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Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) are rare yet highly aggressive soft tissue sarcomas. Children
with neurofibromatosis type 1 (NF1) have a 10% lifetime risk for development of MPNST. Prognosis remains poor and survival
seems worse for NF1 patients.
Methods This narrative review highlights current practices and pitfalls in the management of MPNST in pediatric NF1 patients.
Results Preoperative diagnostics can be challenging, but PET scans have shown to be useful tools. More recently, functional
MRI holds promise as well. Surgery remains the mainstay treatment for these patients, but careful planning is needed to minimize
postoperative morbidity. Functional reconstructions can play a role in improving functional status. Radiotherapy can be admin-
istered to enhance local control in selected cases, but care should be taken to minimize radiation effects as well as reduce the risk
of secondary malignancies. The exact role of chemotherapy has yet to be determined. Reports on the efficacy of chemotherapy
vary as some report lower effects in NF1 populations. Promisingly, survival seems to ameliorate in the last few decades and
response rates of chemotherapy may increase in NF1 populations when administering it as part of standard of care. However, in
metastasized disease, response rates remain poor. New systemic therapies are therefore desperately warranted and multiple trials
are currently investigating the role of drugs. Targeted drugs are nevertheless not yet included in first line treatment.
Conclusion Both research and clinical efforts benefit from multidisciplinary approaches with international collaborations in this
rare malignancy.

Keywords Emerging therapies . MPNST . NF1 . Radiotherapy . Surgical treatment . Systemic treatment

Introduction

Children with neurofibromatosis type I (NF1) are at an in-
creased risk of developing multiple tumors including neurofi-
bromas as a result of neurofibromin inhibition involved in the
Ras pathway [1]. NF1 disease is a frequent genetic disease,
affecting 1 in 3000 to 5000 people. The cumulative life time
risk of developing malignant peripheral nerve sheath tumors

(MPNST) is 8–13% [2–5]. MPNSTs are rare in the general
population encompassing only 2–4% of all soft tissue sarco-
mas [6]. Less than 10% of those patients are children [7, 8],
b u t MPNST i s t h e t h i r d mo s t c ommon n on -
rhabdomyosarcoma STS (NRSTS) in children [9]. Of all
MPNSTs, almost 40–50% of patients are NF1 patients; the
remaining 50–60% develop sporadically or are radiation-
induced [10–15].

Genetically, NF1 is characterized by the loss of heterozy-
gosity of the NF1 tumor suppressor gene, although not in all
patients [16]. Loss of NF1 function leads to activation of the
Ras pathway and upregulation of mitogen-activated protein
kinase (MAPK) and phosphoinositide 3-kinase (PI3K) lead-
ing to cell proliferation [17]. NF1 patients develop neurofi-
bromas, plexiform neurofibromas, in a nerve plexus lateral of
the vertebrae and sacrum. For malignant transformation, loss
of neurofibromin alone is not enough to develop an MPNST
[18]. Although the landscape of tumor drivers in MPNST is
not clear yet, MPNST are characterized by extensive genetic
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instability with several frequently observed genetic alterations
considered as tumor driver events. The most frequent events
are amplification of receptor tyrosine kinases and mutations of
the genes CDKN2A/p16, SUZ12, TP53, and PTEN. One or
more are considered necessary in the development of an
MPNST [19–24].

The cornerstone of treatment in MPNST remains surgical
excision, which is strongly associated with improved survival.
However, MPNSTs have been reported initially unresectable in
17–53% of children, which is higher than any other pediatric
NRSTS [25–29]. Radiotherapy and chemotherapy are incorpo-
rated in the treatment of unresectable or large, localized pediatric
MPNST [29]. Despite curative intents of treatment, survival
remains relatively poor with 5-year survival rates of 51–66%
[8, 25, 29]. Promisingly, survival has improved over the past
decade in pediatric MPNST [8]. And children have a superior
survival in comparison with adult patients [7, 8]. Although the
influence of NF1 on survival is strongly debated in adults [30],
in pediatric series, it has repeatedly been shown an independent
predictor of survival [8, 25, 29, 31]. Importantly, NF1 children
tend to present with larger tumors than non-NF1 patients, and
the outcome is still poor and unsatisfactory. There is a need for
novel treatment strategies and compounds.

This review will discuss the surgical approach to these
tumors, current treatment recommendations, and emerging
therapeutic options in pediatric NF1–associated MPNST.

Genomic landscape

NF1 disease is based on a germlinemutation in theNF1 gene on
chromosome 17q11.2. The NF1 gene is large, spanning 350 kb
of genomic DNA and encoding 11–13 kbmRNA containing 59
exons, and results in a 320-kDa neurofibromin protein.
Neurofibromin downregulates the Ras protein, and frequent
germ line or somatic mutations are present in several human
cancers. Therefore, NF1 is considered a tumor suppressor gene.
More than 500 mutations in the NF1 gene have been identified.
Mostly, they result in truncation of the neurofibromin protein
and loss of function [32]. The development of neurofibromas
result as a loss of a second allele, although this cannot be
established in all neurofibromas, possibly due to the complex
and large NF1 gene or to the existence of other, so far unknown
genes involved in a second hit [16]. The understanding of the
genomic landscape of MPNST in NF-related and non-NF1-
related disease is complex and incomplete. A number of recur-
rent pathological events are recognized, lacking a consistent
pattern among individuals and tumors. It includes recurrent loss
of “classical” tumor suppressor genes NF1, TP53, CDKN2A/
p16 and more recently also mutations in PRC2 complex genes
[20, 33]. The PRC2 complex consists of chromatin-modifying
proteins involved in epigenetic suppression of gene expression.
In MPNST, loss of function mutations have been observed in

SUZ12 and EED in a mutually exclusive manner, and also in
regulators of the PRC2 complex, such as EPC1, CHD4,
AEBP2, and ATRX [24]. In addition, it should be noted that
there is considerable intra-tumor heterogeneity, complicating
our understanding of tumor driver events in MPNST [34].

Diagnostics of MPNST

Whenever a malignant tumor arises from a peripheral nerve or
within a pre-existent neurofibroma, diagnostic criteria are ful-
filled for anMPNST. However there is still lack of standardized
pathology diagnostic criteria outside these settings. Cells in-
volved may resemble Schwann cells, perineurial cells, and fi-
broblasts; tumors can therefore morphologically be heteroge-
neous. Classically, MPNSTs consist of monomorphic spindle
cells arranged in long fascicles. Due to alternating cellularity, a
marble-like aspect is commonly given. Perivascular cuffs are a
typical feature. Nuclei are often wavy or buckled, and mitotic
figures may be numerous. The cytoplasm is inconspicuous.
When arising in a neurofibroma, high cellularity with fascicular
arrangement and mitotic figures make the diagnosis of an
MPNST. However, there is a broad morphological spectrum
ranging from spindle cell (most common) to epithelioid and
pleomorphic histology [35, 36]. Immunohistochemistry shows
variable features with incomplete staining of S100 and SOX10
in up to 85% of the cases, in contrast to melanoma and
schwannoma that are commonly strongly positive for these
markers. However, very importantly, when these markers are
absent, anMPNST cannot be ruled out. CD34 and EMAmay be
positive but they are unspecific and therefore not very helpful.
MDM2 is expressed in a subset of tumors often NF1 related, but
there is no amplification of the corresponding gene as seen in
dedifferentiated liposarcoma [35–37]. Loss of H3K27me3 due
to mutational inactivation of the PRC2 complex has been ob-
served in a subset of MPNST showing often high-grade mor-
phology and an association with previous radiation therapy or
sporadic occurrence. In NF1-related tumors, this protein is ab-
errant to a lesser extent. Neurofibromas with or without atypia
are reported to have a retained protein, which can aid in the
distinction from MPNST [38]. Methylation profiling seems to
be a reliable molecular technique to differentiate biologically
relevant groups of peripheral nerve sheath tumors as well [39].

Imaging of MPNST

In NF1 patients, the distinction between (plexiform) neurofi-
broma and MPNST is complex. They may both present with
similar symptoms, making it commonly impossible to differ-
entiate between benign and malignant lesions based just on
clinical presentation [40, 41]. Imaging plays an important role
in diagnostic work-up, as biopsies are cumbersome in NF1
patients especially since they may be painful and result in
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persisting nerve damage [42]. Additionally, in NF1 patients,
sampling errors are common [43, 44]. Magnetic resonance
imaging (MRI) is widely used but may be inadequate to detect
and especially distinguish benign and malignant lesions [45,
46]. Although the presence of a target sign, a hypointense
region on T2-weighted images, represents a benign lesion
with great likelihood, its absence is unspecific [47]. The use
of 18F-fluorodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET-CT) has gained popu-
larity in NF1 patients to detect MPNSTs. Several studies sug-
gest a high sensitivity of up to 95% to detect MPNSTs using
the maximum standardized uptake values (SUVmax) [45, 48,
49]. However, while the most commonly used threshold is ≥
3.5, an ideal threshold is lacking as some studies suggest high
false positive rates using this threshold [50, 51]. Numerous
studies have tried to find parameters with higher accuracy
and reproducibility to detect MPNSTs. This includes the use
of the SUVmax to liver SUVmean or SUVmax (T/L ratio)
which generally results in equal accuracy as SUVmax
[52–54]. Thresholds vary between 1.5 and 3.0, and an ideal
threshold has yet to be established. The use of T/L ratio does
however diminish measurement variations between scanners.
Delayed scanning at 4 h has been proposed as well and may
increase specificity, but requires more resources and exposes
patients to additional radiation [55]. More recently, functional
MRI sequences including diffusion-weighted imaging (DWI)
and apparent diffusion coefficient (ADC) have shown prom-
ising results [50, 56]. Because MPNSTs show increased cel-
lularity, minimal ADC values of < 1 × 10−3 may be useful.
Reported sensitivity ranged between 89 and 98% and speci-
ficity 93 and 94%. Further research is however necessary to
establish their role in the diagnostic work-up of MPNST. The
use of PET-MRI scans in NF1 populations is attractive as it
combines the accuracy of both modalities and diminishes ra-
diation exposure [46, 51].

Liquid biopsies

Liquid biopsies have established an important role in detection
and treatment of numerous cancers over the past decades. These
include breast cancer [57], prostate cancer [58], ,and lung cancer
[59], but they have not yet been widely used in NF1 and sarco-
mas. To date, three studies have been published on liquid biop-
sies, reporting the utility of four circulating biomarkers. One
study found elevated levels of adrenomedullin (ADM) as a po-
tential biomarker of malignant transformation among NF1 pa-
tients with and without MPNST [60]. Concentrations of ADM
were higher among patients with MPNST compared with those
with only plexiform neurofibromas (0.24 vs 0.18 ng/mL, p =
0.03). Another study reported soluble AXL (sAXL) to be higher
among NF1 patients with plexiform neurofibromas and
MPNSTs compared with NF1 patients with dermal neurofi-
bromas only [61]. But sAXL could not differentiate MPNST

patients from those with plexiform neurofibromas only. The
third study found insulin growth factor-binding protein 1
(IGFBP1) elevated in MPNST patients compared with NF1
control patients [62]. IGFBP1 levels were able to detect
MPNST with 90% sensitivity and 50% specificity. The same
study also found elevated levels of regulated upon activated
normal T-cell expressed and secreted (RANTES) to detect
MPNST with 90% sensitivity and 26% specificity.

Staging of MPNST

MPNSTs are present in 5–11% of cases with synchronous
metastases [13, 15, 63]. Metastatic sites of MPNST are similar
to other STS and usually involve the lungs. They may also
metastasize to the bone and liver, and in rare occasions to the
regional lymph nodes and even the brain [63, 64]. Staging of
MPNSTs therefore requires at least preoperative lung CT
scanning which may be accompanied with an 18FDG-PET
scan. Other staging modalities may be used in selected cases
but generally do not play a role in MPNST work-up. Avidity
of other lesions than the MPNST on 18FDG-PET scan may
however require further investigation. A sentinel node proce-
dure should not routinely be employed, because of the low
probability of lymph node involvement.

Surgical management

Surgical margins

Ideally, MPNSTs should be removed with clear margins in
order tominimize local recurrence rates and optimize survival,
making it the routine treatment of choice [11, 13, 65, 66].
Postoperative morbidity is however high when resecting
MPNSTs, especially when they originate from major nerves
or in the brachial or sacral plexus. Contrarily, conventional
and even atypical neurofibromas can be excised using nerve-
sparing surgery resulting in minimal morbidity yet with low
recurrence rates [67]. It is therefore important to have a reli-
able diagnosis before surgically excising a nerve sheath tumor
in NF1 patients, as unnecessary function loss may be avoided
in a patient cohort that is already prone to disabilities.
Nonetheless, even when obtaining microscopic-free margins
(R0),MPNSTs can recur [10–12, 68, 69]. Some argue that this
may be due to its perineural origin, and microscopic skip
lesions may be present along the nerve [70]. In a recent sur-
vey, several surgeons would advocate possibly resecting more
of the nerve of origin, but this has not been studied in a clinical
setting [71]. Fresh frozen coupes may be indicated intraoper-
atively to ascertain complete resection in nerve endings [10,
12, 70]. However, several large MPNST cohorts in adults
have shown that microscopic-positive margins do not impair
survival [11, 13, 15]. It has also been shown that close margin
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surgery, including epineural dissection of adjacent nerves, in
combination with radiotherapy does not significantly increase
recurrence rates in STS [72, 73]. This indicates that MPNSTs
arising from a plexus could initially be treated with en bloc
resection of its originating nerve, yet nerves that are not
completely encompassed by tumor may be spared. Such a
surgical approach may obviate the need for a forequarter am-
putation in some children, which is important to bear in mind
when children may survive well beyond 5–10 years [8, 29].

Reconstructions

Resection of functional nerves is sometimes inevitable and
postoperative functional deficits are reported in 30–40% of
MPNST patients [74]. Especially when survival is slowly in-
creasing for pediatric patients, preventive or counter-acting
measures should be taken into consideration. To date, func-
tional reconstructions, reconstructions aimed at restoring lost
function, are only rarely performed in any STS [75, 76].
Reasons for this include the hesitance of surgeons to perform
such operations, not knowing the possibilities for reconstruc-
tion, and the lack of literature on indications and outcome as
the focus of research has been on improving oncological out-
comes [76]. Nonetheless, research has shown that good func-
tional outcomes can generally be expected despite the use of
radiotherapy and chemotherapy, even in nerve reconstructions
[76–78]. A recent unpublished survey among several surgical
subspecialties involved in MPNST treatment showed that
there is interest in performing functional reconstructions in
MPNST patients, but surgical oncologists were least likely
to consider such reconstructions even though they operated
most patients. Regardless of subspecialty, respondents report-
ed a minimal prognosis of 3 years or more before functional
reconstructions should be considered. With an increasing
knowledge of the use of (acute) nerve transfers in trauma
and brachial plexus birth palsy, these techniques could be
incorporated in the treatment of MPNSTs as well.
Especially, since children are known to experience better re-
sults after nerve reconstruction than adults [79]. Moreover,
distal nerve transfers may facilitate reconstruction outside of
an irradiated field and diminish time to restoration of function.
Other options to restore function also include tendon transfers
or grafting as well as innervated (free) muscle transfers or
cutaneous flaps. Exact choice for reconstruction relies onmul-
tiple factors such as tumor location, defect size, and need for
coverage of soft tissue defects. Combining the knowledge of
reconstructive possibilities by nerve and reconstructive sur-
geons as an extension to oncological resections may therefore
improve the delicate balance between oncological and func-
tional outcomes. Discussions regarding function preservation
must be held before initial surgery and be weighed in when
considering prognosis and the use of radiotherapy. The use of
free flaps may for instance diminish postoperative

complications when radiotherapy is administered [80, 81].
Future research should be encouraged to explore the field of
functional status after MPNSTs in children, and define indi-
cations and guidelines to incorporate functional reconstruc-
tions as part of the surgical treatment plan.

Radiotherapy

The exact use of radiotherapy in MPNST is controversial,
even more so in pediatric patients, as improvement of onco-
logical outcomes needs to be considered in light of potential
side effects. Radiotherapy is administered to increase local
control of MPNST, but has not shown to affect overall surviv-
al (OS) [11, 15, 82]. The dosage of radiotherapy usually
followed adult STS guidelines that recommended 60–66 Gy
in a postoperative setting or 50Gy preoperatively for tumors >
5 cm and positive margins [82–84]. In adults, it has shown that
preoperative administration reduces long-term fibrosis and
therefore enhances limb function, albeit a higher rate of post-
operative complications [85, 86]. In children, several studies
try to limit the dose of irradiation for STS. Radiation treatment
is known to stunt growth of involved tissues and a reduced
dose may be beneficial in decreasing side effects. However,
this reduced dose is not based on randomized trials and it may
limit the effectiveness of irradiation. In the European paediat-
ric Soft Tissue Sarcoma Study Group (EpSSG), irradiation
doses for NRSTS ranged from 50.4–54 Gy for tumors of high
grade (G2 or 3), size > 5 cm, or irresectable tumors [29]. In a
recent nationwide series of pediatric MPNST in the
Netherlands including 70 patients, radiotherapy was adminis-
tered in 37.5%, with no difference between NF1 and sporadic
patients [8]. Preoperative radiotherapy was applied in 20% of
children receiving radiotherapy. Although both pediatric stud-
ies could not confirm the additive role of radiotherapy
in pediatric MPNST, based on the adult results with a
higher treatment dose, it is advised to apply radiation in pedi-
atric MPNST also [13].

Chemotherapy

The role of chemotherapy in MPNST is limited, especially in
NF1-associatedMPNST and has not been fully established [9,
27, 87–90]. In advancedMPNST disease where it is estimated
that negative margins cannot be achieved by surgery alone,
(neo) adjuvant chemotherapy and radiotherapy are applied. In
adult studies, the most established chemotherapeutic drugs in
MPNST and STS patients are ifosfamide and doxorubicin,
alone or in combination [91]. In pediatric NRSTS, various
chemotherapy combinations are used, including vincristine,
cyclophosphamide, ifosfamide, doxorubicin, and
dactinomycin [27, 89]. The most recent pediatric MPNST
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study used the combination ifosfamide and doxorubicin, in
analogy to the most used combination in adults [29]. In a
recent adult analysis, the chemotherapy response varied be-
tween 17.9 (NF1 related) and 44.4% (non-NF1 related) [92].
Two pediatric studies studied chemotherapy response in (non)
NF1 disease. In a German-Italian study including 167 pediat-
ric MPNST patients, the response to chemotherapy was sig-
nificantly lower in NF1 in comparison with non-NF1 patients,
i.e., 17.6% and 55.3%, respectively [25]. In the EpSSG study
including 26 evaluable chemotherapy patients, the chemother-
apy response was 46.2% with no difference between NF1
(40%) and non-NF1 patients (50%) [29]. The role of chemo-
therapy in pediatric MPNST is mostly for children with
unresectable disease providing moderate chemotherapy re-
sponse, and most data indicate a lesser chemotherapy respon-
siveness in children with NF1 disease.

Survival

In the large meta-analysis of American and European pediatric
NRSTS, NF1-associated MPNST was the most unfavorable
STS in children. The OS for all STS was 60.0% and 51.5% at
5 and 10 years, respectively. For MPNST-NF1 the 5-year OS
was 11.1% (3.8–32.3%), while the 5-year OS in the MPNST
non-NF1 group was 44.7% (32.1–62.3%) [9]. Earlier studies
reported an outcome of 5-year OS of 55.1% for non-NF1
pediatric MPNST and 32.1% for NF1 MPNST in a cohort of
167 pediatric patients [25]. Two more recent cohorts of pa-
tients showed ameliorated survival outcomes. In a cohort of
51 patients, the 5-year OS for localized non-NF1MPNSTwas
80% and 42.6% for NF1-related MPNST [29]. Another study
reported 5-year OS of 52.4% for NF1-related MPNST and
75.8% for non-NF1-related MPNST [8]. These results are
relatively favorable compared with outcome in adult patients
with MPNST. In most mentioned pediatric studies, chemo-
therapy was included in the standard of care for large or ad-
vanced MPNST and seems to indicate a role in the systemic
therapy in the treatment of pediatric MPNST. For metastatic
and recurrent disease in both adult and pediatric patients, the
results of treatment are extremely poor and there is a need for
other treatment strategies in MPNST.

Emerging therapeutic options

Considering the biology of MPNST tumors, obvious and po-
tential targets can be recognized. Growth and activation recep-
tors, such as vascular endothelial growth factor receptors
(VEGFR), epidermal GFR (EGFR), and platelet-derived GFR
(PDGFR), activate two pivotal intracellular activation path-
ways, i.e., the MAPK signal transduction pathway and the
P13K-AKT-mammalian target of rapamycin (mTOR).

Potential targets for therapy are found on all three levels of
normal signal transduction, i.e., receptor kinases, MAPK path-
way, and the P13K-AKT-mTOR pathway. Currently, the most
considered in NF1 disease is inhibition of the MAPK pathway
via MEK inhibitors (MEKi). MEKi potentially neutralize the
loss of NF1 in controlling Ras activation. Selumetinib is a
MEK1/2 inhibitor therefore can convey an anti-tumor signal
by inhibiting Ras signals. In pediatric NF1 patients, selumetinib
was very effective in controlling the growth of inoperable plex-
iform neurofibromas. Partial response was observed in 17/24
patients (71%) [93]. Selumetinib was consequently approved in
2019 by the US FDA for treatment of pediatric patients (> 3
years) with symptomatic or inoperable plexiform neurofibro-
ma. In the treatment of MPNST, selumetinib has not yet been
approved, but several trials including (plexiform) neurofi-
bromas and some including MPNST are being conducted
(i.e., NCT03433183, NCT02124772). Targeting of upstream
tyrosine kinase receptors, alone or in combination with chemo-
therapy, can also de-activate theMAPK or mTOR pathways. A
phase 2 randomized study of doxorubicin plus olaratumab
(anti-PDGFRα antibody) compared with doxorubicin mono-
therapy showed a better OS and trend towards improved me-
dian progression-free survival for the combination treatment
arm [94]. The study included MPNST patients but did not
report separate analyses of this subgroup. Imatinib inhibits spe-
cifically the tyrosine kinase domain in ABL (effective in BCR-
ABL translocated leukemia), c-KIT, and PDGFR. Imatinib has
proven activity in other (pediatric) STS, including
dermatofibrosarcoma protuberans (DFSP), gastrointestinal
stromal tumor (GIST), and desmoid fibromatosis. However,
in MPNST, imatinib has not been found effective [95, 96].
Other RTK inhibitors, such as erlotinib, sunitinib, sorafenib,
cediranib, and dasatinib, are all potential inhibitors of NF1-
related tumors but have not been found effective in few phase
1 studies with limited information on effectiveness, and they all
reported on considerable side effects [97–102]. Inhibition of the
mTOR pathway has been effective in several tumor models
[103]. One trial in 25 adult MPNST patients administered
everolimus and bevacizumab combination therapy, but found
only stable disease in 3 patients [104]. Currently, several com-
bination therapies with mTOR inhibition are being undertaken
including at least in some part of MPNST patients
(NCT02584647, NCT01661283, NCT03433183,
NCT02008877, NCT02601209). Anti-GD2-based immuno-
therapy could potentially be useful in MPNST. Gangliosides
are abundantly expressed in neuro-ectodermal-derived tissues
(Schwann cells) and tumors. In neurofibromas, the expression
of gangliosides has been established [105]. For MPNST, this
has not yet been studied. The CH(O)14,18 chimeric mouse-
human anti-GD2 antibody has proven to be safe and effective
in pediatric high risk neuroblastoma tumors resulting in signif-
icantly increased OS [106]. Dinutuximab has been FDA-
approved and dinutuximab-beta has been EMA-approved for
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standard use in high risk neuroblastoma. So far, no studies
applying anti-GD2 antibodies in MPNST or other neuro-
ectodermal tumors (melanoma, non-small cell lung cancer)
have been conducted. Another type of immunotherapy using
anti-CTLA4 and/or anti-PD(L)-1 inhibitors has proven effec-
tiveness in several tumors (melanoma, non-small cell lung can-
cer, mesothelioma and others). A recent phase 2 trial combining
nivolumab with ipilimumab in advanced sarcomas yielded
promising effects, although the study did not specify the includ-
ed types of sarcomas [107]. One trial is currently ongoing in
MPNSTs specif ical ly invest igat ing the effect of
pembrolizumab (NCT02691026). Oncolytic viruses have prov-
en effective in vivo, and one trial is currently investigating the
effect of oncolytic measles virus in MPNST patients
(NCT02700230) [103].

Conclusion

Pediatric NF1 patients have a 10% lifetime risk–developing
MPNST. MPNSTs are genetically unstable tumors with mul-
tiple genetic alterations superimposed on the germ line NF1
genetic defect. MPNSTs are relatively chemo-insensitive tu-
mors for which the mainstay of treatment is still resection with
tumor-free margins. We eluded novel possibilities to use re-
constructive techniques such as nerve reconstructions to in-
crease postoperative function without compromising survival.
Adjuvant radiotherapy is important in establishing local con-
trol in R1 resections. However, the NF1 deficiency carries a
risk for increased secondary tumors later in life. Many novel
and potential compounds aimed at the molecular pathways
involved in growth and development of MPNST and neurofi-
bromas have been recognized. Considering the rarity of
MPNST, for future trials, it is important to combine MPNST
patients with patients with plexiform neurofibroma or in com-
bination with other sarcomas (basket trials). Advancing the
future of NF- affected individuals is important and
challenging.
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