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Abstract Pregnane X receptor (PXR, NR1I2) is a prototypical member of the nuclear receptor super-

family. PXR can be activated by both endobiotics and xenobiotics. As a key xenobiotic receptor, the

cellular function of PXR is mostly exerted by its binding to the regulatory gene sequences in a ligand-

dependent manner. Classical downstream target genes of PXR participate in xenobiotic responses, such

as detoxification, metabolism and inflammation. Emerging evidence also implicates PXR signaling in the

processes of apoptosis, cell cycle arrest, proliferation, angiogenesis and oxidative stress, which are

closely related to cancer. Here, we discussed, in addition to the characterization of PXR per se, the bio-

logical function and regulatory mechanism of PXR signaling in cancer, and its potential for the targeted

prevention and therapeutics.
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1. Introduction

NR1I2 (nuclear receptor subfamily 1 group I member 2) was
discovered in 1998 and named as PXR (pregnane X receptor) or
PAR (the receptor activated by pregnane) based on its activation
by endogenous pregnanes 21-carbon steroids. Besides, human
PXR is known as SXR (steroid and xenobiotic receptor)1,2. PXR is
enriched in small intestine, duodenum, liver, rectum, colon and
gallbladder, while its expression in other organs/tissues is either
low or undetectable3 (Fig. 1). This specific distribution of PXR in
the enterohepatic system renders its crucial role as a sensor for
environmental cues and inducer of xenobiotic response2.

PXR can be activated by both endobiotic and xenobiotic
chemical compounds. Besides pregnane, steroid, bile acids and
other endobiotic chemicals, various clinical drugs and environ-
mental pollutants have been demonstrated to activate PXR1,4e6.
Activated PXR, through direct binding to the genomic regions or
indirect crosstalk with other transcriptional factors, controls many
genes involved in biotransformation, transport, inflammation, cell
cycle arrest, apoptosis and oxidative stress. Many of these bio-
logical signaling pathways are closely related to tumorigenesis,
Figure 1 The distribution patterns of PXR. (A) The global expression p
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indicating an essential function of PXR in cancer development and
progression. Indeed, PXR manifests its potential in prevention and
treatment for cancers developed from toxic exposure7,8, virus
infection9, and recurrent inflammation10. In this review, we sum-
marized the current understanding of the biological function and
regulatory mechanism of PXR in the context of cancer.

2. Gene and protein of PXR

Human PXR gene locates in cytoband q13.33 of chromosome 3
with 38507 SNPs (single nucleotide polymorphisms), 2394 de-
letions, 1403 insertions, 18 substitutions, 8 indels, 4 genetic
markers, 17 sequence alterations, 32 tandem repeats and 788 so-
matic sequence alterations, some of which cause monstrous
change of structure and functions of PXR protein11e13.

PXR protein, approximately 50 kDa, consists of the N-terminal
ligand-independent activation function 1 (AF-1), the DNA binding
domain (DBD), the relatively short hinge region, and the ligand
binding domain (LBD) which contains the ligand-dependent
activation function 2 domain (AF-2)14 (Fig. 2). With the unique
flexible large conformation in LBD, the capacity of binding and
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Figure 2 Major domains of hPXR protein. Blue: AF-1 domain; red: the DNA binding domain; green: hinge; and yellow: the ligand binding

domain (contains AF-2 domain).

Figure 3 The regulatory mechanism of PXR. Part of regulatory

factors for PXR could induce promotion or repression of PXR activity,

or crosstalk with PXR by different modes.
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recognizing for a wide variety of hydrophobic ligands makes PXR
a multifunctional receptor15. It is interesting that PXR could form
a homodimer unique to other nuclear receptors (NRs) by
tryptophan-zipper (Trp-Zip) interaction in LBD domain, while
disruption of this homodimer will significantly deprive PXR ac-
tivity and its recruitment ability for transcriptional coactivator
steroid receptor coactivator 1 (SRC1)16. The sequence-specific
DNA identification by the DBD of PXR is another aspect for
regulating the transcriptional activation1,17. A sub-region
composing 11 sequence-specific amino acid residues called
mitotic chromatin binding-determining region (MCBR) within the
nuclear localization signal (NLS) mediates the binding of PXR to
the DNA18. Mechanically, PXR DBD preferentially binds to the
DR (direct repeats)-3, DR-4 (the most preferred DNA-binding
motif), DR-9, DR-14, DR-1917 and ER (everted repeats)-6, ER-
818,19 in the promoter region of the target genes. Genetic alter-
ations within any domain of PXR could lead to the change of its
function. For example, some splicing variants have been reported
to have functional deficiency or emulative suppression due to the
alteration of encoded amino acid sequences20,21. Furthermore,
other alternatively spliced isoforms of PXR, whose biological
function has not been fully understood, might have some unan-
ticipated roles.

3. The regulatory mechanism of PXR activity

Along with the characterization of the transcriptional activity, the
multidimensional regulatory mechanism of PXR has been
revealed, including the genetic and epigenetic regulation for PXR
expression, transcriptional regulation, subcellular localization,
ligand-dependent activation, and proteineprotein interaction. The
transcriptional activity of PXR also can be modulated through
crosstalk with many other NRs, including farnesoid X receptor
(FXR)22, constitutive androstane receptor (CAR)23e26, peroxi-
some proliferator-activated receptor a (PPARa)27, liver X receptor
(LXR)19,28, and androgen receptor (AR)29 (Fig. 3).

3.1. Epigenetic regulation for PXR

The role of epigenetic modulation for PXR transcripts has been
defined. Recently, microRNA (miR)-34a, miR-140-3p, miR-148a
and miR-449a were found to downregulate the expression of PXR
through the identification and interaction at the 3ʹ-untranslated
region (3ʹ-UTR) of PXR mRNA in the hepatocellular carcinoma
cell lines, which might augment the sensitivity of anti-cancer
medicines30e32. However, among Chinese Han population, no
correlation between miR-148a and the expression of PXR or cy-
tochrome P450 3A4 (CYP3A4) was found in livers33. Altered 3ʹ-
UTR derived from several SNPs of PXR, including rs3732360,
rs1054190 and rs1054191, could change the original binding with
miR-500a-3p, miR-532-3p and miR-374a-3p34. This observation
reflected how confound influence the epigenetic modulation and
inter-individual variability may have on the activity of PXR. In
addition to our limited understanding about miRNA-mediated
silence of PXR, recently, PXR activation-mediated regulation
for long non-coding RNA (lncRNA) has been shown in xenobiotic
metabolism35 for the first time, indicating that it remains an open
field regarding the role of non-coding RNAs (ncRNAs) for PXR
activity.

Moreover, within the upstream promoter of PXR transcripts,
methylation is a critical modification responsible for reduction of
the expression of variant PXR isoforms21,36, while demethylation
agents, such as 5-aza-2-deoxycytidine, could serve as an inducer
to increase the expression of PXR isoforms21, which might be
associated with biology and therapeutic outcomes of hepatocel-
lular carcinoma (HCC)21,36. Recently, some transcription factors
have been shown to regulate PXR abundance as well. For
example, transcription factor E26 transformation specific
sequence 1 (ETS-1)37 and N-a-acetyltransferase 10 (NAA10)38,
could interact with PXR promoter, and thus enhance the activation
of downstream drug resistance related genes.

3.2. Post-translational modifications (PTMs) of PXR

PTMs also play a pivotal role in regulating PXR activity
(Table 132,39�43). Phosphorylation44,45, acetylation40, SUMOyla-
tion42,43, poly(ADP-ribosyl)ation39, and ubiquitination32 mediated
by modification enzymes could substantially cause a dynamic
change of biological traits, subcellular localization, dimerization,
protein stability, co-regulator interaction and degradation patterns
of PXR. The activity and bioeffects of PXR are reformed as a
consequence of PTMs. Of note, O-GlcNAcylation and other PTMs
have not been defined hitherto.

Protein kinase A (PKA), protein kinase C (PKC) b, cyclin-
dependent kinase 1 (CDK1), CDK2, CDK5, cyclin A/E, casein
kinase II (CK2), glycogen synthase kinase 3 (GSK3), mitogen-
activated protein kinase kinase 1 (MEK1) pathway47, and



Table 1 Post-translational modifications and sites of PXR

protein.

PTM Site

Poly (ADP-ribosyl)ation LBD39

Acetylation K10940, K17041

SUMOylation K108, K129, K160, K17032,42,43

Phosphorylationa S8, T57, S114, T133, T135,

S167, S200, S208, T248,

Y249, S256, S274, T290,

S305, S350, T408, T422

Ubiquitinationa K101

aParts of data46 are adapted with permission from https://www.

phosphosite.org.
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70 kDa form of ribosomal protein S6 kinase (S6K) could mediate
the phosphorylation of PXR and mostly repress the activity of
PXR protein by retaining the PXR protein in cytoplasm, isolating
PXR from intranuclear DNA, thus diminishing the transactivation
of downstream genes44,45. Additionally, PKA activation facilitates
the ubiquitination of PXR protein. E3 ubiquitin ligase ring-B-box-
coiled-coil protein interacting with protein kinase C-1 (RBCK1)
and several others could directly bind and ubiquitinate PXR,
resulting in degradation of PXR. Suppressor for gal 1 (SUG1), a
subunit of the proteasome, might contribute to the formation of
proteolytic fragments of PXR as well. It is noteworthy that the
increased level of ubiquitinated PXR was also observed after
treatment by MG132 (the inhibitor of 26S proteasome), suggesting
PXR is subjected to proteasomal degradation32.

The E1A binding protein p300 is capable of acetylating PXR at
lysine 109 (K109) as the major acetylation site in the hinge,
repressing PXR transcriptional activity due to loss of dimerization
with RXRa and DNA binding. This modification can be depressed
by sirtuin 1 (SIRT1)40. Moreover, the lysine acetyltransferase,
TIP60, could interact with LBD region of unliganded PXR and
acetylate PXR at lysine 170 with a forfeit of ligand-dependent PXR
target gene transactivation, whichmight promote cell migration and
adhesion41. Recent studies have focused on the involvement of
acetylation of PXR in SUMO (small ubiquitin-related modifier)e
acetyl switch. On account of acetylation of PXR, SUMOylation of
PXR has been stimulated to repress the expression of PXR’s target
gene42. On the contrary, through the interaction with negative
charge amino acid-dependent SUMOylation motif (NDSM) in
PXR, E2-conjugation enzyme UBCh9-dependent SUMOylation
has been demonstrated to activate PXR. It is worth noting that the
NDSM-mutated PXR (D115A) is lack of the SUMOylation
event32,43. Similarly, upon interaction with the C-terminal LBD of
PXR, poly (ADP-ribose) polymerase 1 (PARP1) could directly bind
and poly (ADP-ribosyl)ate PXR via the BRCA1 C terminus
(BRCT)/automodification domain (AMD), facilitating the recruit-
ment of PXR to the promotor of target genes and the transactivation
of these target genes. Whereas, this positive regulation can be
blocked by PARP1 inhibitor 3AB39.

3.3. Ligand-dependent activation for PXR

Recent studies have expanded the profile of upstream activator of
PXR, including clinical drugs48,49, dietary supplements50, envi-
ronmental pollutants7, endobiotics51 and other chemicals52. Un-
like many other nuclear receptors, PXR activation can be specie-
specific due to the distinction of LBD53 yet produce similar
transcriptioneregulation profiles due to the conserved DBD17. It is
worth mentioning that a number of ligands for PXR also could
activate other NRs, such as CAR26 and LXR19, which impedes the
development of PXR targeted therapy, and further complicate their
crosstalk. PXR also responds to diverse ligands with different
binding modes54, making it an abstruse target for disease therapy.

Rifampin48,49,55, Rifaximin56, St. John’s Wort6, PCN (preg-
nenolone-16a-carbonitrile)57 and SR1281358 are classical agonists
for PXR. Recently, a growing number of compounds have been
established as PXR activators, basing on their binding capability
to LBD and enhancement for the transactivation effect of PXR,
such as nontaxane microtubule-stabilizing agents59, alismanin
A60, the Chinese herbal medicine Sophora flavescens61, U012647,
PF-0628299962 and a series of 4-methylenesteroid derivatives
isolated from Theonella marine sponges15. Furthermore, some
target genes of PXR, such as sphingomyelin phosphodiesterase
acid-like 3A (SMPDL 3A)19, a hepatic nucleotide phosphodies-
terase and phosphoramidase involved in purinergic metabolism
and anti-inflammatory signaling pathways, is repressed by
nonligand-dependent PXR while activated by PXR deficiency or
ligand-dependent PXR, which manifests the influence of ligand-
dependent activation for PXR on its regulation effects.

3.4. Antagonist-induced abrogation for PXR

A large number of antagonists have been reported to inactivate
PXR as well, such as some active plant ingredients of sulphor-
aphane, coumestrol, milk thistle (silybin and isosilybin), valerian
and other complementary and alternative medicines (CAM) for
cancer63, the marine sulfated steroids solomonsterols A and B
sourced compounds19e24,64, metformin, ketoconazole, sulforaph-
ane and SPA7052,58. Thereinto SPA7052 is a potent selective
antagonist for human PXR, suggesting the PXR targeted therapy
may indeed be feasible for drug resistance in cancer. Moreover,
PXR gene encodes some alternatively spliced isoforms, some of
which exert antagonistic functions due to their competitive
occupation to activators and absent interaction with target genes21.
Nevertheless, their influence on disease development remains
elusive.

3.5. Cofactors of PXR

Several transcription cofactors of PXR have been identified to
either enhance or suppress the activity of PXR, depending upon
the binding of coactivators’ Leu-Xxx-Xxx-Leu-Leu (LXXLL)
motifs and corepressors’ Ile/Leu-Xxx-Xxx-Ile/Val-Ile motifs to
the AF-2 region of PXR65. Those co-activators include
SRCs32,44,58, forkhead box O 1 transcription factor (FOXO1),
PPAR gamma coactivator 1a (PGC-1a)44,65, phosphatidyletha-
nolamine binding protein (PBP), and protein arginine methyl
transferase (PRMT)45, while those co-repressors include the
silencing mediator for retinoid and thyroid hormone receptors/NR
corepressor (SMRT/NCoRs)45,66, small heterodimer partner
(SHP)47, Sterol regulatory element binding protein 1 (SREBP-1),
and forkhead box A 2 transcription factor (FOXA2)65.

With the intrinsic histone acetyltransferases (HAT) activity,
SRC1 could interact with PXR and further recruit secondary
coactivators and histone modifying enzymes, such as CBP, p300,
coactivator associated arginine methyltransferase 1 (CARM1) and
PRMT1, to form a transcriptional complex, allowing the fixation
of ligands and expression of target genes. This coactivation can be
potentially disrupted by PXR inhibitordmetformin, which is
widely used in diabetic patients to improve the metabolism of

https://www.phosphosite.org
https://www.phosphosite.org
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glucose and lipids58,65. However, there are several reports sug-
gesting that SRC2 but not SRC1 could co-activate PXR activity. In
human liver cells, non-phosphorylated serum- and glucocorticoid-
regulated kinase 2 (SGK2) has been demonstrated to be involved
in PXR mediated co-activation for gluconeogenic genesdphos-
phoenolpyruvate carboxykinase (PEPCK ) and glucose-6-
phosphatase (G6Pase), thereby enhancing gluconeogenesis65.
Additionally, our previous data has shown hepatitis B virus (HBV)
X protein (HBx) could act as a co-factor of PXR in HBV positive
HCC67.

Opposing to the effect of coactivators, SMRTa, abundantly
expressed in most human tissues and cancer cell lines, could
interact with PXR through the 46-amino acid insert and the C
terminal corepressor motif. This interaction is resistant to PXR
ligand-induced dissociation and elicits an efficient transcriptional
repression for PXR. Another major isoform of SMRT, SMRTt,
also inhibits PXR but with less potency than SMRTa66. Previous
studies also indicated that SHP is another corepressor for PXR47.
Nevertheless, this co-regulation of SHP is absent in metformin-
mediated suppression for PXReCYP3A4 pathway58.
Conversely, PXR has been proposed to attenuate SHP promoter
activity and to repress SHP gene transcription65, suggesting
PXReSHP interaction might be mutual.

4. Pleiotropic regulation of PXR in cancer

PXR could behave as a node of multiple signaling axes to coor-
dinate disease progressions. The paradigm of PXR action is that,
in response to the change of cellular environment, the intranuclear
PXR could form heterodimer with retinoid X receptor (RXR) and
bind to the specific responsive elements of genes’ regulatory
domain68, and then PXR extensively manipulate the expression of
downstream genes, including groups of biotransformation en-
zymes, transport proteins7,8, inflammatory factors, cell cycle
associated proteins and anti-oxidation factors. The expression of
the diverse target genes subordinates to the activity of PXR,
triggering alteration in detoxification, metabolism, inflammation
inhibition, cell apoptosis, cell cycle arrest, proliferation inhibition,
tumor migration and anti-oxidative stress. Therefore, PXR and
these targets could constitute complex cellular circuits that
Figure 4 Multifarious target gene-dependent biological effects of PX

participate in cancer-related physiological and pathological progressions.
directly participate in various physiological and pathological
progressions (Fig. 4). Due to its extensive biological regulation,
the effects of PXR are noted in cancer initiation, promotion and
progression, as well as in chemotherapy outcome.

It is generally accepted that cancer, characteristic of multistage
progression and diverse etiology, is always diagnosed late and
limited in therapy, which highlights the significance of prevention
for it. The strategy of prevention based on the pathogenesis of
cancer might lie on the intervention of toxic exposure, pathogenic
infection, repeating inflammation, immune deficiency, endocrine
dyscrasia and other risk factors. Accumulating evidence strongly
points to the significant capacity of PXR in detoxification, de-
fense, homeostasis maintaining and proliferation inhibition, which
are antagonistic for cancer development. However, PXR and its
target genes also have been reported in the association with
multidrug resistance and poor chemotherapy outcome in cancer
treatment69, although the mechanism of chemoresistance caused
by PXR remains controversial. The pleiotropic effects of PXR in
cancer are not completely explicit. It should be emphasized that
the location in frontline metabolic organs, the response for internal
compound imbalance, and the influence on cellular signal path-
ways together depict the context-specificity of PXR70, high-
lighting PXR might be an intrinsic central target of the huge
regulatory network of cancer.

4.1. PXR in metabolism modulation

Activated PXR could mediate xenobiotic detoxification, inhibit
hepatic steatosis, and maintain the homeostasis of endobiotic
chemicals (such as heme, bilirubin, thyroxin, bile acids, bilirubin,
vitamin D, glucose and lipid)15,65, some nutrients and steroid
hormones by promoting biotransformation and elimination of en-
dobiotics and xenobiotics in normal organs. The effect of PXR on
detoxification and homeostasis is exemplified by the expression of
its target genes, including CYPs7,62, carboxylesterases8,71, PEPCK,
G6Pase, estrogen sulfotransferase 1E1 (SULT1E1)65, glutathione
S-transferases (GSTs), glutathione peroxidase (GPx)72, ATP-
binding cassette family proteins (ABCs), organic anion trans-
porting polypeptides (OATPs), UDP-glucuronosyltransferases 1A1
(UGT1A1)71, glucose transporter 2 (GLUT2)57 and MDRs73.
R. PXR and its target genes constitute complex cellular circuits to
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Hydrolytic biotransformation and excretion by such enzymes and
transport proteins53,57,62 increase water-solubility and elimination
of toxic chemicals and reduce the accumulation and toxicity of
substrates. Therefore, in the event of the descending expression of
PXR and these target genes, detoxification capacity will be
impaired74. Meanwhile, polymorphisms of PXR’s target genes
have been documented in cancer. Some of them, such as ABCG2
rs2231142 variant and rs6857600 minor allele, are associated with
a remarkable decrease in risk of chronic lymphocytic leukemia
(CLL) and B-cell lymphoma (B-NHL), respectively8, suggesting
polymorphism and bi-direction of these downstream targets might
concurrently contribute to PXR’s indeterminacy.

Similar to that observed among the elderly, many reports
about PXR-mediated transactivation of metabolic enzymes and
transport proteins are double-edged for keeping fit in different
status. The phase I biotransformation enzyme CYPs, including
CYP3A4, CYP3A5, CYP3A7, CYP3A11, CYP2B6, CYP2C9,
CYP2C19 and CYP24A162,65, are executors of the hydrolytic
biotransformation for many therapeutic agents and xenobiotic
substance, especially the marker of activated PXReCYP3A4.
CYP3A4 has important implications for the substrate oxidation
and pharmacokinetic drugedrug interactions which leads to
decreased plasma levels and therapeutic efficacy of anticancer
drugs73. Therefore, treatment by PXR antagonists, which abol-
ishes CYP3A4 at the transcriptional level, may facilitate the
therapeutic effect63,64. However, deficiency of PXR and CYPs
might be involved in arsenite7, di-ethyl-nitrosamine (DEN)74,
some toxic bile acids51 and other chemicals induced pathological
development to cancer. The expression of PXR, cyp3a and other
PXR’s target gene are also found to participate in detoxification
for diclofenac (DCF)75, underlining that effects of intrinsic in-
duction of PXR on target genes always are bidirectional for
fitness. In addition to CYPs, the phase I drug metabolizing
enzyme (DME) carboxylesterases (CESs)4, the typical phase II
conjugation enzyme UGTs4, and another detoxification enzyme
epoxide hydrolase 1 (EPHX1)62, might be responsible for the
PXR-dependent metabolism of esters, amides, thioesters and/or
carbamates, environmental pollutants as well as CYP-mediated
oxidations on aromatic/heteroaromatic rings and/or olefinic
substituents.

Concurrently, PXR is a shared master orchestrating the
expression of transporters37, which mediate the acceleration of
toxicant clearance and decrease of drug effectiveness resulted
from “phase 0 metabolism” (reducing the entrance of harmful
substances) and “phase III metabolism” (increasing the excretion
of their detoxification products)8. Through the induction for
MDR1, MRP2 (multidrug resistance-associated protein 2), BCRP,
UGT1A1 and SULT2A1, PXR generates an export force to
remove toxins and drugs, reducing the local cellular accumulation
of toxic compounds and giving the individual cell protection
against toxic injuries8,58. Due to fact that PXR mediates many
metabolic enzymes and efflux transporters, the facilitation of drug
metabolism and drugedrug interactions appeared inevitable in
treatment of anticancer medicines. Upon PXR activation, P-
glycoprotein (P-gp, also known as ABCB1 or MDR1)73,
OATP4,48, MRPs69,76 and other transporter proteins are upregu-
lated, some of which are correlated with poor prognosis of
advanced cancer. Although the PXR signal pathway has drawn
increasing interest in recent years for its role in the drug resistance
and drugedrug interaction in cancer treatment, the intrinsic
expression and activity of PXR can be inordinate given the chaotic
nature of most of the cancers. Yet the capacity of xenobiotic
clearance might still reflect PXR is a crucial guard in tumor
initiation.

Besides the clearance of toxins and drugs, PXR modulates the
metabolism of crucial nutritional compounds, such as sugars,
amino acids, nucleotides and inorganic ions. This manipulation
may impress the development of cancer profoundly. Infinite pro-
liferation and rapid growth of cancer pillage excessive glucose
while high acidification from this high glycolytic reaction pro-
vides cancer cells with feedback to functional polarization toward
a non-inflammatory phenotype, growth and immune evasion of
tumor77. More remarkably, downregulated expression of two
gluconeogenic key enzymes, PEPCK and G6Pase65, were
observed after activation of PXR, which provokes an enigma for
the role of PXR in shaping the microenvironment.

The double-edged effect of PXR has also been reported due to
its inducibility for toxicant clearance and multidrug resistance.
There is evidence showing high-level expression of PXR in stage I
and low-level expression in state II and stage III in carcinoma
patients. This deficient expression in advanced stages of cancer67

does not support the harmfulness of PXR activity, suggesting the
precise role of PXR deserves further exploration. This inconsis-
tency of PXR might result from its dynamical expression in the
different stage of cancer with varying level heterogeneity and
disorder. Whilst, false conclusion resulted from indistinguish-
ability between some para-carcinoma tissue and cancer tissue
should be noticed as well.

4.2. PXR in cell cycle arrest

Other than the regulation for ADME (absorption, distribution,
metabolism and elimination) of medicines, toxins, carcinogens
and other substance1, PXR is also capable of suppressing growth,
proliferation and migration of cancer cells by inducing cellular
cycle arrest. Recently, it has been reported that the antitumor
bioregulation induced by PXR impedes the tumor progression,
which is achieved via functional interaction with the transcrip-
tional regulation of p21 (WAF1/CIP1/CDKN1A), E2F78,79,
cullin1e3, MAD2L1 (mitotic spindle assembly checkpoint pro-
tein MAD2A), ANAPC2 (anaphase-promoting complex subunit
2)79 and other PXR related signaling pathway. In addition, a recent
study indicated that PXR could suppress the migration and pro-
liferation of AsPC-1 (human metastatic pancreatic adenocarci-
noma) cells, even though its target gene CYP3A5 is related to
acquired drug resistance in PDAC (pancreatic ductal adenocarci-
noma)38, suggesting PXR might play an intricate role in cancer
development.

In the intricate regulatory network of cancers, interplay be-
tween PXR and cell cycle regulators strikingly enhances cell cycle
arrest and prevents the augmentation of cancer development,
whereas the lost or greatly diminished expression of PXR might
limit this effect in initial cancer78,79. Ectopic expressed PXR was
found to mediate the promotion of p21(WAF1/CIP1) and the
ablation of E2F/Rb, which triggers G0/G1 cell cycle arrest with
the inhibition of proliferation and tumorigenicity of colon cancer
cells78. Consistently, we have shown upon activation of cullin1-3
and MAD2L1, and suppression of ANAPC2 and CDKN1A,
rifampicin-activated hPXR could attenuate the growth and pro-
liferation of cervical carcinoma subsequently by mediating G2/M
cell cycle arrest79. Notably, PXR is involved in hepatic prolifer-
ation or inhibit apoptosis to implement liver regeneration as well2,
revealing the context dependent regulatory mechanism. Consid-
ering PXR is mainly expressed in colorectum and liver, novel
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preventive and therapeutic strategies aimed at preventing or
reversing tumorigenesis might have huge potential if the subtle
regulation of these PXR associated signaling pathways is achieved
in cancer initiation of these tissues.

4.3. PXR in inflammation and injury

PXR-mediated anti-inflammation, anti-oxidative stress72 and anti-
apoptotic responses51 in the context of cancer80 have been docu-
mented in recent years. Considering the tumorigenic effect of
inflammatory injuries and selective repopulation in contributing to
the cancer pathogenesis81, PXR activation may be a promising
approach for prevention from injury-induced cancer in preneo-
plastic stage.

PXR mitigates the inflammation injury generally through the
negative regulation of NF-kappa B (NF-kB)82, Toll-like receptor 4
(TLR4)80, IL-6, signal transducer and activator of transcription 3
(STAT3), tumor necrosis factor a (TNF-a)74 and other signaling
pathways. Substantial evidence has proved that NF-kB, one of the
most central mediator of stimuli-response and immune response,
could be observed with increased expression and pro-inflammation
in PXR null mice and negatively interact with PXR, triggering the
depression for CYP in aggravated small intestinal inflammation82.
Moreover, a study on increased burden of liver inflammation indi-
cated that IL-6 could restrain PXR activity by inducing differenti-
ated embryonic chondrocyte-expressed gene 1 (DEC1) to
competitively bind to the dimerization partner of PXReRXRa83.
Homoplastically, heightened severity of necrotizing enterocolitis
(NEC) was investigated in the absence of PXR, while the secondary
bile acid lithocholic acid (LCA), an agonist for PXR, could activate
PXR to negatively regulate TLR4, attenuating NEC in murine in-
testine, suggesting promotion of PXR-dependent preventive
approach might be significant for intestinal inflammation and its
subsequent disease80. More than an important origin of injure,
inflammation induced by cytokines NF-kB, IL-6, STAT3, TNF-a
and other many inflammation factors also influences the expression
of functional proteins, such as CYP3A11 and glutathione S-trans-
ferase A2 (GSTa2), which results in DEN-induced hepatic cancer of
mice, while based on their negative correlation with PXR, the
activation of PXR-related signaling pathway might possess a huge
potential for tumorigenesis suppression74. Recent studies shed light
on PXR activation induced by ginkgolide B, PXR could mediate
anti-inflammatory and anti-apoptotic effects on endothelial cells via
suppressing TNF-a induced THP-1 cells (human acute monocytic
leukemia cells) adhesion and expression of vascular adhesion
molecule 1 (VCAM-1) and E-selectin and promoting detoxification
for staurosporine and doxorubicin84.

In addition to inflammatory inhibition, PXR activation might
blunt the expression of pro-apoptotic genes TP53 and BCL2
antagonist/killer 1 (BAK1) to prevent toxic bile acids-induced
apoptosis and subsequent selective repopulation of anti-
apoptosis cells in colonic tumorigenesis51. Furthermore, after
tanshinone IIA treatment, PXR could resist ROS-induced
apoptosis and oxidative stress through the inhibition for mito-
chondrial apoptosis pathway and the regeneration of glutathione
(GSH) respectively, which might involve the PXR dependent
elevation of mitochondrial membrane potential (MMP), GPx and
BCL-2 and the attenuation of caspase-3, caspase-7, caspase-9,
cytochrome C and BCL2 associated X (BAX)72, on this ac-
count, alleviating the oxidative injury. It is noticeable, however,
genetic or pharmacological activation of PXReCYP3A4 signaling
pathway is involved in ritonavir induced hepatotoxicity85 and
increased sensitization for HS (hemorrhagic shock)-induced he-
patic injury86 in clinical treatment. These discoveries indicated
that PXR may be a coordination center for tumorigenesis basing
on its transcriptional regulation in inflammation, hepatic injury
and homeostasis maintenance.

4.4. PXR in angiogenesis

Alongwith the pleiotropic effects above, PXR’s role in angiogenesis
inhibition has been reported in colon cancer as well, and ligand-
dependent activation might be required in this progression. Rifax-
imin, a gut-specific ligand for hPXR56, could significantly suppress
proliferation, migration and expression of PCNA of Caco-2 cells by
activating PXR to decrease release of vascular endothelial growth
factor (VEGF) and nitric oxide (NO) and phosphorylation of serine/
threonine-protein kinase AKT, mTOR and p38 mitogen-activated
kinase (p38MAPK), as well as activity of hypoxia-inducible fac-
tor 1-a (HIF-1a), p70S6K and NF-kB, while treatment by PXR’s
antagonist ketoconazole could induce the inhibition for these effects
on pro-angiogenic mediators and cancer progression87. Further-
more, upon increased survival rate and decreased tumor number,
rifaximin treatment also has been shown to perform a chemopre-
vention for azoxymethane (AOM)/dextran sulfate sodium (DSS)-
induced colon cancer dramatically via the PXR-dependent response
and regulation88. Another ligand for PXRerifampin, a potent
angiogenesis inhibitor targeting hepatic cancer developed from
hepatitis C virus (HCV)-related liver cirrhosis, could repress human
microvascular endothelial cell proliferation and migration via
downregulating angiogenesis-associated genes55,89, while whether
PXR are involved and its specific mechanism in this progression are
waiting for further exploration.
5. Conclusion and prospective

As one of the most crucial gene-regulatory transcription factors,
PXR is functioning in a wide range of cellular circuits and bio-
logical responses in different organisms. The fact that PXR is
responsive to various endobiotic and xenobiotic stimulations
makes it a good candidate in mediating carcinogenesis and
metabolism of anticancer drugs. The regulatory network weaved
by PXR and its upstream and downstream factors has drawn
attention in the cancer biology. Indeed, the PXR centric signaling
network has been manifested in cancer progression and a growing
body of research is adding on to dissect the role of this network in
the tumorigenesis. Nevertheless, the specie-specificity of diverse
PXR ligands and the influence of PXR signaling on anticancer
drug application need to be further defined. Furthermore, PXR
targeting prevention and therapy in clinical application are hurdled
by the distinctions between the different isoforms with unclear
regulatory mechanisms and structurally diverse agonists/antago-
nists. Note that some PXR variants with antagonistic functions and
their potential interaction with other NRs add more to the
complexity of PXR targeting cancer treatment. Undoubtedly, the
utilization of homeostasis-maintaining nature and the revelation of
stage-sensitive bioeffects of PXR indicate a sally port for inter-
vention of cancer development. Better understanding of the reg-
ulatory mechanism and biological effects of PXR in different
stages of tumor development via the advances of research and
development and the subduction of toxicity and side effects of
antineoplastic will contribute to trailblazing an efficient approach
for the prevention and therapy of cancer.
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