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A phylogenetic approach to study the evolution of
somatic mutational processes in cancer
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Sudhir Kumar 1,2,6✉

Cancer cell genomes change continuously due to mutations, and mutational processes

change over time in patients, leaving dynamic signatures in the accumulated genomic var-

iation in tumors. Many computational methods detect the relative activities of known

mutation signatures. However, these methods may produce erroneous signatures when

applied to individual branches in cancer cell phylogenies. Here, we show that the inference of

branch-specific mutational signatures can be improved through a joint analysis of the col-

lections of mutations mapped on proximal branches of the cancer cell phylogeny. This

approach reduces the false-positive discovery rate of branch-specific signatures and can

sometimes detect faint signatures. An analysis of empirical data from 61 lung cancer patients

supports trends based on computer-simulated datasets for which the correct signatures are

known. In lung cancer somatic variation, we detect a decreasing trend of smoking-related

mutational processes over time and an increasing influence of APOBEC mutational processes

as the tumor evolution progresses. These analyses also reveal patterns of conservation and

divergence of mutational processes in cell lineages within patients.
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Tumor cells accumulate somatic mutations during cancer
progression marked by dynamic demography of cells,
including emergence, expansion, and extinction1,2.

Researchers now routinely reconstruct mutational histories and
clone phylogenies by analyzing genome sequence variation3–7.
These variants can be localized to individual branches in a clone
phylogeny and relative frequencies of different variant types may
be compared across branches to detect shifts in cellular muta-
tional processes over time (Fig. 1). For example, C→A trans-
versions are more frequent in the trunk of a clone phylogeny than
in its descendants in the clone phylogeny in Fig. 1, suggesting that
mutagenic processes have changed over time in this lung cancer
patient8. Inference of such changes in mutational processes will
enhance our understanding of the intricacies of tumor evolution,
including the effect of pre-existing genetic alterations, behavioral
changes, and treatment regimens that lead to changes in muta-
tional processes9–14.

Change in mutational processes is detected by analyzing their
outcomes: types of variants and their relative counts. For example—
unless tissue sample preparation has induced C→A changes due to
oxidation—a large C→A variant frequency is a tell-tale sign of
smoking-related mutational processes (COSMIC signature S4;
Fig. 1b, d). Smoking-related mutations decline after smoking
cessation15,16 (Fig. 1c). In contrast, age-related mutagenic processes
create C→ T transitions that arise across the human lifespan
(COSMIC signature S1), particularly at methylated CpG sites17–20.
Many such distinct mutational signatures have been identified from
extensive and comprehensive large-scale data analysis of the tumor
genetic variation in different cancers and have been assembled in
online catalogs20,21. For example, 30 signatures have been recog-
nized in COSMIC version 2, each a vector of 96 different muta-
tional contexts consisting of the mutated base and adjacent 5′ and 3′
bases (e.g., Fig. 1d)20,22,23.

Generally, shifts of mutational processes during tumor evolution
have been identified by contrasting dominant signatures detected
from variants in primary tumors and those from metastatic tumors
or by comparing early (clonal) and late (subclonal) variants9–14.
Researchers have also begun to analyze branch-specific mutational
signatures in clone phylogenies to discover mutagens and variants
linked with the origin of new clones in cancer patients10,24–26.
Many computational methods are available to estimate relative
activities of mutational signatures for a given collection of genetic
variants and their frequencies, such as quadratic programming
(QP), deconstructSigs, MutationalPatterns, and sigLASSO27–30.

The refitting methods were originally developed to detect
mutational signatures for tumor samples, but they may be applied
to the collection of variants mapped onto individual branches in the
clone phylogeny, e.g., Fig. 1a. However, the direct application of
refitting methods to infer branch-specific variants may produce
many spurious signatures, while other correct signatures remain
undetected (Fig. 2; Supplementary Figs. S1 and S2). The difficulty
seems to be greater for branches with the fewest number of variants
(Fig. 2). Similar issues were seen when we used methods that
assume linear clonal evolution (CloneSig31) and PhySigs32 that
detect mutational signature shifts in the given clone phylogeny
(Fig. 2e; Supplementary Fig. S2c). Such errors hamper reliable
detection of branch-specific signatures and inference of their evo-
lution in a patient, limiting us to gross comparisons11,25,33,34.

We hypothesized that the performance of refitting methods
(e.g., QP) in estimating relative activities of a given collection of
signatures could be improved through a joint analysis of collec-
tions of variants mapped on proximal branches of the clone
phylogeny. This is because neighboring branches in the clone
phylogeny are expected to share some mutational signatures due
to their shared environment and evolutionary history (e.g.,
Dentro et al.12). Therefore, we developed an approach called
PhyloSignare (PS) to leverage the proximity of evolutionary
lineages in the clone phylogeny to improve the performance of
refitting methods in detecting mutational signatures.

In the following, we present PS and evaluate its accuracy by
analyzing computer-simulated datasets. We compared the per-
formance of the phylogeny-aware application of refitting methods
(e.g., PS+QP) with PhySigs, which directly uses clone phylogeny
and detects mutational signature shifts on branches. Finally, we
applied PS to infer mutational signature evolution in non-small
cell lung cancer patients, revealing branch-specific mutational
signatures at a finer phylogenetic resolution.

Results
The key distinguishing feature of our approach to applying
existing refitting methods is that PS aims to reduce the com-
plexity of signature detection for a given branch in the phylogeny.
This is done by pooling variants from proximate relatives of the
focused branch and then applying refitting methods to detect
candidate signatures. Then the importance of each candidate
signature is estimated by assessing the impact of exclusion of
a signature on the fit of the signature and its activity. Thus, PS

Fig. 1 Clone phylogeny and variant counts from a lung cancer patient. a Clone phylogeny of 6 clones. Clones are shown with circles. Numbers along
branches represent variant counts. b, c Observed variant counts in the trunk (orange branch; b) and the other branches (purple; c). The data were obtained
from Jamal-Hanjani et al. (2017) (CRUK0025 dataset). d COSMIC signature S4 is characterized by many C to A mutations.
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does not use relative activity as the only way to select signatures,
preventing the detection of spurious signatures.

The PhyloSignare (PS) approach. Figure 3a shows a flowchart of
the PS approach. The input is a clone phylogeny and variant
counts for each branch (Fig. 3a), and the output is a set of sig-
natures and their relative activity for every branch (see Methods
for details). PS applies a refitting method (e.g., QP) to estimate the
relative activities of mutational signatures for the observed variant
counts, followed by the estimation of an importance score (iS) for
every inferred signature. iS contrasts the fit of the predicted sig-
natures to explain the frequencies of branch-specific variants with
and without the given signature (Eq. 1; see Methods section for
details). When iS is small, the predicted signature may be spur-
ious. For example, iS2, iS7, and iS10 for signatures S2, S7, and
S10, respectively, were small (<0.02) in the analysis of variants
mapped to branch B in the computer-simulated dataset
(Figs. 2a, 3b). None of these signatures were simulated on this
branch (Fig. 2a). In contrast, the correct signature S13 received a
high score (0.87). Therefore, iS is a simple heuristic to find
spurious candidate signatures in a branch-by-branch analysis
with the potential to reduce the false-positive detection of sig-
natures. We used a simple cut-off of iS = 0.02 determined by
observed iS for correct and incorrect signatures for the
180 simulated phylogenies (see Methods section) (Supplementary
Fig. S3a). One may also use a chi-square test instead of a fixed iS
cut-off, but the chi-square test becomes powerless when the
number of variants is small.

Returning to our example, we found that QP did not detect one
correct signature, S17, on branch B (Fig. 2b). The pooling of
variants in branch B with its ancestral branch (trunk, branch A)
identified S17 as a candidate signature. S17 was also detected
when variants on branch B were pooled with its other neighbors.
This happens because pooling variants from neighboring
branches in the clone phylogeny increases the number of variants
in the collection, helping the refitting method. Analyzing pooled
variants for branch B, we identified six candidate signatures: S2,
S7, S10, S13, S17, and S28. Next, the PS approach uses iS to

evaluate each candidate signature to retain only the most reliable
signatures for a branch. We have a set of candidate signatures for
every branch at this stage.

In the final step, PS seeks the most economical gain and loss
signature scenario in the phylogeny by expanding the collection
of candidate signatures for each branch to include the signatures
in its neighbors. For example, collecting candidate signatures on
branch B now includes S17 because its immediate relatives A and
C have that as a candidate signature. Then, the refitting method
estimates the relative activities of all the candidate signatures
branch-by-branch. The estimated activity of every candidate
signature is then reported.

PS+QP removed most of the incorrect signatures originally
detected by using QP alone (Fig. 2f). Also, the sum of iS values for
all signatures (Overall_iS) detected on a branch improved by 2%
−56% in PS+QP as compared to QP alone, which suggests that
the inclusion of spurious signatures results in a poorer fit.

Improvement of accuracy after coupling with PhyloSignare
(PS). We tested the improvement of accuracy after coupling with
PS using 180 datasets that were previously simulated32. These
multi-clone phylogenies contained five or seven branches, with
fewer than 100 variants mapping to 486 branches out of 1080 (see
Methods). Signatures were randomly sampled from 30 COSMIC
signatures (v2) to select a set of signatures for a clone phylogeny. In
a phylogeny, loss (too low to be detected) and/or gain of signatures
were introduced up to two times. We assessed the performance of
PS coupled with three refitting methods: QP, deconstructSigs, and
MutationalPatterns (PS+QP, PS+ dSig, and PS+MP, respec-
tively). We did not couple PS with sigLASSO because we found
sigLASSO to have a high false-negative rate, which resulted in a lack
of a sufficient number of signatures available for analysis with PS
(Supplementary Fig. S2b). We also did not couple PS with CloneSig
(and related methods) and PhySigs because these methods already
consider clone phylogeny. Instead, we compared the performance
of PS-based approaches with PhySigs. CloneSig, the best among
related methods that assume a linear phylogeny, was not pursued
further because linear clone phylogenies are not common8,35.

Fig. 2 Mutational signatures detected by different methods for individual branches in the simulated clone phylogeny. a Model clone phylogeny and
simulated mutational signatures. There are five branches: A – E with 20–100 variants (counts in parentheses next to the branch name) and each signature’s
relative activity (shown below the signature name). See Methods for the detail. b–e Mutational signatures inferred by using different methods: b Quadratic
programming [QP], c DeconstructSigs [dSig], and (d) MutationalPatterns [MP]. These methods QP, dSigs, and MP are expected to show limited accuracy
due to a small number of variants. e Mutational signatures are inferred using PhySigs (optimal solution), which consider the evolution of mutational
signatures along clone phylogenies. fMutational signatures are inferred by applying the PhyloSignare approach with the QP Method (PS+QP). The number
of incorrect signatures detected became smaller after coupling QP with PhyloSignare. Incorrectly detected signatures are shown with red (>5% estimated
relative activity) and yellow italic (0.1%–5% estimated relative activity) letters, and correct signatures not detected are shown in white boxes with
black letters.
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In the analysis of simulated datasets, we provided all 30 COSMIC
v2 signatures for the signature detection because these signatures
were randomly selected to generate the simulated datasets. We
found that PS+QP produced a much smaller number of incorrect
signatures than the direct use of QP. The proportion of correct
signatures among detected signatures (precision) was 93% for
PS+QP compared to 66% for QP (Fig. 4a). The overall_iS was
better for PS+QP than QP (Supplementary Fig. S3b).

PS+QP was also more accurate than simply filtering low-
activity signatures (<5%) detected by QP. The simple filtering
approach did decrease the false-positive rate of QP, but this
improvement came at the expense of higher false-negative rates
(worse recall; Fig. 4b). This made the overall performance (F1) of
PS+QP better than QP (Fig. 4c). PS+QP removed incorrect
signatures more frequently than the 5% filtering for branches with

a small number of variants (<50), retaining a similar recall rate to
the 5% filtering. On the other hand, PS+QP identified more
correct signatures (better recall) for a larger number of mutations
(>100) with a similar precision rate to the 5% filtering. This result
indicates that the PS system efficiently removes incorrect
signatures for a smaller number of variants and can identify
more correct signatures for a larger number of variants than the
5% filtering. Similar patterns were observed for PS+ dSigs and
PS+MP (Fig. 4a–c). Lower and higher filtering cut-offs (1% and
10%, respectively) did not perform as well as 5% cut-off for
simple filtering, so the PS approach can offer better accuracy.

A major performance difference between coupling with PS and
the 5% filtering is observed to detect signatures with low activity
(faint signatures). As expected, the 5% filtering approach cannot
detect signatures with activities that are lower than 5%. We found

Fig. 3 Overview of PhyloSignare approach. a Our approach uses a clone phylogeny in which all variants are mapped along branches. PhyloSignare pools
mutations with adjacent branches and collect candidate signatures for each branch. We use iS statistics (see text) to evaluate the presence of each
candidate signature. Last, we test if signatures from neighboring branches are active at a branch. Signatures will be detected for each branch. b We used
variants for each branch and detected signatures by using QP. Detected signatures and iS are shown in a box. Signatures with red letters are incorrect
detection, and iS values were relatively small.
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that PS detected more true faint signatures than the 5% filtering
(Fig. 4e). Therefore, the application of PS can be useful to detect
such faint signatures to certain extent.

Comparison of PhyloSignare (PS) with a bootstrap approach.
Huang, et al.27 proposed resampling of mutations to compute
variance of estimated relative activities of signatures, which can
place confidence limits on each of detected signatures, i.e., percent
bootstrap replicates for a given signature detected, with a high
value suggesting a robust detection. Therefore, we compared the
performance of PS+QP with a bootstrap approach (QP+ BS;
1,000 replicates) to filter spurious signatures branch-by-branch.

We retained signatures that were detected in >60%, >70%, >80%,
>90%, and >95% bootstrap replicates. At higher bootstrap cut-
offs, a larger number of incorrect signatures were eliminated, but
a larger number of correct signatures were also lost compared to
PS+QP (Supplementary Fig. S4a and S4b). Consequently,
PS+QP produced a better F1 score than QP+ BS (Supple-
mentary Fig. S4c). Therefore, PS may be preferred over the
bootstrap approach.

Comparison of PhyloSignare (PS) with another phylogeny-
based method. We further compared the performance of PS+
QP with PhySigs that uses the clone phylogeny. PhySigs produced

Fig. 4 The performance of PhyloSignare. a Precision, (b) recall, and (c) F1 score for all the signatures across all datasets for QP, deconstructSigs (dSig),
and MutationalPatterns (MP) without (red) and with PhyloSignare (PS) approach (blue, PS+QP, PS+ dSig, and PS+MP, respectively), PhySigs, and those
with removing signatures with <5% estimated relative activity (orange). Signatures were pooled across all datasets in the computation. Precision was
computed as the number of correct signatures detected divided by the total number of signatures detected. The recall was the number of correct
signatures detected divided by the total number of simulated signatures. F1 = 2× Precision×Recall/(Precision+Recall). d Performance was compared
among various numbers of variants per branch. The 5% filtering was applied for all the methods except for PS. e Detection of faint signatures (<10%
simulated relative activities) was compared between PhyloSignare and the other methods (QP, dSig, MutPat, and PhySigs) with filtering out signatures with
low inferred relative activities (<5%). f Regression slopes between the simulated and inferred activity of signatures. The number above a bar is the R2 of the
statistical fit. g The difference between inferred and simulated activities of correctly identified signatures (average marked by red dots).
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too many false positive signature detections with low activity. So,
we applied a 5% filtering to PhySigs results. The rate of incorrect
signature detection of PhySigs became similar to PS+QP, but
PS+QP produced a slightly better recall rate (Fig. 4a, b). Inter-
estingly, the PS+QP recall rate was better than that of PhySigs
for a larger number of variants (>100; Fig. 4d). Also, PS+QP
successfully identified more faint signatures correctly than Phy-
Sigs (Fig. 4e), while PhySigs produced slightly better relative
activities of signatures than PS+QP (Fig. 4f, g). Similar trends
were seen for PS+ dSig and PS+MP.

Signature detection for a whole tumor using PhyloSignare
(PS). Although PS is designed to detect signatures for individual
branches, we can also apply it to obtain signatures of a whole
tumor (global signatures) by pooling all detected signatures in the
phylogeny (PS+QP-Global). We compared how well PS+QP-
Global performed compared to the application of QP to the
pooled collection of all variants mapped to all branches of the
phylogeny (QP-ALL). PS+QP-Global showed higher F1 than
QP-ALL, with PhySigs-Global showing an intermediate perfor-
mance (Fig. 5c). Generally, recall for PS+QP-Global was much
better than others (Fig. 5).

Dynamics of mutational signatures in lung cancer patients. To
further test the performance of PS, we next analyzed 61 lung
adenocarcinoma clone phylogenies (Supplementary Fig. S1). To
perform PS, we provided signatures known to be associated with
lung cancer because the other signatures are not expected to be
active (see Methods). The clone phylogeny of one patient (Fig. 6)
consisted of six branches, with branch A (trunk) containing 330
variants and fewer than 100 variants mapped to all other bran-
ches. In the trunk, PS predicted the presence of S4—a signature of
a smoking-related mutational process that produces many C→A
variants (Fig. 6a, g). Indeed, most observed variants were C→A
(Fig. 6b). Consequently, S4 received the highest activity estimate
(93%) with high iS support (0.18).

COSMIC signature S2 was also active in the trunk, associated
with the APOBEC family of cytidine deaminases20,23. The
activity of S2 was 13 times lower than S4 in the trunk but much
higher than S4 in the rest of the branches in the clone
phylogeny (Fig. 6a). The activity of S4 was lower in the direct
descendants of the most recent common ancestor (MRCA), and
it became too small to be detected in the tip branches C, E, and
F. Therefore, the mutational processes giving rise to S4 appear
inoperative later in tumor evolution (Fig. 6a). Another
APOBEC mutational signature, S13, was detected only in tip
branches E and F. In comparison, the contribution of S1, the

age-related mutational signature, was high in all the branches
(Fig. 6a). The only exception was the trunk, probably because
the relative activity of S4 was so high that S1 activity was
relatively too small to be detected.

The original analysis of this lung adenocarcinoma data also
presented mutational signatures for some branches8, applying
deconstructSigs and then manually selecting at most one
mutational signature for each branch. For example, this study
reported S4 in the trunk (A) and APOBEC mutational signature
in its two descendants (B and E), which PS also identified. No
mutational signatures were presented for branches C, D, and F,
indicating that coupling available methods with PS enabled
signatures to become detectable for these branches.

This dataset was also previously analyzed with PhySigs32,
which reported many more signatures with appreciable activities
for each branch in the phylogeny. As noted earlier, PhySigs tends
to produce false positives with relatively low estimated activities.
For many branches, simple filtering at a 5% activity level generally
produced PhySigs results similar to PS. A major difference from
the PS inference is that PhySigs assigned the same signatures (S1,
S2, S4, S5, and S6) for three branches (A, D, and F). On the other
hand, the branch-by-branch result produced by PS suggested
signatures S2 and S4 for branches A, S1, S2, and S4 for D, and S1,
S2, and S13 for F. For these branches, we found that signatures
detected only by PhySigs were not supported by iS (~0.0),
including those with high estimated activities by PhySigs are
potentially incorrect (e.g., S4 at F). Overall, PS was able to detect
signatures reported in the previous study, validating the
performance in empirical data analysis.

The evolutionary dynamics of mutational patterns for patient
CRUK0025 were recapitulated in data analysis from 60 additional
patients. S4 had the highest relative activity in the trunk of clone
phylogenies of more than 72% of the patients (44/61). Often, S4
activity declined over time, such that it became low in tips
compared to the trunk (Fig. 7a). APOBEC mutational signatures
(S2 and/or S13) were also active in a vast majority of patients
(>86%), with at least one of them found in the trunk branch in
most patients (Fig. 7b). Their activity became comparable or
higher than S4 in the tips. The age-related S1 signature’s relative
activity levels became higher in tips than trunks (Fig. 7c). The
diminishing of signature S4 activities and gains of S2/S13 over
time that PS demonstrates are consistent with the previous
studies8, supporting the accuracy of PS. Since the other studies
could not resolve branch-level identification of signatures, PS has
enabled a higher resolution that identifies clone lineages and
branches that have experienced gain and loss (too low to be
detected) of dominant signature activities.

Fig. 5 Detection of signatures for a whole tumor. a Precision, (b) recall, and (c) F1 score were calculated for the detection of signatures for a whole tumor
(an entire phylogeny). For the QP-ALL approach, variants from all phylogeny branches were pooled, and signatures were estimated. For the PS+QP-Global
and PhySigs-Global approaches, signatures were detected for each branch and then were pooled.
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For example, a further application of PS directly compares the
presence/absence of mutational signatures between a pair of
branches within a phylogeny. A comparison between the trunk
and tip branches (trunk-tip comparison) can quantify differences
between mutational processes active in the earliest and each of the
latest branches in patients. We, therefore, constructed 162 trunk-
tip comparisons. In a vast majority of pairs, there was a difference
for at least one pair of trunk-tip branches (Fig. 8). The main
difference was the loss/diminished activity of S4 and the gain of
S1 as a dominant signature (Fig. 7). Different sets of dominant
mutational processes were operating in the two phases of clonal
evolution, which is consistent with suggestions from the previous
studies11,25,33,34.

In addition, PS’s branch-specific signature detections further
identified tip branches that conserved the same composition of
mutational signatures as the trunk, while other tip branches
within the phylogeny had different signature compositions
(Fig. 8). This result indicates that not all new clones differentiate
the mutational processes. Such inferences require branch-specific
signature prediction, which became possible by PS.

We next tested the differences in signature compositions
between the most recently diverged clonal lineages (tip-tip branch
pairs). We conducted 176 tip-tip comparisons. More than half of
the clone phylogenies had at least one pair of tip-tip branches
with different compositions of mutational signatures (Fig. 8).
Therefore, as new clones originate, mutational processes may also
evolve, increasing the heterogeneity of mutational processes
among clone lineages.

Discussion
PhyloSignare can make it possible to detect changing dynamics
of mutational processes over time in a patient with high pre-
cision. Mutational signature patterns across patients showed
convergence towards a loss of smoking-related signatures,
consistent with previous lung cancer evolution reports11. We
also found a convergent tendency to gain APOBEC signatures
in MRCA’s descendants, suggesting that mutational processes
often shift when the early tumor cells diverge from MRCA over
time. There is also a tendency for mutational signatures to
diverge among closely related lineages (e.g., tip-tip pairs), sug-
gesting regional and/or temporal differences in tumor muta-
tional and selective pressures.

We did not always detect S1, associated with aging, in the trunk,
but S1 was otherwise found in most branches in the phylogeny. S1’s
ubiquity is reasonable because the mutational processes due to
aging should be present throughout. But, its detection in the pre-
sence of S4 seems to be difficult because the probability of C→ T
mutations (which are the characteristics of S1) under S4 activity is
not zero. It means that the high activity of S4 may produce a
comparable number of C→ T mutations as those induced by S1
activity. Therefore, the much stronger activity of S4 likely over-
whelms S1’s signal. The same issue is expected for the detection of
some other COSMIC signatures. For example, S6 activities were
detected in only a small subset of patients (<30%) in Jamal-Hanjani
et al.8’s dataset. In this case, distinguishing S6 from S1 and S2 is
difficult because they involve C→ T mutations. So, some of the
absence of the S6 signature could be due to the detection problem,

Fig. 6 PhyloSignare (PSQP) inferences on CRUK0025 patient data. a Clone phylogeny and the mutational signatures identified for different branches
(A − F). The number in the parentheses is the variant count for each branch, and a pie chart shows the relative activities of mutational signatures. The
most recent common ancestor (MRCA) of all observed clones is marked. b–f Distribution of variants observed at each branch. The numbers on top of the
vertical bars correspond to variant types that were important for COSMIC signatures detected. g Distribution of variants for four COSMIC signatures
detected for this phylogeny (S1, S2, S4, and S13).
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i.e., false negatives. Another lung-related signature, S5, was also not
often detected because it is a flat signature (i.e., many different types
of mutations occur with a similar probability), whose detection is
notoriously difficult even with strong activities36. Therefore, the
absence of some expected lung cancer signatures does not mean
that those mutational processes are inactive. Additional informa-
tion may help to predict these difficult signatures, e.g., to predict S6
activities, orthogonal evidence of these samples having MMR
deficiency.

Identifying lineage-specific mutational signatures has been
challenging partly because the number of variants that are needed

to make a reliable inference has been rather large30. One way to
address this problem is to conduct whole-genome sequencing
(WGS) to collect hundreds of variants for each branch in the
clone phylogeny14,37. However, there may not be enough variants
per branch even in genome-scale investigations if new clones
frequently arise, resulting in short branch lengths, or if somatic
evolution has been occurring for a short period or with a slow
rate. Also, exome sequencing is currently more commonly used in
research investigations, which means that the number of variants
mapped to individual branches may not be large enough for
existing methods, i.e., their performance is potentially not

Fig. 7 Evolutionary dynamics of mutational signatures. Relative activities of signature S4 (a), S2/S13 (b), and S1 (c) in the trunk (red) and tip (black)
branches are shown for each patient. Patients are ordered by the relative activity of S4 in the trunk.

Fig. 8 Comparison of signature composition between a pair of branches. Counts of tip-tip branch pairs (top) and trunk-tip pairs (bottom) for each
patient. Patients are ordered based on the number of branches in their clone phylogeny. The number of branch pairs containing different (brown) and same
(gray) sets of signatures is shown.
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optimal30. Therefore, PhyloSignare is likely to be useful to
improve the quality of mutational signature identification for
individual branches of clone phylogenies in many future
investigations.

To optimize the performance of PhyloSignare, we suggest using
only expected signatures. For example, when we used all 30
COSMIC signatures to analyze a lung cancer patient, CRUK0025
(Fig. 6a), PhyloSignare detected a few signatures that were not
expected for lung cancer, i.e., potentially spurious signatures
(Supplementary Fig. S5a). The detection of these spurious sig-
natures can be easily avoided by providing only expected sig-
natures for a given cancer. This step seems to be especially
important when the number of the signature collection is large,
e.g., COSMIC v3. For example, using all COSMIC v3 signatures
produced a larger number of spurious signatures, while the
restriction to the expected signature for the cancer type essentially
produced the same results as when the COSMIC v2 signature was
used (Supplementary Fig. S5b and S5c).

Another tip for PhyloSignare analysis is to be aware of potential
underestimation of the number of gain and loss (too low to be
detected) of signatures, as neighboring signatures may be incor-
rectly detected at the final step of PhyloSignare. This error hap-
pens because PhyloSignare assumes the activity of neighboring
signatures at a given branch of a phylogeny. Although Phylo-
Signare tests the presence of neighboring signatures, the test may
produce an incorrect prediction. This issue is similar to the
“signature bleeding” in detecting signatures from cohort data,
where signatures present in only some patients are erroneously
assigned to the other patients36. This error happens because this
type of analysis assumes that all patients within a cohort share a
similar mutational signature landscape.

Also, in the PhyloSignare analysis, a spurious signature loss can
happen, especially for “flat or unstable” signatures (e.g., S3, S5,
and S8), when two or more flat signatures are among the can-
didate signatures. In such a case, the iS score can be small for all
of them and they maybe incorrectly removed. Since detecting
“flat” signatures is known to be difficult by any methods27,
additional information, e.g., MMR deficiency, may help for the
detection. In the future, we plan to advance PhyloSignare so that
additional information can be jointly used for signature detection.

Last, we analyzed only Single Base Substitution (SBS) Sig-
natures in this study. In addition to SBS signatures, indel and
doublet signatures are already available. Technically, these sig-
natures can also be used with PhyloSignare, but we will test the
accuracy and plan to advance PhyloSignare if necessary. In con-
clusion, PhyloSignare can improve the accuracy of mutational
signatures detected using standard methods. Its application
reveals the dynamics of mutational signatures at a higher phy-
logenetic resolution, enabling the comparison of mutational
activity over time and among closely related lineages.

Methods
PhyloSignare (PS) approach. PhyloSignare first identifies candidate signatures for
each branch by applying a user-selected mutational signature detection method,
e.g., quadratic programming (QP) technique27, deconstructSigs28, or
MutationalPatterns29 (Fig. 3a). PhyloSignare also searches for candidate signatures
for a branch by applying the selected mutational signature detection method to (1)
each pooled collection of variants from a sibling branch, (2) each pooled collection
of variants from the direct ancestral branch, (3) each pooled collection of variants
from a direct descendant branch, and (4) a pooled collection of variants from all of
these neighboring branches. The objective of pooling information with neighboring
branches is to increase the number of variants that enhance existing methods’
statistical power to detect mutational signatures with low activity. Using a signature
detection method, we estimate the relative activity of user-given signatures (e.g.,
COSMIC signatures) in these collections. Mutational signatures with estimated
activity greater than 0.01 in at least one collection were included to assemble a set
of candidate signatures for a branch. We selected this 0.01 cut-off value because
almost half of the incorrect signatures that QP detected had <0.01 estimated
relative activities in our simulation study.

We next test the significance of the predicted signature activities. For every
candidate signature (S), we compute a simple importance score (iS),

iS ¼ f S� � f
� �

f
; ð1Þ

where,

f S� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i miS � oi

� �2
q

: ð2Þ
In this equation, miS is the estimated count of a mutation type, i, when signature

S is excluded, i.e., the miS is obtained by calculating a product of the mutational
signature matrices specified, estimated relative activities, and the total mutation
count. More specifically, for a candidate signature collection (e.g., k signatures), we
estimate relative activities for the given branch by using a refitting method (e.g.,
QP) in which one candidate signature is excluded. That is, we run a refitting
method for each candidate signature exclusion. The oi is the observed count of a
mutation type, i. Lastly, the summation goes over mutation types, i. The other term
is,

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i mi � oi

� �2
q

; ð3Þ

where mi is an estimated mutation count of a mutation type, i, when signature S is
included. Therefore, iS is based on these values with and without exclusion of a
candidate signature. iS is expected to be close to zero if a given signature S is
spurious, i.e., such signatures are unlikely to contribute significantly to the fit of the
observed data; we retain signatures with iS > 0.02 (Supplementary Fig. S3a). This iS
assessment does not involve optimization of any functions nor calculation of
statistical significance because such statistics are often powerless for a limited
number of mutations for a branch.

For each branch, the presence of each candidate signature is evaluated by
calculating iS, because signatures that are detected only when mutations are pooled
with neighboring branches may not be active for a given branch. Similarly, only
signatures with iS > 0.02 are retained for a branch.

In the final step, PhyloSignare examines the collection of detected signatures for
each branch and tests the presence of signatures that are detected only for
immediate neighboring branches. Signatures detected for a branch are pooled with
those detected only at its immediate relatives. Using the collection of these
signatures, their relative activities are estimated with the selected signature
detection method. Since signatures that are not present on a branch should not be
detected, this step is meant to minimize spurious gain and loss of signatures caused
by a small sample size.

In the above, we assumed that the clone phylogeny is known. In empirical data
analysis, one needs to generate it using available computational tools for bulk and
single-cell sequencing methods; see reviews in the accuracy of methods7,38,39. The
errors in the collection of variants for each branch (errors in inferred clone
phylogeny) will lead to false-negative detection of signatures due to diluted signals
caused by incorrect variants and correct variants that are not assigned to a branch.
Therefore, we encourage users to scrutinize the quality of inferred clone
phylogenies before applying PhyloSignare. Also, using different signature
collections from the COSMIC v2 collection requires caution, although users are
technically allowed to provide COSMIC v3 or their signature collections in the
PhyloSignare approach. We implemented currently available methods to estimate
signature activities (QP, deconstructSigs, and MutationalPatterns) which have been
benchmarked only for COSMIC v2 signatures27–29.

Collection and analysis of simulated datasets. We obtained 180 simulated
datasets from the website https://github.com/elkebir-group/PhySigs 32. Each clone
phylogeny (containing five or seven branches) can be partitioned into up to three
subtrees, each with an identical set of mutational signatures and relative activities.
Each branch of these clone phylogenies had from 2 to 205 mutations. COSMIC
v2 signatures were randomly sampled to select a set of signatures for each branch
of a phylogeny. Relative exposures of selected signatures at each branch were
determined by drawing from a symmetric Dirichlet distribution. Observed muta-
tion counts at each branch were generated by introducing Gaussian noise with a
mean of zero and standard deviation of 0.1, 0.2, or 0.3.

The phylogeny of the dataset shown in Fig. 2a was modeled after CRU0079
data8. Each branch experienced 20–100 mutations caused by three mutational
processes. Branch A harbors signatures S17, whereas the descendant branches (B
and C) have one new mutational signature (S13). Further clonal evolution depicted
in branches D and E acquired a new mutational signature (S1). Using an available
software to generate mutation counts40, the relative activity of each signature for a
branch was assigned by drawing from a Dirichlet distribution, and observed
mutation counts were generated from a multinomial distribution.

We applied PhyloSignare to these simulated datasets by providing correct clone
phylogenies and COSMIC v2 signatures obtained from https://cancer.sanger.ac.uk/
cosmic/signatures. For each branch mutation count, we also performed QP27,
deconstructSigs28, and MutationalPatterns29 by providing COSMIC v2 signatures.
Here, signatures that were estimated with <0.001 relative frequencies were
considered to be absent. deconstructSigs was performed by using the option to
discard inferred signatures with <0.001 relative frequencies. We did not use
deconstructSigs’ function to normalize variant counts because the uniform
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distribution of variants was assumed in the simulation. The bootstrap option in QP
was performed by generating 1,000 bootstrap replicate datasets for each branch.
We excluded branches with <20 variants from the accuracy evaluation because
signature detection is impossible for any method. PhySigs inferences were obtained
from https://github.com/elkebir-group/PhySigs, and the software was downloaded
in 2019.

We also used CloneSig (downloaded in 2021) to analyze the dataset
generated using the phylogeny in Fig. 2a. Since CloneSig assumes a linear
phylogeny, we separately analyzed each section of the phylogeny, i.e., branches A
and B, branches A, C, and D, and branches A, C, and E. Also, CloneSig requires
an observed read count for each mutation. We assigned 2,000 for wild-type
variants for all the mutations, and the mutant-type variant count was set to
1000, 900, and 800 for variants from branch A, branches B and C, and branches
D and E, respectively. CloneSig analysis was performed assuming the tumor
purity equal to 1.

Collection and analysis of empirical datasets. We obtained 100 non-small cell
lung cancer (NSCLC) data from the TRACERx Lung Cancer study8. We collected
only invasive adenocarcinoma and squamous cell carcinoma samples (61 and
32 samples, respectively) because the number of the other cancer types was very
small. These datasets contained inferred clone phylogenies with all observed
mutations mapped along branches. We selected the primary phylogenies when
more than one phylogeny was reported. We then excluded datasets when the total
number of variants was less than 100 or when a clone phylogeny did not have at
least two tip branches. After these filtering steps, we obtained clone phylogenies
from 61 patients.

We classified each observed mutation into the 96 trinucleotide mutation
patterns and generated branch-specific mutation counts used as input
information for PhyloSignare. When a mutation count for a branch was < 20, we
pooled them with its neighboring branch because it was impossible to identify
mutational signatures on data with a too-small number of mutations (red
branches in Fig. 2). To perform the PhyloSignare analysis, we used COSMIC
v2 signatures known in lung adenocarcinoma (S1, S2, S4, S5, S6, S13, and S17)
and squamous cell carcinoma (S1, S2, S4, S5, S13). Accordingly, we provided
each set of known signatures in the analysis based on the given dataset’s cancer
type. For COSMIC v3 signatures, we used those for lung cancer (SBS1, SBS2,
SBS3, SBS4, SBS5, SBS6, SBS9, SBS13, SBS15, SBS17a, SBS17b, SBS18, SBS28,
SBS29, SBS40). We used QP to estimate relative activities in all our data
analyses.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
No new simulated or empirical genetic variation datasets were generated for this study.
We used existing datasets obtained from Supplementary material of ref. 8 and https://
github.com/elkebir-group/PhySigs 32,41. These data were converted into input files for
use in PhyloSignare that can be downloaded from https://github.com/SayakaMiura/
PhyloSignare/input_files 42. The source data for figures are available at https://github.
com/SayakaMiura/PhyloSignare/Sourcedata 42 and in Supplementary Data 1-4.

Code availability
The PhyloSignare code is available at https://github.com/SayakaMiura/PhyloSignare 42.
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