact up to the first order in robot state estimation [26]. There-
fore, we use Lie algebra, φ=

[
φ1 φ2 φ3

]T, to represent the rotation in the optimization
process. Lie algebra can be converted to rotation matrices using Equation (7). According
to the motion characteristics of TWIP,

[
x y θp θy

]
is the result of the robot’s motion,

which is named the primary parameter, while
[

z θr
]

is the motion disturbance caused
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by uneven ground or the vibration of the robot, and is named the second parameter. The
partial parameters in the figure are shown in Table 1.
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Figure 5. Pose of TWIP during movement (Euler angle).

Table 1. State parameters and frame of TWIP.

Symbols Descriptions

X, Z, O The x-axis, z-axis, and origin of the world
frame

XB, ZB, OB
The x-axis, z-axis, and origin of the robot body

frame
XL, ZL, OL The x-axis, z-axis, and origin of the lidar frame

(xk, yk, zk), k = i, j The position of the robot in the world frame at
time k (in meters)

θpk, k = i, j The pitch angle of the robot relative to the
world frame at time k (in radians)

θyk, k = i, j The yaw angle of the robot relative to the
world frame at time k (in radians)

4.2. Coupling of Lidar–IMU–Odometer via Factor Graph

In this section, we introduce five types of factors to construct factor graphs in order
to estimate the motion state of TWIP. The robot’s state at a specific time is attributed to
the graph’s nodes. According to the constraints of factors on nodes, these factors are
divided into holonomic and nonholonomic constraints. The holonomic constraint factors
include the lidar pose factor, the IMU pre-integration factor, and the loop closure factor.
The nonholonomic constraint factor consists of the odometer pre-integration and ground
constraints. A new robot state node is added to the graph when the change in robot pose
exceeds a user-defined threshold. The factor graph is optimized upon the insertion of a
new node using incremental smoothing and mapping with the Bayes tree (iSAM2) [17].
The process for generating these factors is described in the following sections.

4.2.1. Lidar Pose Factor

Mechanical 3D LiDAR senses its surroundings by rotating a vertically aligned array
of laser beams. When a lidar keyframe Fi is selected, we first de-skew the point cloud.
The movement of the carrier causes point cloud distortion during the lidar data collection
process, and the points in a lidar scan are not collected at the same time; that is, the frames
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of different lidar points are inconsistent. The bias of the IMU obtained by the factor graph
optimization is used to correct the IMU measurement, which can estimate the pose of the
carrier. Here, we find the pose corresponding to each lidar point, transform them into
the same coordinate system, and obtain the resulting point cloud without distortion. The
feature point matching method is used in this paper because it is more robust and efficient
than noise-sensitive matching methods, such as Iterative Closest Point (ICP). Similar to [7],
this paper uses plane feature points and edge feature points as matching points, which
are extracted by smoothness. For any point pk in Fi, We find ten straight points of pk from
the same sweep, of which half are on either side of pk. The smoothness of pk can then be
calculated by the following formula:

c =
1

|D| · ‖rk‖

∥∥∥∥∥ ∑
j∈D,j 6=k

(
rj − rk

)∥∥∥∥∥ (18)

where D is the point set adjacent to this point we selected and |D| is the number of points
in D .

We use Fi =
{

Fε
i , Fπ

i
}

to represent the feature points extracted from the lidar scan at
time i, where Fπ

i represents the planar points and Fε
i represents the edge points. Points with

slight smoothness are selected as plane points and points with significant smoothness are
selected as edge points. A detailed description of the feature extraction process is provided
in [7].

After the above processing is complete, we have the feature points of the current lidar
frame without distortion. We then need to find the plane and edge line corresponding to
the current frame feature point in the target point cloud for the feature-based matching
method. Unlike traditional algorithms such as lio_sam and lego_loam, which take lidar
scans close to the current frame in the time series as matching point clouds, this paper
searches for the matching point cloud of the current frame in Euclidean space, which
is more accurate because our optimization process is to minimize the point-to-line and
point-to-plane spatial distances. Therefore, in this algorithm the position of the current
robot is taken as a priori, and a part of the point cloud is extracted from the global map to
align with the feature points without distortion in the current frame in order to estimate the
pose of the robot. The IMU provides the initial position. The global map consists of edge
feature maps and plane feature maps, which are updated and maintained, respectively.
The global map is stored in an incremental 3D tree [18]. Compared with the traditional
dynamic data structure, incremental 3D tree has an efficient nearest neighbor search and
supports the incremental update of the map. Similar to [18], we convert the current frame
to the world frame to obtain WFi =

{WFε
i ,

WFπ
i
}

, while the IMU provides the initial pose.
We find the N nearest edge points in the global edge map for any edge feature point pε

i ,
then calculate the variance of these nearby points. If one of the eigenvalues of the variance
matrix is significantly larger than the other two, the points are distributed in a line. The
eigenvector nε

i , which corresponds to the largest eigenvalue, is the direction vector of the
line. The edge point pε

j closest to the feature point is taken as a point on the line. The
distance from the feature point to the global line is

dε
i =

∥∥∥(nε
i )
∧
(

T̃W
Li

pε
i − pε

j

)∥∥∥
2

(19)

For any plane feature point pπ
i , we find the M nearest plane points in the global plane

map and calculate the variance of these nearby points. If one of the eigenvalues of the
variance matrix is significantly smaller than the other two, the points are distributed in a
plane. The eigenvector nπ

i , which corresponds to the smallest eigenvalue, is the normal
vector of the plane. We select the closest plane feature point pπ

j to the feature point as a
point on the plane. Then, the distance from the feature point to the global plane is

dπ
i =

∣∣∣(nπ
i ) ·

(
T̃W

Li
pπ

i − pπ
j

)∣∣∣ (20)
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We can obtain the optimal pose of the current lidar scan relative to the world frame by
minimizing the point-to-line and point-to-face distances:

min
T̃W

Li

N

∑
i=0

(dε
i )

2 +
M

∑
i=0

(dπ
i )

2 (21)

After optimization, we have the optimal absolute transformation T̃W
Li

from the current
keyframe to the world frame, which is used to measure the lidar pose factor.

We obtain the residual of the lidar pose factor using the following formula:

rLi = log
((

TW
Bi

TB
L

)T
T̃W

Li

)
(22)

where TB
L is the transformation between the lidar coordinate system and the robot body

coordinate system, calibrated in advance.
The variance of the factor is calculated by the method used in [26]:

ΣLi =
N

∑
k=1

HT
k Λ−1Hk (23)

Hk =
[ (

R̃W
Li

pk + P̃W
Li

)∧
−R̃W

Li

]
(24)

Λ=

 2σ2
x 0 0

0 2σ2
y 0

0 0 2σ2
z

 (25)

where pk is the feature point in the current lidar keyframe, and is transformed into the

matching point cloud through the optimal transformation, T̃W
Li
=

[
R̃W

Li
P̃W

Li
0 1

]
, obtained

through the above matching. Here, N is the number of features in the current lidar keyframe,
Λ is the zero-mean white Gaussian noise of the measurements, and σx, σy and σz are the
noise sigma (in meters) on the x, y, and z axes, respectively. The sigmas are multiplied by
two, as both the target point and the matching are affected by this noise.

4.2.2. IMU Pre-Integration Factor

The main components of an IMU are a three-axis accelerometer and a three-axis gyro-
scope that measure the linear acceleration and angular velocity of the carrier, respectively.
The pose transformation of the carrier to an inertial frame can be obtained by integral
operation. The raw measurements, ãt and ω̃t, at moment t are provided by

ãt = at + bat + RIt
Wgw + na

ω̃t = ωt + bωt + nω

(26)

These IMU measurements are measured in the IMU frame, and are affected by the
additive noise, na,nω, the acceleration bias, bat , and the gyroscope bias, bωt . Generally,
in this paper we model the bias as a random walk with Gaussian derivatives, while the
additive noise of the accelerometer and the gyroscope is assumed to be subject to a Gaussian
distribution:

na ∼ N
(

0, σ2
a

)
, nω ∼ N

(
0, σ2

ω

)
(27)

Over time, high-frequency IMU measurement leads to rapid growth in the number
of variables in the optimization, increasing the computational cost. We therefore convert
the IMU measurements between keyframes into motion constraints via the pre-integration
technique, reducing the computational cost and providing a factor, namely, the IMU pre-
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integration factor. The parameters to be optimized include the robot’s pose and the bias of
the IMU.

According to the kinematic model in [26], the pose and velocity of the current keyframe
in the world frame can be obtained from the measurement of the previous frame. With the
pose and velocity of a keyframe i, the pose and velocity of the current keyframe j are:

PW
Ij

=PW
Ii
+ vW

Ii
∆t +

∫∫
t∈[i,j]

(
RW

It
(ãt − bat − na)− gW

)
dt2

vW
Ij

=vW
Ii
+
∫

t∈[i,j]

(
RW

It
(ãt − bat − na)− gW

)
dt

RW
Ij

=RW
Ii

Exp
(∫

t∈[i,j]
(ω̃t − bωt − nω)dt

) (28)

Using Formula (28), we iterate the IMU integral between times i and j, and obtain:

IW
Ij

= PW
Ii
+ vW

Ii
∆t +

j−1

∑
k=i

(
vW

Ik
∆t− 1

2
gW∆t2 +

1
2

RW
Ik

(
ãk − bak − na

)
∆t2
)

vW
Ij

= vW
Ii
+ gW∆tij +

j−1

∑
k=i

RW
Ik

(
ãk − bak − na

)
∆t

RW
Ij

= RW
Ii

j−1

∏
k=i

Exp
(
ω̃k − bωk − nω

)
∆t

(29)

where ∆t is the interval between two adjacent measurements, ∆tij =
j−1
∑

k=i
∆t . Next, we

separate the parts related to IMU measurement from the pose and velocity. The parts
related to IMU measurement are as follows:

∆P̃Ii
Ij
=

j−1

∑
k=i

[
∆Vi

k∆t +
1
2

R
(

γi
k

)(
ãk − bak

)
∆t2
]
− δPij

∆ṼIi
Ij
=

j−1

∑
k=i

Ri
k
(
ãk − bak

)
∆t− δVij

∆R̃Ii
Ij
=

(
j−1

∏
k=i

Exp
((

ω̃k − bωk

)
∆t
))

Exp
(
−δϕij

)
(30)

where δPij, δVij, and δϕij are the measurement error of IMU, and are obtained by iterating
the initial value at time i. In order to avoid repeated integration due to changes in the bias
during the optimization process, we use first-order approximation to linearize the bias
terms, as follows:

∆P̃Ii
Ij
≈ ∆P̃Ii

Ij
+ J∆P̃

ba
δba + J∆P

bw
δbw

∆Ṽ Ii
Ij
≈ ∆Ṽ Ii

Ij
+ J∆Ṽ

ba
δba + J∆V

bw
δbw

∆R̃Ii
Ij
≈ ∆R̃Ii

Ij
Exp

(
J∆R̃

bω
δbw

) (31)

The items related to the state at times i and j are as follows:

∆PIi
Ij
=
(

RW
Bi

RB
I

)T(
PW

Ij
− PW

Ii
− vW

Ii
∆t + 1

2 gW∆t2
)

∆VIi
Ij
=
(

RW
Bi

RB
I

)T(
vW

Ij
− vW

Ii
+ gW∆t

)
∆RIi

Ij
=
(

RW
Bi

RB
I

)T
RW

Bj
RB

I

(32)
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We construct the motion constraints of the IMU between two keyframes, which
naturally provide the IMU pre-integration factor. This factor takes the bias of the IMU as
an optimization parameter, and its residual is defined as follows:

rP = ∆PIi
Ij
− ∆P̃Ii

Ij

=
(

RW
Bi

RB
I

)T
(

PW
Bj
− PW

Bi
− vW

Ii
∆t +

1
2

gW∆t2
)
−

j−1

∑
k=i

[
∆Vi

k∆t +
1
2

R
(

γi
k

)(
ãk − bak

)
∆t2
]

rv = ∆VIi
Ij
− ∆ṼIi

Ij

=
(

RW
Bi

RB
I

)T(
vW

Ij
− vW

Ii
+ gW∆t

)
−

j−1

∑
k=i

Ri
k
(
ãk − bak

)
∆t

rR = log
((

∆RIi
Ij

)T
∆R̃Ii

Ij

)
= log

((
RW

Bj
RB

I

)T
RW

Bi
RB

I

j−1

∏
k=i

Exp
((

ω̃k − bwti

)
∆t
))

rba = baj − bai

rbω
= bωj − bωi

(33)

where RB
I is the rotation between the lidar coordinate system and the robot body coordinate

system, calibrated in advance.
The variance of the IMU pre-integration factor can be obtained iteratively from an

initial value 0 using the method in [26].

4.2.3. Odometry Pre-Integration Factor

Generally, wheeled robots are equipped with wheel encoders that often provide noisy
and only intermittently reliable measurements of the motion of each wheel. In order to
reduce the amount of computation and accumulated error, by analogy to IMU we use
the pre-integration technique on SE(2) to derive the constraints of the odometer. Unlike
general ground mobile robots, TWIP swings back and forth in addition to plane motion,
while the encoder only provides two-dimensional plane motion. In order to analyze the
constraints of the encoder more conveniently, we add an auxiliary coordinate system,
that is, a plane coordinate system. The coordinate system is fixed to the robot; its origin
coincides with the origin of the robot body frame, the xy plane coincides with the physical
plane, the z-axis is vertically upward, and the y axis coincides with the y axis of the robot
body frame, as shown in Figure 6. The encoder measurements between two adjacent
keyframes indicate the pose transformation between the plane coordinate systems of the
corresponding moments. Therefore, we analyze the constraints provided by the encoder in
the planar coordinate system.

The measurement data of the encoder can be converted into linear velocity and angular
velocity on a two-dimensional plane:

v = rlωl+rrωr
2

ω = rl ωl−rrωr
l

(34)

where ωl and ωr are the rotational velocities of the left and right wheels, respectively, rl
and rr are their corresponding radii, and l denotes the robot’s baseline.
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Figure 6. Motion of TWIP in Plane Coordinate System.

We model the encoder’s measurement error with a Gaussian model to process the noisy
odometer data. We begin by deriving the measurement model, assuming that between
successive odometer readings the motion is planar; the encoder provides the following
measurements in the planar coordinate system of the current keyframe:

ṽi = vi+εvi
w̃i = ωi+εωi

(35)

where vi =

[
vi
0

]
, εvi =

[
εvi
0

]
; εvi and εwi represent zero-mean Gaussian noise.

With two consecutive lidar keyframes, i and j, we obtain the pose of the plane coordi-
nate system corresponding to the current keyframe in the world coordinate system from
the pose of the previous keyframe and the measurements of the encoder:

φW
πj

= φW
πi
+

j−1
∑

k=i
(w̃k−εωk)∆t

PW
πj

= PW
πi
+

j−1
∑

k=i
R
(

φW
πk

)
((ṽk − εvk)∆t)

(36)

where φW
πk

, k = i, j is the yaw angle of the plane coordinate system corresponding to

keyframe k relative to the world coordinate system and PW
πk

=

[
xk
yk

]
, k = i, j is the 2D

position of the plane coordinate system corresponding to keyframe k relative to the world
coordinate system:

R(φ) = exp
(
φ∧
)
= exp

([
0 −φ
φ 0

])
=

[
cos φ −sinφ
sin φ cos φ

]
(37)

Note that the position propagated here depends on the rotational state. In order to
generate a measurement between two keyframes i and j without depending on the robot’s
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state in the world coordinate system, we place the items related to the measurement together
and eliminate the items related to the state of i and j. Equation (36) can be written as:

∆φij = φW
πj
−φW

πi

=
j−1
∑

k=i
(ω̃i−εω)∆t

=
j−1
∑

k=i
ω̃i∆t−

j−1
∑

k=i
εωk∆t

= ∆φ̃ij−δφij

(38)

∆Pij = R
(
−φW

πi

)(
PW

πj
− PW

πi

)
=

j−1
∑

k=i
R(φik)((ṽk−εvk)∆t)

≈
j−1
∑

k=i
R(φ̃ik)exp(−δφik)((ṽk−εvk)∆t)

≈
j−1
∑

k=i
R(φ̃ik)

(
I2×2 − δφ∧ik

)
((ṽk−εvk)∆t)

≈
j−1
∑

k=i
R(φ̃ik)ṽk∆t−

j−1
∑

k=i
R(φ̃ik)εvk∆t−

j−1
∑

k=i
R(φ̃ik)1∧ṽk∆tδφik

= ∆P̃ij−δPij

(39)

In order to obtain the error transfer model, we derive the integrated noise terms in the
form of iterative transfer:

δφi,k+1 = δφik+εωk∆t
δpi,k+1 = δpik+R(φ̃ik)1∧ṽk∆tδφik+R(φ̃ik)∆tεvk

(40)

Writing Equation (40) in a compact form, we then have:[
δpi,k+1
δφi,k+1

]
3×1

= Ak

[
δpik
δφik

]
3×1

+ Bk

[
εvk
εωk

]
3×1

(41)

where

Ak =

[
I2×2 R(φik)1∧ṽk∆t

0 1

]
(42)

Bk =

[
R(φik)∆t 02×1

01×2 ∆t

]
(43)

Iterating from the initial value, Σδi = 03×3, at the time i, we can incrementally calculate

the pre-integrated terms ∆φij and ∆Pij and their covariance matrix, Σδ=

[
ΣδPij 02×1

01×2 Σδφij

]
.

Thus far, we have the encoder’s pre-integration terms, ∆φ̃ij and ∆P̃ij, which provide
the measurements of the odometer constraints. Next, we formulate the residual of the
odometer pre-integration constraint. Through the definition of the plane coordinate system,
we can obtain the rotation of the plane coordinate system corresponding to the keyframes i
and j relative to the world coordinate system, respectively:

RW
πi
=
[
−e3 ×RW

Bi
e2 RW

Bi
e2 e3

]
(44)

RW
πj
=
[
−e3 ×RW

Bj
e2 RW

Bj
e2 e3

]
(45)

where ei is the ith column vector of the identity matrix, I3×3.
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Then, the relative transformation of the plane coordinate system corresponding to
keyframes i and j is as follows:

R
πj
πi =

(
RW

πj

)T
RW

πi

=


(
−e3 ×RW

Bj
e2

)T(
RW

Bj
e2

)T

eT
3

[ −e3 ×RW
Bi

e2 RW
Bi

e2 e3

]

=


−eT

2

(
RW

Bj

)T
e∧3 e∧3 RW

Bi
e2 eT

2

(
RW

Bj

)T
e∧3 RW

Bi
e2 0

−eT
2

(
RW

Bj

)T
e∧3 RW

i e2 eT
2

(
RW

Bj

)T
RW

Bi
e2 0

0 0 1


(46)

As can be seen from Appendixes A and B, the measurement of the rotating part of the
encoder ∆φ̃ij provides only one constraint, and the residual of the rotation part is:

rR = eT
2

(
RW

Bj

)T
RW

Bi
e2−cos

(
∆φ̃ij

)
(47)

We obtain the variance of the rotation residuals using a first-order linear approximation
of the trigonometric functions:

cos φ ≈ cos
(
∆φij

)
− sin

(
∆φij

)(
φ− ∆φij

)
(48)

ΣrR = sin2(∆φij
)
Σδφij (49)

Then, its Jacobian matrix relative to the TWIP motion state (the pose of the robot body
frame relative to the world frame) is

JrR
φi

= −eT
2

(
RW

Bj

)T
RW

Bi
e∧2 (50)

JrR
φj

= eT
2

((
RW

Bj

)T
RW

Bi
e2

)∧
(51)

and the residual of the translation part is

rP =

[(
RW

πi

)T(
PW

Bj
− PW

Bi

)]
xy
− ∆P̃ij

=


(
−e3 ×RW

Bi
e2

)T(
PW

Bj
− PW

Bi

)
(

RW
Bi

e2

)T(
PW

Bj
− PW

Bi

)
0


xy

− ∆P̃ij

(52)

where []xy represents the first two rows of the vector, and its covariance is

ΣrP=ΣδPij (53)

Then, its Jacobian matrix relative to the motion state of TWIP is

JrP
φi
=

 eT
2

((
RW

Bi

)T
e∧3
(

Pw
Bj
− Pw

Bi

))∧
eT

2

((
RW

Bi

)T(
Pw

Bj
− Pw

Bi

))∧
 (54)
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JrP
PW

Bi

=

 −eT
2

(
RW

Bi

)T
e∧3

−eT
2

(
RW

Bi

)T

 (55)

JrP
PW

Bj

=

 eT
2

(
RW

Bi

)T
e∧3

eT
2

(
RW

Bi

)T

 (56)

4.2.4. Ground Constraint Factor

This paper proposes a new nonholonomic constraint factor in order to add ground
constraints. We assume that TWIP moves on an approximately flat surface and that the
robot is always constrained by the ground plane during movement. Ideally, the z and
pitch angle would remain constant during the planar motion for a two-wheeled inverted
pendulum robot. In the natural environment, however, there are motion disturbances in the
other dimensions of the robot’s pose due to rough terrain and shaking in the robot’s motion.
In order to reduce the error caused by this motion disturbance, we use a random model
to introduce ground constraints and assume that the motion disturbance is a zero-mean
Gaussian model. This is more in line with the natural environment, allowing a least squares
to be used to model the ground constraints, which naturally adds the ground constraints
as a new factor to the factor graph. As shown in Figure 7, when TWIP moves on an ideal
plane the roll angle and z of its body frame relative to the world frame should both be zero.
Therefore, the residual of the ground constraint is defined as follows:

rR = eT
3 RW

Bi
e2 (57)

rP = eT
3 · PW

Bi
(58)
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Figure 7. Ground constraints when TWIP is moving on approximately flat ground.

The corresponding covariance matrix is

Σrp = diag
(

σ2
r σ2

z
)

(59)
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In this paper, we assume that the motion disturbance of the robot due to rough terrains
or motion shaking obeys the Gaussian distribution; σz and σr are the noise sigma of the z
and roll, respectively, which are determined by the conditions of the terrain and the robot’s
structure.

The Jacobian matrix relative to the state of TWIP is

JrR
φi

= −eT
3 RW

Bi
e∧2 (60)

JrP
PW

Bi

= eT
3 (61)

4.2.5. Loop Closure Factor

When a new lidar keyframe, Fi+1, arrives, its corresponding robot state, Ki+1, is
added to the factor graph. We obtain the absolute pose of the current lidar keyframe as in
Section 4.2.1. We obtain the absolute pose of the current lidar keyframe as in Section 4.2.1,
and use this pose as a prior to find the previous keyframe closest to Fi+1 in Euclidean space
as a candidate frame. For example, the lidar keyframe F3 in Figure 3 is one of the returned
loop closure candidates. Then, taking the position of the lidar keyframe F3 as the center, we
extract the point cloud in the cuboid with a length of 10 m and a height of 5 m in the global
map and transform the point cloud into the robot body coordinate system corresponding
to the lidar keyframe F3 to construct a local map Mi+1. We try to match Fi+1 to the local
map Mi+1 using the scan-matching method discussed in Section 4.2.1. In the local map, we
select the N nearest feature points for each feature point of the current frame to fit a line or
plane. After optimization, we obtain the relative transformation, ∆T̃ i+1

3 , and add it to the
graph as a loop closure factor. Throughout this paper, we choose to set the loop closure’s
search distance to 15 m from the new lidar keyframe.

5. Experiment

We conducted experiments on our collected datasets, as we could not find an open
dataset to provide calibrated Lidar–IMU–Odometry for a two-wheeled inverted pendulum
robot. All experiments were carried out with an Intel CPU i7-8559U (8 cores@2.70 GHz)
laptop computer with 8 GB RAM. As shown in Figure 8, the platform was equipped
with a Velodyne VLP-16 lidar oprating at 10 HZ, an XSENS MTI-G-710 IMU to provide
acceleration and angular velocity at 200 HZ, and an encoder with 1khz, all of which were
synchronized and calibrated in advance.

Figure 8. Experimental platform: Two-Wheeled Inverted Pendulum (TWIP) robot (left) and environ-
ment perception system (right).
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The dataset comes from two scenes; one is a long straight corridor scene, named
Dataset Corridor, and the other is a flat outdoor road, named Dataset Outdoor. The
environment of the two datasets is shown in Figure 9. As with the process of data collection,
the actual ground truth of the robot is unavailable. Inspired by [25], we equipped TWIP
with downward-viewing cameras on the front and rear (their position is shown in Figure 7)
and an attitude sensor with a dynamic accuracy of 0.2◦. Tens of Aruco code markers were
laid out on the floor, and their locations in a predefined world reference were measured with
a location error of less than 1 cm. Transformations between industrial cameras and attitude
sensors and the robot were all pre-calibrated. The two industrial cameras detected and
recorded these marks during the robot’s movement. In order not to affect the algorithm in
this paper as well as to improve the true accuracy, the trajectory truth was obtained offline.
We extracted the marked corner points in each recorded image and approximated the
trajectory truth by optimizing the reprojection error of the image and the pose constraints
of the pose sensor in an offline batch. In order to verify the algorithm used in this article,
we tested the constructed SLAM algorithm and the state-of-the-art lidar slam method
(Fast_lio2 [16], Lio_sam [18], Loam [7]) on the same dataset.

Figure 9. Experimental environment: indoor straight corridor (left) and outdoor structured environ-
ment (right).

5.1. Experimental Results and Analysis of Indoor Corridors

Figure 10 shows the results of our algorithm for localization and mapping with Dataset
Corridor. Figure 11 compares trajectories in the xy direction recovered by our algorithm,
Fast_lio2, Lio_sam, Loam, Odometry, and ground truth on the Long Straight Corridor
dataset. The odometer is a trajectory obtained using the less accurate odometer raw data
calculated directly from the encoder to emphasize the correction effect of the lidar method
on the odometer’s accumulated error. Meanwhile, to compare the long-term positioning
accuracy of the algorithms, all algorithms did not add a loop detection module, and the
pose estimation of all algorithms was performed in the robot body frame. Figures 12 and 13
show the corresponding trajectory errors relative to the ground truth, respectively. It can
be seen from Figure 12 that the x-direction is the running direction of TWIP, which has
fewer constraints, and these algorithms have more significant errors in the x-direction.
Among them, the accuracy of loam in the x-direction is significantly lower than the other
algorithms due to the lack of measurements from other sensors. There is a constraint from
the wall in the y-direction; all the lidar-based SLAM algorithms have little difference in
accuracy, as they all use the same matching method. While the results by our method exhibit
much better accuracy, there is a smaller upper limit of errors in the x and y directions.
Attention should be paid to the z-axis values in Figure 14, where the z-coordinates estimated
by our method are well-bounded around zero (which is consistent with natural indoor
environments) while the other algorithms have significantly larger upper bounds. Using a
nonholonomic constraint factor and adding planar constraints and encoder pre-integration
constraints improves indoor pose estimation accuracy, especially in the z-direction. The
numerical results of the estimation errors are presented in Table 2. The root mean square
of the errors (RMSE) is used here, including those of the errors in principal parameter
directions, namely, the x, y, pitch, and yaw coordinates. In terms of RMSE, the error of our
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algorithm is lower than the other algorithms in all directions for a two-wheeled inverted
pendulum robot.

Figure 10. Localization and mapping results of our algorithm on Dataset Corridor.

Figure 11. Dataset Corridor evaluation: projections of trajectories estimated by different algorithms
on the xy plane.

Figure 12. The x-axis estimation errors of different algorithms on Dataset Corridor.
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Figure 13. The y-axis estimation errors of different algorithms on Dataset Corridor.

Figure 14. Dataset Corridor evaluation: projections of trajectories estimated by different algorithms
on the z-axis.

Table 2. The estimation errors (RMSE) of different methods on Dataset Corridor.

Dimension Fast_lio2 Lio_sam Loam Odom Ours

x(m) 0.4680 0.4111 0.9218 1.5468 0.1747
y(m) 0.2636 0.4695 0.5550 1.1035 0.2921

pitch(rad) 0.0287 0.0420 0.0590 − 0.0176
yaw(rad) 0.1740 0.1810 0.3170 0.6010 0.0970

5.2. Experimental Results and Analysis of Outdoor Structured Environment

In our outdoor experiments, we used algorithms such as lio_sam for comparison with
our algorithm. Figure 15 shows our algorithm’s trajectory and environment map on Dataset
Outdoor. Figure 16 compares estimated trajectories in the x and y directions on Dataset
Outdoor, including our algorithm, fast_lio2, lio_sam, loam, odometry, and ground truth.
Figures 17 and 18 are the corresponding errors relative to the ground truth, respectively.
Figure 19 shows the trajectory in the z-direction, which should be constrained around zero.
As can be seen from the results, our algorithm continues to outperform the other algorithms
in outdoor scenes.

Moreover, the accuracy improvement of our algorithm is more significant in the z-axis
direction than in the x- and y-axis directions. There is no degradation scene in the outdoor
experiment. The lidar feature points mainly come from the reflection of surrounding objects,
which constrains the robot’s pose in the horizontal direction. In contrast, lidar provides
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relatively few feature points in the vertical direction due to the limitation of the vertical field
of view. Our algorithm introduces ground constraints, which increase the pose constraints
of the robot in the vertical direction and improve the localization accuracy of the system,
especially in the z-direction. Meanwhile, we quantitatively analyzed the performance of
our algorithm and other algorithms in the direction of the principal parameters on the
outdoor dataset in terms of RMSE. The results are shown in Table 3, indicating that the
error of our algorithm in the direction of principal parameters is lower than that of the
other algorithms.

Figure 15. Localization and mapping results of our algorithm on Dataset Outdoor.

Figure 16. Dataset Outdoor evaluation: projections of trajectories estimated by different algorithms
on the xy plane.

Table 3. The estimation errors statistics (RMSE) of different methods on Dataset Outdoor.

Dimension Fast_lio2 Lio_sam Loam Odom Ours

x(m) 0.3113 0.3486 0.4770 1.6786 0.0635
y(m) 0.4549 0.4213 0.4999 1.2751 0.1625

pitch(rad) 0.0220 0.0281 0.0282 − 0.0172
yaw(rad) 0.2990 0.4900 0.6170 0.9368 0.1803
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Figure 17. The x-axis estimation errors of different algorithms on Dataset Outdoor.

Figure 18. The y-axis estimation errors of different algorithms on Dataset Outdoor.

Figure 19. Dataset Outdoor evaluation: projections of trajectories estimated by different algorithms
on the z-axis.

Our indoor and outdoor experiments show that the non-full constraint factor proposed
by our algorithm naturally introduces the pre-integration constraint of the encoder while
adding a ground constraint in the form of the random constraint model, which is more in
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line with the actual motion of the two-wheeled inverted pendulum robot, resulting in the
improved positioning and mapping accuracy of the system.

6. Conclusions

This paper proposes a novel Lidar–IMU–Odometer coupled framework for local-
ization and mapping for a two-wheeled inverted pendulum robot on approximately flat
ground. We formulate a factor graph incorporating relative and absolute measurements
from different sensors (including ground constraints) into the system as factors. In this cou-
pled framework using a lidar–IMU–encoder system based on a factor graph, we introduce
five types of factors and analyze the constraint dimension of each type of factor on the robot
state node according to the motion characteristics of TWIP. For the non-fully constrained
factors (the encoder pre-integration factor and ground constraint factor), we propose a
new factor with constraints in order to add them naturally to the factor graph with the
robot state node on SE(3). Experiments in indoor and outdoor environments validate
the superior performance of our system compared to other state-of-the-art lidar-based
SLAM algorithms.

This proposal paves the way for using constrained models to consider motion pertur-
bations for specially-structured ground robot state estimation with different sensors. In the
future, based on the work inof this paper we intend to realize the positioning and mapping
of TWIP on undulating roads via the proposed LiDAR–IMU–Encoder coupling framework
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Appendix A

This section proves the relationship between the item in row 0, column 0,r00 and
the item in row 1, column 1,r11 in the matrix finally obtained in Equation (43). From
Equations (7) and (8) we obtain
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Therefore, we can see that the item r00 and the item r11 in the matrix are equal.

Appendix B

This section proves the constraints implicit in the final matrix obtained in Formula (43).
When TWIP moves on the ideal ground plane, the x-y plane of the plane coordinate system
corresponding to each keyframe is the same plane. Therefore, the y-axis of the plane
frame corresponding to keyframe j is in the x-y plane of the plane coordinate system
corresponding to keyframe i. As shown in Figure A1, we translate the y-axis y′j of the
plane coordinate system πj to the plane coordinate system πi, and all coordinate axes are
represented in the world coordinate system. We assume that the angle between y′j and y′i is
α, that the angle between y′j and x′i is β, and that α+β=90◦. Therefore, we have
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Figure A1. Geometric relationship between two continuous plane coordinate systems πi and πj.
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