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Abstract

Missing covariates is a common issue when fitting meta-regression models. Stan-

dard practice for handling missing covariates tends to involve one of two

approaches. In a complete-case analysis, effect sizes for which relevant covariates

are missing are omitted from model estimation. Alternatively, researchers have

employed the so-called "shifting units of analysis" wherein complete-case analyses

are conducted on only certain subsets of relevant covariates. In this article, we

clarify conditions under which these approaches generate unbiased estimates of

regression coefficients. We find that unbiased estimates are possible when the

probability of observing a covariate is completely independent of effect sizes.

When that does not hold, regression coefficient estimates may be biased. We study

the potential magnitude of that bias assuming a log-linear model of missingness

and find that the bias can be substantial, as large as Cohen's d = 0.4–0.8
depending on the missingness mechanism.
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Highlights
Missing covariates are a common problem when conducting meta-regressions.
A common practice for meta-regression analyses has been to ignore effects for
which covariates are missing. However, a vast statistical literature suggests that
analyses that ignore missing data can only provide accurate estimates of relevant
quantitites under certain conditions. In this article, we examine conditions
under which ignoring missing covariates in a meta-regression can still lead to
unbiased estimation of regression coefficients. We also investigate the possible
magnitude and sources of bias when those conditions do not hold. Our findings
highlight that substantial bias can be induced by ignoring missing data in a
meta-regression.

1 | INTRODUCTION

Meta-regression is a useful tool for studying important
sources of variation between effects in a meta-

analysis.1,2 Analyses of these models in the absence of
missing data have been studied thoroughly in the
literature.3–7 However, it is common for meta-analytic
datasets to be missing data.8 In the context of meta-regression,
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issues with missing data frequently involve missing
covariates.9,10

Precisely how to proceed with a meta-regression
when missing covariates remains something of an open
question. Statistical guidance suggests that analyses
ought to consider the mechanism that causes covariates
to be missing.9,11 However, it appears that doing so is less
common in practice for meta-analyses. A recent review
found that meta-regressions with missing data tend to
take one of two strategies.10 An analyst may conduct a
complete-case analysis (CCA) that excludes any effects
for which a relevant covariate is missing (i.e., only ana-
lyze complete cases). This is often referred to as “listwise
deletion” in data analyses. However, if there are very few
such effects, a common approach is to use shifting units
of analysis, which we refer to in this article as a shifting-
case analysis (SCA).12 In an SCA, analysts fit a series of
meta-regression models on subsets of relevant covariates,
so that each model selectively omits certain covariates.
This is equivalent to “pairwise deletion” in data analyses.

Both CCA and SCA ignore effects for which a covariate
is missing. Ignoring missing data can potentially lead to
biased estimates of parameters of interest.13,14 Despite
authors pointing out such issues in meta-analysis, these
methods continue to enjoy widespread use.11 Existing meta-
analysis literature on this discussion has yet to detail pre-
cisely how much bias can arise in a complete- or shifting-
case analysis, nor is there exhaustive guidance on when
these methods produce unbiased estimates. In short, there is
an understanding that these methods can induce bias, but
less is known about how much and under what conditions.

This article examines the potential bias of complete-
and shifting-case analyses. The following section provides a
demonstration of these methods on data concerning a
meta-analysis of substance abuse interventions.15 We then
introduce a statistical framework for studying bias for
incomplete data meta-regressions that incorporates a model
for whether or not a covariate is observed. Using this frame-
work, we describe conditions under which CCA and SCA
are unbiased. When these conditions are not met, we derive
an approximation for the bias of CCA and SCA using stan-
dard models for missingness and examine the magnitude of
bias. We find that bias is highly dependent on the precise
mechanism by which data are missing, and is less reliant
on more traditional missingness mechanism classifications
(e.g., missing at random vs. not at random).

2 | EXAMPLE: SUBSTANCE ABUSE
INTERVENTIONS

Tanner-Smith et al.15 conducted a meta-analysis that
examined the effects of substance abuse interventions on

future substance use among adolescents. The studies
included in this meta-analysis involved a variety of differ-
ent treatment types (e.g., cognitive behavioral therapy,
family therapy, and pharmacological therapy) and treat-
ment intensities (measured in hours per week), and were
carried out in a variety of contexts, including in-patient
and out-patient centers. Tanner-Smith et al. used meta-
regression models to study potential moderators of these
effects, and their analyses had to contend with a number
of effects that were missing covariates. While in practice,
models were estimated via the expectation–maximization
(EM) algorithm rather than complete- or shifting-case
methods, we use a subset of this data in order to illustrate
complete- and shifting-case analyses.

Consider a subset of the Tanner-Smith et al. data com-
prising 74 effect estimates of substance abuse interventions
from 46 studies. These effect estimates involve contrasts
between groups in a study that are subjected to different
treatment conditions, denoted in the data as Group 1 and
Group 2, so that each treatment effect can be thought of as
Group 1 minus Group 2. Typically, researchers avoided
no-treatment or placebo conditions in studies over ethical
concerns surrounding the failure to treat adolescents with
substance abuse disorders. Thus, contrasts within studies
(i.e., effect estimates) tended to focus on a specific treat-
ment of interest to the researcher versus some alternate
treatment. Effect estimates are reported on the scale of
bias-corrected standardized mean differences.

Suppose the analysis of interest involves the impact of
high- versus low-intensity interventions on treatment
effects, where a high-intensity intervention consisted of
more than 1.5 h per week of treatment. Then this analysis
might use a pair of binary covariates for each effect: one
would indicate whether Group 1 received a high-intensity
intervention (i.e., X1 = 1 if Group 1 treatment was high-
intensity) and the other would indicate whether Group
2 received a high intensity (i.e., X2 = 1 if Group 2 treatment
was high-intensity). The relevant meta-regression model
would regress the effect estimates on these two covariates.

In the data, the treatment intensity is missing for
some of the effects, and Table 1 summarizes missingness
for these covariates. Table 1 shows that only 37 of the
74 (50%) have a reported treatment intensity for both
groups (i.e., X1 and X2 are both observed), but that
54 (73%) of effects report Group 1's treatment intensity
(i.e., X1 is observed) and 41 (55%) effects report Group 2's
treatment intensity.

A complete-case analysis would include only the
37 effects for which both covariates were observed. Using
robust variance estimation to account for dependence
between effect sizes, a CCA would result in the coeffi-
cient estimates and standard errors displayed in the first
column of Table 2. Based on these estimates, when
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Group 1 receives a high-intensity treatment, we would
expect an effect to be larger by d = 0.44 (in standard devi-
ation units) than when Group 1 receives a low-intensity
treatment, which is statistically significant at the α = 0.10
level. Note that the estimated between-effect variance
is bτ2 ¼ 0:08.

However, the model above is estimated on only half
of the data. Concern over using a small proportion of the
data, or a relatively few number of effects often leads
meta-analysts to opt for a shifting-case analysis. An
example of an SCA would use the 54 effects for which
Group 1's treatment intensity is observed (i.e., X1 is
observed), but only including X1 in the model. Doing so
leads to the estimates in second column of Table 2. Note
that the coefficient estimate for Group 1's treatment
intensity is still positive, but is roughly 60% the magni-
tude of the estimate in the complete-case model.

Finally, an analogous model in an SCA would include
the 41 effects for which Group 2's intensity is observed, and
include only that covariate in the model. The third column
of Table 2 shows that this results in a coefficient estimate
for Group 2's treatment intensity (0.16) that is in the oppo-
site direction of the estimate from the CCA (�0.21).

It should be noted that all of these estimates and com-
parisons between them ought to be interpreted with cau-
tion. The complete-case analysis includes only half of the
effect sizes, which comprises a missingness rate well beyond
what might be considered negligible.16,17 The shifting-case
analyses include more of the data, but because each
shifting-case model omits one of the covariates, these
models are not equivalent to the model that includes both
covariates.18 It could even be argued that the parameters in
the model with both covariates are not comparable to
parameters in models with only one covariate; coefficients
in a model with multiple covariates must be interpreted in

relation to other variables in the model. The remainder of
this article quantifies the bias induced by omitting effect
sizes and/or covariates from meta-regressions.

3 | MODEL AND NOTATION

Suppose a meta-analysis involves k effects estimated from
collection of studies. For the ith effect, let Ti be the esti-
mate of the effect parameter θi, and let vi be the estima-
tion error variance of Ti. Denote a vector of covariates
that pertain to effect estimate Ti as Xi = [1, Xi1, …, Xip].
Note that the first element of Xi is a 1, which corresponds
to an intercept term in a meta-regression model, and that
Xij for j = 1, …p corresponds to different covariates. The
meta-regression model can be expressed as:

Ti jXi, vi, η¼Xiβþuiþ ei: ð1Þ

Here, β�ℝpþ1 is the vector of regression coefficients.
The estimation errors ei are typically assumed to be nor-
mally distributed with mean zero and variance
V [ei] = vi. This assumption is true of some effect size
indices and is a very accurate large-sample approxima-
tion for others.19 The term ui represents the random
effect such that ui ⊥ ei and V [ui] = τ2. This model is
equivalent to the standard mixed-effects meta-regression
model, and it is also consistent with subgroup analysis
models.19,20 The vector η = [β, τ2] refers to the parame-
ters of model. Under a fixed-effects model, it is assumed
that τ2 = 0, in which case η = β, and ui≡ 0.

A common assumption in random effects meta-
regression is that the random effects ui are independent
and normally distributed with mean zero and variance
τ2:20–23

TABLE 1 The total number and

percentage of effect sizes that are

missing covariates regarding whether

Group 1 or Group 2 received high-

intensity interventions in the substance

abuse intervention meta-analysis

Group 1 Hi-intensity Group 2 Hi-intensity Count Percent

Observed Observed 37 0.50

Observed Missing 17 0.23

Missing Observed 4 0.05

Missing Missing 16 0.22

TABLE 2 The meta-regression results for the model regressing effect sizes on high-intensity indicator variables when using complete-

and shifting-case analyses

Term Complete-case Shifting-case Group 1 Shifting-case Group 2

Intercept 0.11 (SE = 0.06, p = 0.11) 0.14 (SE = 0.06, p = 0.02) 0.15 (SE = 0.06, p = 0.03)

Group 1 Hi-Int. 0.44 (SE = 0.16, p = 0.06) 0.27 (SE = 0.15, p = 0.07) –

Group 2 Hi-Int. �0.21 (SE = 0.26, p = 0.46) – 0.16 (SE = 0.26, p = 0.54)

Variance comp. τ2 0.08 0.06 0.09
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ui�N 0,τ2
� �

:

This could correspond to a scenario of k independent
effect estimates presumably from k different studies. In
that case, the distribution p(TjX, v, η) can be written as

p TijXi,vi, ηð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π τ2þ við Þp e

� Ti�Xiβð Þ2
2 τ2þvið Þ : ð2Þ

Thus, the joint likelihood for all k effects can be writ-
ten as:

p T jX, v, ηð Þ¼ 2πð Þ�k=2
Yk
i¼1

τ2þ vi
� �" #

e
�
Pk
i¼1

Ti�Xiβð Þ2
2 τ2þvið Þ , ð3Þ

where T�ℝk is the vector of effect estimates, v �ℝk is
the vector of estimation variances, and X�ℝk� pþ1ð Þ is the
matrix of covariates where each row of X is simply the
row vector Xi. Note that the functions in both (2) and
(3) assume that all of the p covariates are observed.
Equation (3) is referred to as the complete-data likeli-
hood function.13,24 We note that a meta-regression
with no missing data will be accurate if the complete-
data model is correctly specified. Thus, to illustrate the
properties of incomplete data meta-regression, we
assume that the complete-data model is correctly
specified.

The vector of regression coefficient estimates for the
complete-data model when there is no missing data is
typically estimated by

bβ¼ XTWX
� ��1

XTWT: ð4Þ

Here, W = diag[wi] is the diagonal matrix of weights
such that wi = 1/(vi + τ2). The covariance matrix of bβ is
given by

V bβh i¼ XTWX
� ��1 ð5Þ

Note that the weights involve the true variance com-
ponent τ2. In practice, τ2 must be estimated by bτ2, and
the resulting weights used in analyses can be writtenbwi ¼ 1= viþbτ2� �

. For the sake of simplicity, we use wi to
derive results in this article, and so results do not depend
on variance component estimators. Presumably, use of bwi

would induce additional variation into analyses.
The substance abuse data contains multiple effect

estimates per study that are likely correlated. This

differs from the model above. However, we can expand
this model to account for dependent effect sizes by
assuming that Ti �ℝki is a vector of ki effects from the
same study, ei is vector of estimation errors, ui is a vector
of random effects, and ei+ui has covariance matrix Σi. In
this model, Xi is a matrix of covariates for each effect in
Ti. The resulting formulas for the complete-data likeli-
hood function and coefficient estimators will be more
complex (including a variance–covariance weight
matrix), but they will have a similar form as the indepen-
dent effect size model.

Not all relevant variables may be observed in a
meta-analytic dataset. Let Ri be a vector of response
indicators that correspond with effect i. This article con-
cerns missing covariates, and we assume that Ti and vi
are observed for every effect of interest in a meta-analy-
sis. Thus, each element Rij of Ri corresponds to a covari-
ate Xij. The Rij take a value of either 0 or 1: Rij = 1
indicates the corresponding Xij is observed and Rij = 0,
indicates a that the corresponding Xij is not observed.
Note that Ri �ℛ� 0,1f gp is a vector of 0 and 1 s of
length p. For instance, Xi2 were missing, this would be
indicated by Ri2 = 0.

Denote O = {(i, j): Rij = 1} as the indices of covariates
that are observed and M = {(i, j): Rij = 0} be the set of
indices for missing covariates. Then, the complete-data
model can be written as

p T jX,v,ηð Þ¼ p TjXO,XM,v, ηð Þ: ð6Þ

Note that the complete-data model depends on
entries of XM, which are unobserved. It is worth pointing
out that the complete-data model, which refers to the
model with no missing data, is distinct from the
complete-case analysis, which is an estimation procedure
that conditions only on observed data.

3.1 | Complete-case estimators

A common approach in meta-regression with missing
covariates is to use a complete-case analysis.10,11 This
approach simply omits rows in the data for which any
covariate is missing. Thus, this analysis method only uses
effects and covariates for which Ri = [1, …, 1] = 1.

Let C = {i: Ri = 1} index all relevant effects i such that
Ri = 1, so that XC is the matrix of covariates such Ri = 1,
TC is the corresponding subset of effect estimates, and
WC is the corresponding subset of weights. The CCA esti-
mates the coefficients β with

bβC ¼ XT
CWCXC

� ��1
XT
CWCTC: ð7Þ
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3.2 | Shifting-case estimators

When there are multiple covariates of interest, each of
which has some missingness, there may only be a few
effects for which all covariates of interest are observed.
When that happens, a complete-case analysis can be
unfeasible. A common solution to this in meta-analysis is
to use an available-case analysis.11 In practice, an
available-case meta-regression is often equivalent to a
shifting-case analysis, referred to in the literature as
shifting units of analysis.10,12

Shifting-case analyses involve fitting multiple regres-
sion models, each including a subset of the covariates of
interest. Sometimes this even takes the form of regressing
effect estimates on one covariate at a time.10,11 In the sub-
stance abuse data example, we focused on two covariates
of interest Xi1 and Xi2. The SCA first regressed Ti on
observed values of Xi1. This regression included observa-
tions for which both Xi1 and Xi2 are observed
(i.e., Ri = [1, 1]) and observations for which Xi1 is
observed but Xi2 is missing (i.e., Ri = [1, 0]). We then
regressed Ti on Xi2, which included effects for which
Ri �{[1, 1], [0, 1]}. In sum, the SCA demonstrated in
the previous section involved two regressions, each of
which conditioned on different sets of missingness
patterns.

To formalize SCA estimators, consider a single regres-
sion in an SCA, and let S index the component of Xi

(i.e., the intercept term and relevant covariates) included
in that model S = {j: j = 0 or Xij in analysis}. Let E be the
complement of S so that E indexes the covariates
excluded from the regression. Then, the regression is
used to estimate and make inferences about coefficients
βS. In the following section, we discuss βS and its rela-
tionship to β, but here assume that the target of inference
for an SCA is β and hence βS comprises a subset of the
components of β. For instance, in the first substance
abuse SCA regression, Ti was regressed on only Xi1, so
that βS = [β0, β1].

Denote ℛj as the set of missingness patterns such
that all included covariates are observed: ℛj ¼
R�ℛ :RS ¼ 1f g. Note that ℛj contains missingness pat-
terns such that all the included covariates are observed,
but any excluded covariates may be either observed or
unobserved. For instance, in the first substance abuse
SCA regression of Ti on Xi1, the analysis included effects
such that Ri �ℛ1 ¼ 1,1½ �, 1,0½ �f g. Finally, let U denote the
indices i of effects for which XiS are observed; note that
U depends on S, so we may write U Sð Þ¼ i :Ri �ℛj

� �
.

Then, the shifting-case estimators for βS are given by:

bβS ¼ XT
USWUXUS

� ��1
XT

USWUTU, ð8Þ

where XUS contains the columns (S) of X that pertain to
the covariates that are included in the SCA regression,
and the rows (U) for which all of those covariates are
observed. The matrix WU is a square matrix containing
the relevant rows and columns of W for which XiS are
observed, while TU contains the effect sizes in T for
which XiS is observed.

3.3 | Omitted variables

A common concern in meta-regression is that models
may not be able to account for all relevant covariates,
either due to sample size constraints or because some
covariates were not observed.25 Such concerns pertain to
meta-regressions both with and without missing data. In
contrast to primary data analysis, meta-analysts tend to
have little control over the availability of covariates rele-
vant for a meta-regression. Information regarding
covariates must be extracted from primary studies and
this process is restricted by the ways in which research is
reported. Some studies may not clearly report covariates
deemed of interest in a meta-regression. Even for key
conceptually or theoretically important moderators,
meta-regression models must often contend with varia-
tion in reporting of such moderators across studies. Thus,
the issue of omitted variables in meta-regression is both
prevalent and difficult to overcome (e.g., via additional
data collection).

The implication of omitting observed variables in
SCA can be understood via the parameter βS. It has
been noted that there are various conditions under
which components of βS are unequal to their counter-
parts in β.26 For instance, it can be the case that
βS ¼ eβ0,eβ1h i

≠ β0,β1½ � � β. The difference between βS and
components of β is often referred to as omitted variable
bias in the statistical and econometric literature.27,28 This
conception inherently assumes that β in the full model is
of interest to the analyst, which may not necessarily be
the case. Indeed, one may assume that βS is of interest,
rather than β, so that the components of βS comprise
parameters distinct from β. In this approach, βS charac-
terizes the relationship between XiS and Ti in a more
restricted model that does not account for XiE. This could
be consistent with analyses that seek to summarize
effects within specific subgroups of studies delineated by
covariates.

We refer to the difference between βS and β as omit-
ted variable bias, in keeping with the literature on linear
models. In doing so, we treat SCA as a missing data ana-
lytic strategy, wherein the target of inference is β. Subse-
quent sections present findings on bias induced by
omitting observed covariates in an SCA, which reflect the
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findings of Lipsey (2003), who points out that interpreta-
tion of meta-regression coefficients when covariates are
omitted can lead to misleading interpretations about the
correlates of effective interventions. However, if the
intent of the analysis is to examine restricted models or
specific subgroups of effects/studies, the omitted variable
bias presented in this article may be less applicable,
though Lipsey's caveats for interpreting such models may
still apply.

3.4 | Missingness mechanisms

Both the complete- and shifting-case estimators are ana-
lyses of incomplete data. Analyses of incomplete data
require some assumption about why data are missing,
which is referred to as the missingness mechanism. The
mechanism by which missingness arises is typically
modeled through the distribution of R. Let ψ denote the
parameter (or vector of parameters) that index the distri-
bution of R so that the probability mass function of R can
be written as p(RjT, X, v, ψ). Assumptions about the mis-
singness mechanism are therefore equivalent to assump-
tions about p(RjT, X, v, ψ).

Rubin29 defined three types of mechanisms in terms
of the distribution of R. Data could be missing completely
at random (MCAR), which means that the probability
that a given value is missing is independent of all of the
observed or unobserved data:

p RjT,XO,XM,v,ψð Þ¼ p Rjψð Þ:

MCAR implies that probability that a given value is
missing depends only on the missingness parameter ψ .

Covariates could be missing at random (MAR), which
implies the distribution of missingness depends only on
observed data and the missingness parameter:

p RjT,XO,XM,v,ψð Þ¼ p RjT,XO,v,ψð Þ:

MAR differs from MCAR in that missingness might
be related to observed values. As an example, if studies
with larger standard errors are less likely to report the
racial composition of their samples, then missingness
would depend on the (observed) estimation error vari-
ances. Data missing according to this mechanism would
violate an assumption of MCAR, since missingness is
related to an observed value.

Finally, data are said to be missing not at random
(MNAR) if the distribution of R depends on unobserved
data in some way. In the context of the meta-regression
data, this would imply that R is related to XM, so that the

probability of a covariate not being observed depends on
the value of the covariate itself. For instance, data would
be MNAR if studies with larger standard errors and a
greater proportion of minorities are less likely to report
the racial composition of their samples because the likeli-
hood that racial composition is not reported will depend
on the composition itself.

A related concept in missing data is that of ignora-
bility, which means that the missingness pattern does not
contribute any additional information. When missing
data are ignorable, it is not necessary to know
(or estimate) ψ in order to conduct inference on
η.13,14,24,30 In practice, missing data are ignorable if they
are MAR and if ψ and η are distinct.

4 | CONDITIONAL INCOMPLETE
DATA META-REGRESSION

Because both complete- and available-case analyses
depend on the value of Ri, they can be seen as models
that condition on missingness. Models that condition on
missingness are not necessarily identical to the complete-
data model, which is the model of interest, because the
complete-data model does not condition on Ri. Yet, CCA
and SCA proceed as if the complete-data and conditional
models on missingness are equivalent. Doing so ignores
the missingness mechanism and its potential impact on
the accuracy of analytic results.

The complete-data model can be related to the condi-
tional models through the distribution of missingness Ri.
This approach is referred to as a selection model in the
missing data literature.13,24,30 We can write the selection
model for meta-regression with missing covariates as:

p TijXi,vi,Ri �ℛj,η,ψ
� �¼ p Ri �ℛjjTi,Xi,vi,ψ

� �
p TijXi,vi,ηð Þ

p Ri �ℛjjXi,vi,ψ ,η
� � ,

ð9Þ

where ψ indexes the distribution of RjT, X, v. Here, ℛj

refers to the relevant subset of ℛ on which the analysis
conditions; for a CCA, ℛj ¼ 1f g.

Equation (9) describes the conditional model as a
function of the complete-data model p(TijXi, vi, η) and a
selection model p Ri �ℛjjTi,Xi,vi,ψ

� �
that gives the prob-

ability that a given set of covariates are observed. The
denominator on the right hand side of (9) is a normaliz-
ing factor that is equivalent to the probability of observ-
ing the missingness pattern ℛj given the estimation error
variance vi and the observed and unobserved covariates
in the vector Xi, and can be written as
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p Ri �ℛjjXi,vi,ψ ,η
� �¼ Z p Ri �ℛjjTi,Xi,vi,ψ

� �
p TijXi,vi,ηð ÞdTi:

ð10Þ

Note that when the complete-data model in (2) is not
equivalent to the conditional model in (9), the resulting
coefficient estimators in a meta-regression can be biased.
To see this, we can write:

E TijXi,vi,Ri �ℛj
� �¼E TijXi,vi½ �þδij ¼Xiβþδij: ð11Þ

Here, we see that the expectation of Ti given Xi and Ri

can be written as the complete-data expectation Xiβ
(i.e., the regression model) plus a bias term δij. The bias
term δij refers to the bias induced in the regression model
due to conditioning on missingness pattern ℛj, which
can affect individual components of η. If δij≠ 0, it follows
that conditioning on Ri induces bias in the distribution of
Ti used in an analysis. Because the CCA estimator (7)
and SCA estimator in (8) are weighted averages of the Ti,
they can be biased if δij≠ 0. The precise magnitude of
the δij will depend on the selection model in (9) and
hence on the missingness mechanism. It is worth noting
that the subsequent sections show that bias depends on
the precise selection model rather than the class of mech-
anism (MCAR or MAR).

A standard approach for modeling missingness mech-
anisms for covariates is to assume Ri follows some log-
linear distribution.31 Various authors have described
approaches to modeling R for missing covariates in gen-
eralized linear models that include logistic and multino-
mial logistic models.32–34 Thus, one class of models for
missingness would involve the logit probability of observ-
ing some missingness patterns Ri �ℛj �ℛ:

logit p Ri �ℛjjTi,Xi,vi
� �� �¼Xmj

m¼0

ψmjf mj Ti,Xi,við Þ: ð12Þ

Here, fmj(Ti, Xi, and vi) are assumed to be differentia-
ble basis functions of the data and mj is the number of
terms in the selection model. In theory, mj could be arbi-
trarily large, but the model is only estimable if mj < k.
Finally, we assume f0j(Ti, Xi, vi) = 1, so that ψ0j would be
the intercept term for the logit model for the set of mis-
singness patterns ℛj.

In general, it is impossible to know whether a selec-
tion model is correctly specified, but the formulation in
(12) offers a few important advantages. First, it is fairly
general: the only assumption made of the basic functions
fmj is that they are differentiable, which means model
(12) allows for nonlinear or interaction terms. Second, it

expresses the relationships between the probability of the
event Ri �ℛj

� �
and observed variables on the scale of

the log odds ratio, a well-understood scale in meta-analy-
sis. Third, it allows for closed-form expressions for the
approximate bias of coefficient estimates by virtue of the
logit link function. Thus, it comprises a large class of
models for selection that can be more clearly interpreted.

4.1 | Approximate bias for log-linear
selection models

As argued above, the bias of complete-case estimators bβC
or shifting-case estimators bβS will depend in some way
on the bias δij induced in Ti by conditioning on Ri �ℛj.
The magnitude and direction of δij will in turn depend on
the selection model.

It is possible to derive an approximation for δij under
certain conditions. If p(TijXi, vi) is the standard fixed- or
random effects meta-regression model in Equation (2),
and p Ri �ℛjjTi,Xi,vi

� �
follows the log-linear model in

(12), and the fmj are differentiable with respect to Ti, then

δij ≈Hj Xiβ,Xi,við Þ τ2þ vi
� �Xmj

m¼0

ψmjf mj0 Xiβ,Xi,við Þ, ð13Þ

where Hj(Xiβ, Xi, vi) is equivalent to p Ri ��ℛjjTi,Xi,vi
� �

evaluated at Ti = Xiβ and

f mj0 Xiβ,Xi,við Þ¼ ∂f mj

∂Ti

				
Ti¼Xiβ

is the derivative of fmj with respect to Ti evaluated at
Ti = Xiβ. A more detailed proof is presented in Appendix.

While the following sections will examine possible
values that δij may take under different selection models,
we can gain some insight on bias by examining (13). The
expression for δij depends on three main quantities. First,
δij is an increasing of Hj(Xiβ, Xi, vi), which is the probabil-
ity that Ri ��ℛj. This implies that the bias will be greater
as the probability of omitting an observation increases.
Second, δij increases in the sum of variance components
τ2+ vi, which means that the bias will be larger when Ti

varies more around the regression line. Finally, δij
depends on ψmjfmj

'(Xiβ, Xi, vi). Since fmj
' is the derivative

of fmj with respect to T, when fmj does not depend on T,
then fmj

' = 0, and hence ψmjfmj
' = 0. Thus, δij depends

on the components of the selection model that are func-
tions of Ti and how strongly those components are
related to the probability of observing Xi via the parame-
ter ψ .
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5 | BIAS IN COMPLETE-CASE
ANALYSES

Complete-case analyses only include effects for which all
relevant covariates are observed. The complete-case coef-
ficient estimator bβC given in Equation (7) conditions on
Ri = 1. As noted above, conditioning on Ri can induce
bias, however there are conditions under which the CCA
will lead to unbiased coefficient estimates. These condi-
tions largely amount to whether or not Ri is independent
of the effect size estimate Ti, the outcome of meta-
regression model. When the distribution of Ri depends on
Ti, then complete-case estimators will be biased.

The general condition under which CCA estimators
are unbiased is that Ri ⊥ Ti, which occurs for different
types of selection models. First, if the covariates are
MCAR, then Ri ⊥ (Ti, Xi, vi). Alternatively, if the selection
model depends only on vi, but not Xi or Ti, then Ri ⊥ (Ti,
Xi)jvi; this would constitute a MAR mechanism. Finally,
if the selection model depends only on vi and Xi, but not
Ti, then Ri ⊥ Tij(Xi, vi), which would correspond to an
MNAR mechanism. Under each of these assumptions, it
can be shown that the model that conditions on complete
cases Ri = 1 is identical to the complete-data model, and
hence CCA estimators will be unbiased:

p TijXi,vi,Ri ¼1,η,ψð Þ¼ p Ri ¼ 1jTi,Xi,vi,ψð Þp TijXi,vi,ηð Þ
p Ri ¼1jXi,vi,η,ψð Þ

¼ p TijXi,vi,ηð Þ:
ð14Þ

This result is consistent with prior work regarding lin-
ear regression models with missing covariates.35,36

An important aspect of this result is that whether or
not a CCA produces unbiased coefficient estimates
depends more on the role of Ti in the selection model
rather than traditional mechanism classifications of
MCAR, MAR, or MNAR. However, various selection
models satisfy the conditions of MAR, and similarly
with MNAR, the key factor for bias in CCA estimators is
the relationship between Ri and Ti. Should Ri⊥̸Ti, then
CCA estimators can be biased, regardless of whether the
mechanism is MAR or MNAR. Similarly, if Ri ⊥ Ti, CCA
estimators can be unbiased, regardless of MAR
or MNAR.

When Ri is not independent of Ti (given Xi or vi), then
CCA can be biased. Let ℛ1 ¼ 1f g so that the CCA condi-
tions on Ri �ℛ1. Based on Equation (11), the bias of bβC
will depend on the δi1. If we let Δ = [δ11, …, δk1] be the
vector of δi1 and let ΔC be the subset of Δ for which all
covariates are observed (i.e., Ri = 1). Then the bias of the
complete-case analysis can be written as

Bias bβCh i
¼ XT

CWCXC
� ��1

XT
CWCΔC: ð15Þ

The bias in Equation (15) is a weighted average of
individual biases δi1. Hence, the bias will be larger if the
δi1 are larger (and in the same direction).

Precisely, how large the bias in (15) is will depend on
the distribution of Ri and its relationship to effect
estimates Ti and their covariates Xi. When Ri follows the
log-linear model in (12), the approximate bias can be
written as

Bias bβCh i
≈ XT

CWCXC
� ��1

XT
CWCH1Cf 1Cψ1, ð16Þ

where

H1 ¼ diag H1 Xiβ,Xi,við Þ½ �

is a k � k diagonal matrix where entries refer to the prob-
ability that an observation is not a complete case,

f 1 ¼ f 010 X
T
i β,Xi,vi

� �
,…, f m110 X

T
i β

�
,Xi,viÞ

� �

is a k � m1 matrix of derivatives, and ψ1 ¼ ψ01,…,ψm11

� �T
is a vector of parameters that index the selection model.
Note that the bias in (16) involves H1C which contains
the rows of H1 for which Ri = 1; similarly for f1C.

While (16) provides a general expression for the
approximate bias of bβC, it can be a little difficult to inter-
pret. Loosely, we can see that the bias depends on the
probability that covariates are missing, reflected in H1C,
as well as some function of the components of the log-
linear selection model f1Cψ1. To better intuit this bias, we
provide a simple example in the following section.

5.1 | Example: complete-case analysis
with a single binary covariate

Suppose the model of interest includes a single binary
covariate Xi1 ≡ Xi � {0, 1}, so that the complete data
model is

Ti ¼ β0þβ1Xiþuiþ ei, ð17Þ

where β0 and β1 are the regression coefficients of interest.
Note that β0 is the average effect when Xi = 0 and β1 is
the contrast in mean effects for when Xi = 1 versus
when Xi = 0.

Because Xi is a scalar, so is Ri; Ri = 0 indicates that Xi

is missing, Ri = 1 indicates that Xi is observed. A CCA
would include only effects i for which Xi is observed
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(i.e., Ri = 1). The complete-case estimator for β0 is given
by a weighted sum of Ti among the effects for which
Xi = 0 and Ri = 1:

bβ0C ¼
P

i:Xi¼0,Ri¼1
wiTiP

i:Xi¼0,Ri¼1
wi

: ð18Þ

The complete-case estimator for β1 is given by the dif-
ference between the (weighted) mean effect for Xi = 1
versus Xi = 0:

bβ1C ¼
P

i:Xi¼1,Ri¼1
wiTiP

i:Xi¼1,Ri¼1
wi

�bβ0C: ð19Þ

Assume that the selection model is log-linear, and
that for the sake of simplicity the probability of observing
Xi depends on the size of the effect Ti and the value of Xi:

logit p Ri ¼ 1jTi,Xi,við Þ½ � ¼ψ0þψ1Tiþψ2Xi: ð20Þ

Note that this is an MNAR mechanism, since the prob-
ability Xi is observed depends on Xi itself; a MAR mecha-
nism would involve ψ2 = 0 in Equation (20). Because (20)
depends on Ti, δij ≠ 0 for this selection model regardless
of MAR or MNAR (i.e., regardless of whether ψ2 = 0 or
not), the CCA estimators may be biased.

Under this model, H1(Xiβ, Xi, vi) depends only on
Xi and not vi, so we can write H1 Xið Þ¼
p R≠ 1jTi,Xi,við ÞjTi¼XT

i β
. As well, f11(Ti, Xi, vi) = Ti and

f21(Ti, Xi, vi) = Xi. Given the result in Equation (13), we
can write

δi1 ≈H1 Xið Þ viþ τ2
� �

ψ1: ð21Þ

Given the selection model in (20), the bias of the
complete-case estimator for the intercept, bβ0C, is:

Bias bβ0Ch i
≈H1 0ð Þ v0þ τ2

� �
ψ1, ð22Þ

where v0 is the average estimation error variance vi
among effects for which Xi = 0 and Ri = 1. The expres-
sion in (22) depends on three key quantities, and is an
increasing function of each of those quantities. First, the
bias increases in H1(0), which is an approximation of the
probability that Xi is missing among studies for which
Xi = 0. While under model (20), this probability is a

function of Ti and Xi, we can intuit H1(0) loosely as a mis-
singness rate in Xi among effects for which Xi = 0. Sec-
ond, the bias in (22) is increasing in v0þ τ2, the average
variation of Ti for which Xi = 0; the greater the variation,
the greater the bias. Because the vi is typically decreasing
in sample size, if studies have smaller samples, the bias
will be greater. Finally, the bias depends on ψ1, which
characterizes the relationship between an Xi being
observed (i.e., Ri) and Ti. When ψ1 is positive, larger
effect estimates Ti are more likely to have observed Xi

and the bias will be positive; if ψ1 is negative, so that
larger effect sizes are more likely to be missing the covari-
ate Xi, then the bias will be negative.

To gain better insight into Equation (22), suppose
vi ≈ v¼ v0 so that each study has roughly the same esti-
mation error variance. If we assume Ti is on the scale of a
standardized mean difference, vi≈ 4/ni where ni is the
total sample size used to compute Ti. Various researchers
have described conventions for the magnitude of τ2 that
range from τ2 = v/4 to τ2 = v.37–39 Thus, we can write
τ2+ v = 4(1+ r)/n from some constant r that ranges from
0 to 1.

Further, the parameter ψ1 is a log-odds ratio, which
reflects the odds of a complete case for Ti versus Ti � 1.
There are various conventions for the size of an odds
ratio that depend on base rates P[R = 1jT] that could be
interpreted as ranging from 1.5 to as large as 9.0, though
various researchers have noted that odds ratios greater
than 3.0 or 4.0 could be considered large.40–43 Thus, we
consider a range of odds ratios from about 1.5 to 4.5.
However, the actual size of ψ1 will depend on the scale of
a change in effect size DT ¼jTi� eTi j. Since it corresponds
to a difference, DT should be no larger than an individual
jTij. Based on conventions in the social and medical sci-
ences (some arbitrary, some empirical), meaningful
values of DT might feasibly range from 0.2 to 1.0.40,44

These conventions for odds ratios and DT would imply
that relevant values of jψ1j might range from 0.4 (large
DT with small odds ratio) to over 7.5 (small DT with large
odds ratio).

Based on these conventions, Figure 1 shows the
potential (approximate) bias of bβ0C for this example. Each
panel corresponds to a given within-study variance
v = 4/n and residual heterogeneity τ2. Panels plot the bias
contributed by a single case δi as a function of the proba-
bility of missingness H1(0) (x-axis) and ψ1 (color). The
panels on the bottom few rows and left most columns
show that if both ψ1 is small and τ2+ v is small, then δi
will be less than 0.05. However if τ2+ vi is larger and the
probability of a complete case is strongly related to Ti

(i.e., ψ1 is large), then the bias can be greater than
d = 0.2 or even 0.5.
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It is worth noting that Figure 1 gives the bias for
when Ti is positively correlated with Ri, and hence
ψ1 > 0. When ψ1 < 0, then the bias of bβ0C is negative,
and would be a mirror image of those in Figure 1. Larger,
more negative values of ψ1 would lead to a greater
downward bias.

The bias of the slope coefficient, bβ1C, under selection
model (20) is given by:

Bias bβ1Ch i
≈ H1 1ð Þ v1þ τ2

� ��H1 0ð Þ v0þ τ2
� �� �

ψ1, ð23Þ

where v1 is the mean vi among effects for which Xi = 1
and Ri = 1. As with bβ0C, the bias of bβ1C is an increasing
function of ψ1. If Ti has a strong positive correlation with
Ri, then ψ1 will be larger and so will the bias of bβ1C.

When all studies have approximately the same esti-
mation error variance so that vi ≈ v and v0 ≈ v1, then the
bias of bβ1C is approximately:

Bias bβ1Ch i
≈ H1 1ð Þ�H1 0ð Þ½ � vþ τ2

� �
ψ1: ð24Þ

The expression in (24) is similar to (22), and both
expressions depend on similar quantities. Like bβ0C, the
bias of bβ1C is an increasing function of τ2+ v and ψ1. The
bias of bβ1C also increases as a function of H1(1)�H1(0),
which can be thought of as a difference in missingness
rates between cases where Xi = 1 and Xi = 0. Note,
however, that this does not imply that MAR data neces-
sarily leads to an unbiased slope estimate. Recall that H1

is an approximation of the probability Xi is missing
given Xi and Ti in (20): P[Ri≠ 1jTi, Xi]. Even if Xi were
MAR (i.e., assuming ψ1≠ 0 but ψ2 = 0), the slope

estimate would be unbiased only if the slope was
zero: β1 = 0. This is because when β1≠ 0, we would
expect different rates of missingness among studies
for which Xi = 1 than Xi = 0 because of the relation-
ship between Ri and Ti, as well as the relationship
between Ti and Xi. Viewed this way, the bias of bβ1C
will be greatest when there are fewer complete cases,
missingness is strongly related the value of the covariate
Xi or to the size of effects (assuming that effects are corre-
lated with Xi).

To gain insight into the magnitude of bias in (24),
consider the values of ψ1 � [0.4, 7.5] and τ2 + v = 4(1
+ r)/n discussed above. Note that the difference H1(1) �
H1(0) = p(R = 0jX = 1, η) � p(R = 0jX = 0, η) is a differ-
ence in conditional probabilities. For reference, because
both Ri and Xi are binary, then p(R = 0jX = 1) � p
(R = 0jX = 0) would be equal to the correlation between
Ri and Xi (assuming equal marginals in a 2 � 2 table).
Thus, jp(R = 0jX = 1) � p(R = 0jX = 0)j could be as
small as 0, but could possibly be as large as 1; arbitrary
conventions on the size of correlations suggest that jp
(R = 0jX = 1) � p(R = 0jX = 0)j = 0.5 would be a “large”
value.40

Figure 2 shows the potential bias of bβ1C for this exam-
ple assuming the values of τ2+ v, ψ1, and H1(1)�
H1(0) discussed above. Each panel corresponds to a given
amount of heterogeneity τ2+ v, and within panels the
bias is shown as a function of the difference H1(1)�
H1(0) (x-axis) and ψ1 (color). Figure 2 highlights that the
relationship between Ri and Ti (ψ1) and between Ri and
Xi (x-axes) can affect the magnitude of the bias. If Ri is
strongly correlated with both Xi and Ti the bias can be as
large as d = 0.3 or 0.4. However, the less Ri depends on Ti

or Xi, the lower the bias is.

FIGURE 1 The bias of the intercept

estimate bβ0C (y-axis) of the example. Bias

is shown as a function of the average

sampling variance v, residual

heterogeneity τ2, the probability of

missingness when X1 = 0, H1(0) (x-axis),

and the correlation between missingness

and the effect size as measured by ψ1

(color). Note that ψ1 is a log-odds ratio

for effect sizes on the scale of Cohen's d

[Colour figure can be viewed at

wileyonlinelibrary.com]
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Recall that the mechanism in these computations is
assumed to be MNAR, since ψ2 in (20) is nonzero. A
MAR mechanism would require ψ2 = 0. In that case, the
bias for the CCA intercept estimator bβ0C is identical to
that given in (22). However, the bias in the slope will be
slightly different when ψ2 = 0. This is because, as noted
in (24), the bias in the slope depends (loosely) on the cor-
relation between R and X. Given the form of H1(X) in this
example, it is possible for the bias of bβ1C to be greater
when ψ2≠ 0 (MNAR) than when ψ2 = 0 (MAR), which
can occur if the correlation between R and T, and R and
X are in the same direction (i.e., ψ1 and ψ2 are in the
same direction). However, when ψ2≠ 0 (MNAR), the
bias of bβ1C can also decrease in magnitude relative to
when ψ2 = 0 if ψ1 and ψ2 are in the opposite directions.

A key implication of this example is that under the
relatively simple selection model in (20), CCA intercept
estimators can have substantial bias. This bias does not
change even if ψ2 = 0 and the data are MAR. Thus, infer-
ences for the group of studies for which Xi = 0 will be
biased. Moreover, because inference for the group of
studies for which Xi = 1 will depend on the intercept esti-
mate, those inferences will also be biased even if the
slope estimator bβ1C is unbiased.

6 | BIAS IN SHIFTING-CASE
ANALYSES

Shifting-case analyses (SCA) are a common approach in
meta-regression when there are very few complete cases
across multiple covariates. These analyses involve fitting
multiple regression models, where each model omits some
of the covariates of interest. In this sense, SCA can be
thought of as a set of regression models. Consider one

model from that set, which estimates regression coeffi-
cients for some subset S of the relevant covariates using
the estimator bβS in Equation (8). Recall that E refers to
the set of covariates omitted from the model, and that the
estimator bβS conditions on a set of missingness patterns
Ri �ℛj. The set of missingness patterns ℛj is such that
RiS = 1 so that all included covariates are observed.

To understand the conditions under which bβS is unbi-
ased, we can write a shifting-case model as:

p TijXiS,vi,Ri �ℛj,η,ψ
� �¼ p Ri �ℛjjTi,XiS,vi,ψ

� �
p TijXiS,vi,ηð Þ

p Ri �ℛjjXiS,vi,η,ψ
� � :

ð25Þ
The model in (25) is slightly different from the models

in the previous sections in that all of the functions
depend on the covariates included in a given regression
XiS rather than the complete set of relevant covariates Xi.
Thus, the function p(TijXiS, vi) can be thought of as a
partial-data model, since it omits some of the relevant
covariates. The partial-data model p(TijXiS, vi) need not
be equivalent to the complete-data model p(TijXi, vi)
because the former conditions only on XiS and not the
full set of covariates Xi. These models would only be
equivalent if Ti ⊥ XiEjXiS, vi. That is, unless the excluded
covariates are completely unrelated to effect size (given
the covariates included in the SCA model), then bβS will
be biased even if XiS are completely observed.

The model in (25) suggests a very strict set of condi-
tions for which bβS is unbiased which concern the mis-
singness mechanism and the relevance of excluded
covariates in a given shifting-case regression. First, mis-
singness must be independent of effect sizes. This arises
if Ri ⊥ TijXiS, vi or Ri ⊥ (Ti, XiS)jvi, which is a similar
assumption as that made for unbiased CCA. In effect, this
assumption implies that missingness is independent of

FIGURE 2 The bias of bβ1C (y-axis).

Each panel corresponds to a given value

of residual heterogeneity τ2 and

estimation error variance v. Within

panels, the bias of bβ1C is plotted as

function of differential missingness rates

(p(R = 0jX = 1)� p(R = 0jX = 0)), which

is analogous to the correlation between

the value of X and whether it is observed.

Bias is also shown as a function of ψ1,

which is the relationship between the

probability of observing X, and the effect

size T. Bias is shown on the scale of

Cohen's d and ψ1 is on the scale of a log-

odds ratio [Colour figure can be viewed

at wileyonlinelibrary.com]
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effect sizes Ti (and potentially covariates), but could be
correlated with estimation error variances vi.

Second, any excluded covariates must be completely
irrelevant to effect sizes given the included covariates:
Ti ⊥ XiEjXiS, vi. This assumption is equivalent to assuming
that βj = 0 for all j � E, so that any omitted variables in a
given shifting-case regression are assumed to have a coef-
ficient of zero. A related assumption is that (Ti,
XiS) ⊥ XiEjvi, which would imply that the complete-data
likelihood involves no interactions between XiS and XiE

and that XiS and XiE are orthogonal. Given the nature of
many meta-analyses wherein included studies and effects
are ostensibly “found objects,” correlation among multi-
ple covariates is a common issue in meta-regression.25

Note that conditions on omitted covariates and omitted
observations must hold in order for bβS to be unbiased.

When the assumptions about omitted variables and
effect sizes are not met, bβS will be biased. The magnitude
of the bias will depend on a number of factors, including
the amount of missingness, the missingness mechanism,
and the relevance of any excluded covariates. The bias
can be expressed as:

Bias bβSh i
¼ XT

USWUXUS
� ��1

XT
USWUXUEβE

þ XT
USWUXUS

� ��1
XT
USWUΔjU , ð26Þ

where XUE is the matrix of omitted covariates and βE
comprises the coefficients for the omitted covariates. The
term Δj is a vector of biases due to missingness Δj = [δ1j,
…, δkj] and ΔjU is the subset of Δj for which Ri �ℛj. Note
that the δij are the biases due solely to missingness as in
Equation (11).

The expression in (26) shows that a shifting-case analy-
sis suffers from two sources of bias. The first source, cap-
tured in the first term in (26), is a function of the
coefficients for the excluded covariates βE, which we refer
to as omitted variable bias. Discussion in a previous
section argued that the term omitted variable bias assumes
that β is the target of inference in an SCA, which may or
may not be the case. If β is the target of inference, omitted
variable bias arises even if no XiS are missing, and is related
to the issue of multicollinearity in linear models. In fact, if
the columns in XUS and XUE are orthogonal, so that the
omitted variables are independent of the included variables,
then the omitted variable bias will be zero. When the omit-
ted variables are not orthogonal to the included variables,
the bias will be nonzero, and it will depend in large part on
the contribution of the omitted variables in the complete-
data model XUEβE. The estimator bβS will have greater bias
if the coefficients for the omitted variables βE are larger
and the omitted covariates XUE are correlated with the
included covariates XUS.

The second term in (26) captures the bias due to ignor-
ing observations missing XiS. This missingness bias is a
function of ΔjU, which is itself a vector of biases for each
effect, and it can be understood in terms of its individual
components δij. Because the δij are of the same form for the
complete-case and shifting-case models, the missing data
bias for an SCA is governed by similar factors as the CCA,
and are quite possibly similar in magnitude. Based on (13),
δij will be positive if Ti is strongly correlated with whether
Ri �ℛj, and δij will be greater in magnitude when that
correlation is larger.

Taken together, shifting-case estimators can be even
more biased than complete-case estimators. This occurs if
the omitted variable and the missingness biases are in
the same direction (e.g., both are positive). For both
biases to be in the same direction, correlation between Ti

and the omitted variables XiE must be in the same direc-
tion as the correlation between Ti the probability that XiS

is observed. If, however, the omitted variable and mis-
singness biases are in opposite directions, this can reduce
the bias of a shifting-case estimator. It is worth noting,
however, that it will almost always be impossible to con-
firm the direction of biases, since they depend on poten-
tially unobserved covariates.

6.1 | Example: shifting-cases analysis
with two binary covariates

Suppose Xi = [1, Xi1, Xi2] and Xi1 and Xi2 are binary
covariates such that the regression model of interest is

Ti ¼ β0þβ1Xi1þβ2Xi2þuiþ ei: ð27Þ

If there is missingness in both Xi1 and Xi2, then
Ri � {0, 1}2 so that Ri = [1, 1] indicates both covariates
are observed, and Ri = [1, 0] indicates only Xi1 is
observed. If missingness is such that Ri = [1, 1] for very
few effect estimates, then an SCA might involve
regressing Ti on the observed values of Xi1 and then on
the observed values of Xi2.

The first regression would take only rows for which
Xi1 is observed, so that R�ℛ1 ¼ 1,1½ �, 1,0½ �f g and the
excluded Xi2 could be either 0 or 1. The shifting-case esti-
mators follow from Equation (8):

bβ0S ¼
P
X1¼0

wiTiP
X1¼0

wi
, bβ1S ¼

P
X1¼1

wiTiP
X1¼1

wi
�bβ0S:

Assume that missigness follows the following log-
linear model:
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logit p Ri �ℛ1jTi,Xi1,við Þ½ � ¼ψ0þψ1Tiþψ2Xi1: ð28Þ

Note that this gives the log-odds that an effect is
included in the model given Ti and Xi1, and that Xi2 is not
involved. Further, because the distribution of Ri depends
on Xi1, the mechanism is MNAR.

Given the selection model in (28), the bias of the coef-
ficient estimators can be written as:

Bias bβ0Sh i
¼ β2

P
X1¼0,X2¼1

wiP
Xi¼0

wi
þ

P
Xi1¼0

wieδi1P
Xi1¼0

wi
, ð29Þ

Bias bβ1Sh i
¼ β2

P
Xi1¼1,Xi2¼1

wiP
Xi1¼1

wi
�

P
Xi1¼0,Xi2¼1

wiP
Xi1¼0

wi

0B@
1CA

þ

P
Xi1¼1

wieδi1P
Xi1¼1

wi
�

P
Xi1¼0

wieδi1P
Xi1¼0

wi

0B@
1CA: ð30Þ

Here eδi1 are the missingness biases as defined above,
and whose approximate values is given in (13). To distin-
guish from the δi1 from the complete-case example, we
use the eδ notation.

Both the bias of bβ0S and bβ1S depend on two terms.
The first term in each expression is the omitted variable
bias, and the second term in each expression is the mis-
singness bias. Consider the omitted variable biases,
which characterize differences between βS and β. Note
that model (27) inherently specifies β0, β1, and β2 as
parameters of interest. Because of this, we consider
omitted variable bias as relevant to the appraisal of bβS.
When effects are estimated with roughly the same preci-
sion, so that wi≈w, then the omitted variable biases
reduce to

OmittedVar:Bias bβ0Sh i
¼ β2p X2 ¼ 1jX1 ¼ 0ð Þ, ð31Þ

OmittedVar:

Bias bβ1Sh i
¼ β2 p X2 ¼ 1jX1 ¼ 1ð Þ�p X2 ¼ 1ð jX1 ¼ 0Þ½ �:

ð32Þ

The omitted variable biases for each coefficient can
be seen as depending on two quantities. Both (31) and
(32) are increasing in β2, which is the contribution of Xi2

to the complete-data model. The omitted variable bias forbβ0S is also increasing in p(X2 = 1jX1 = 0). The bias for bβ1S
in (32) is increasing in p(X2 = 1jX1 = 1)� p
(X2 = 1jX1 = 0). Because both Xi1 and Xi2 are binary, this
difference is roughly equivalent to their Pearson correla-
tion (assuming equal marginals). If Xi1 ⊥ Xi2, then their
correlation is zero, and the omitted variable bias will be
zero. However, if Xi1 and Xi2 are correlated, the bias of bβ1
will depend on how strongly correlated Xi1 and Xi2 are,
and how big β2 is.

Figure 3 shows the omitted variable bias of bβ0 (left
plot) and bβ1 (right plot) as a function of β2. Both the bias
and β2 are shown on the scale of Cohen's d. In the left
plot π01 = p(Xi2 = 1jXi1 = 0) is the proportion of Xi2 = 1
when Xi1 = 0. In the right plot, ρ12 = p
(Xi2 = 1jXi1 = 1)� p(Xi2 = 1jXi1 = 0), which is roughly
the correlation between Xi1 and Xi2. Note that because
ρ12 can be intuited as (roughly) a Pearson correlation, the
values in the figure include 0, 0.1 (i.e., a “small” correla-
tion), 0.3 (medium correlation), and 0.5 (large
correlation).40

The figure shows that if β2 = 0 so that Xi2 is indepen-
dent of Ti given Xi1, that both bβ0S and bβ1S will be unbi-
ased. However, when β2 is nonzero, both estimators will
be biased. If Xi1 and Xi2 are highly correlated, or if
Xi2 = 1 when Xi1 = 0 with high probability, the bias of

FIGURE 3 The omitted variable

bias of bβ0S and bβ1S for model (27) as a

function of the omitted variable

coefficient β2. The bias (y-axis) and β2
(x-axis) are on the scale of Cohen's d.

The bias displayed is solely due to

omitting Xi2 from model (27). In the

left plot, lines are colored according to

π01 = p(Xi2 = 1jXi1 = 0). In the right

plot, lines are colored according to

ρ12 = p(Xi2 = 1jXi1 = 1)� p

(Xi2 = 1jXi1 = 0) [Colour figure can be

viewed at wileyonlinelibrary.com]
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both estimators will about as large as a “small” effect
(i.e., d = 0.2) when β2 is larger than 0.2. For bβ1S the bias
will be less than about d = 0.05 when jβ2j≤ 0.1 or
if ρ12 < 0.5.

Figure 3 does not take into account any bias induced
by missingness. However, because the missingness mech-
anism in (28) is the same as the mechanism for the
complete-case example (20), the missingness bias for bβ0S
is the same as that for bβ0C in (22), which is shown in
Figure 1. Likewise, the missingness bias for bβ1S is the
same as that for bβ1C in (23), which is shown in Figure 2.

Thus, the total bias of bβ0S will be the sum of the
omitted variable biases shown in Figure 3 and the mis-
singness biases shown in Figures 1 and 2. If both the
omitted and missingness biases are on the higher end,
the total bias of bβ0 might be as large as d = 0.6 to over
1.0. Likewise, the total bias of bβ1S will be the sum of the
omitted variable biases shown in Figure 2 and the mis-
singness biases shown in Figure 3, and can be larger
than d = 0.6.

As noted above, the missingness bias and omitted var-
iable bias can be in the different directions. For instance,
if β2 < 0 but eδij >0, then the omitted variable bias for bβ0S
will be negative, but the missingness bias will be positive.
In such cases, the bias of the shifting-case estimators
could be smaller than the bias of the complete-case

estimators. However, because the biases depend on
unknown (and potentially unobserved) quantities, it will
often be impossible to empirically verify the magnitude
or direction of the bias.

7 | IMPLICATIONS FOR
EMPIRICAL EXAMPLE

The theoretical results above suggest that there are condi-
tions under which the coefficient estimates from the
CCA and SCA of the substance abuse data in Table 2 are
substantially biased. However, it will be difficult, if not
impossible, to determine just how biased those estimates
are, even given the simplified examples in the previous
sections. First, the missingness mechanism is not known
for the substance abuse data. Even if we assume that the
mechanism follows a log-linear model like that in (20) or
(28), the resulting formulas for the bias depend on quan-
tities, such as ψ and η that are not known, and cannot be
estimated in the presence of missing data without further
assumptions.

However, one approach to examining bias in the esti-
mates presented in Table 2 would involve stochastically
imputing the missing Xij in the data. In the same vein as
multiple imputation (MI), each set of imputed values

FIGURE 4 Bias in shifting-case analysis (SCA) regression of Ti on Xi1. For both the intercept β0 and slope β1, these boxplots show the

total potential bias of the SCA estimators, as well as the omitted variable and missingness bias. Units are shown on the scale of Cohen's d
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constitutes a “complete” dataset from which we can com-
pute the parameters relevant to bias.13,45 Given an
imputed dataset, we can compute (a) the difference in
the resulting bβ ið Þ

for the ith imputed dataset and bβS, (b)
the quantities that govern bias in the formulas above,
including ψ , H(X), and τ2. This allows us not only to
assess the bias, but also to examine which aspects of the
missing data are driving it.

As with MI, the accuracy of the resulting estimated
quantities depends on the validity of assumptions regard-
ing missingness and the accuracy of the imputation model.
Thus, we would urge interpretation of the following
results as potential biases in the CCA and SCA estimators
presented earlier in this article, rather than a precise esti-
mate of the bias. We generated m = 1000 imputations
using the mice software in the R programming language.46

Estimates of η were computed using metaphor, specifying
a Paule-Mandel estimator for the variance component τ2.47

To estimate the log-linear model selection parameters ψ in
(28), as well as H(X), we used a logistic regression with the
missingness indicator Rij and Ti and Xij as the predictors.

Here, we focus on results for β0 and β1. Consider the
regression of Ti on Xi1 reported in Table 2. We can view
this as a single regression in an SCA that includes only
observations for which Xi1 is observed. As noted above,
the resulting estimators of the intercept β0 and slope β1
will exhibit bias due to missingness given in (22) and (23)
and bias due to omitting variables as in (31) and (32).
Recall that the bias due to missingness in an SCA under
this model will be similar to the bias derived for a CCA.

Figure 4 plots the omitted variable bias, missingness bias,
and total bias for both bβ0S and bβ1S. Results are reported on
the scale of Cohen's d. Omitted variable bias for bβ0S
ranges from �0.05 to 0.04 with a mean of �0.01; omitted
variable bias for bβ1S ranges from �0.32 to 0.12 with a
mean of �0.05. Similarly the bias due to missingness
could feasibly range from 0.04 to 0.07 with a mean of
0.06 for bβ0S, while the missingness bias of bβ1S might range
from 0 to 0.12 with a mean of 0.06. Note that while the
omitted variable bias and missingness bias are in opposite
directions in this example, this need not be the case in
general; both biases could feasibly be in the same direc-
tion for other data. In sum, this amounts to a total bias of
0.01 to 0.09 for bβ0S and from �0.25 to 0.18 for bβ1S.
8 | DISCUSSION

This article described a selection model approach to study
the bias of two common methods for conducting meta-
regressions with missing covariates: complete-case and
shifting-case analyses. Under certain assumptions regard-
ing the selection model, we obtained expressions for the

approximate bias of coefficient estimators. These expres-
sions were presented in a general form, which was then
unpacked by way of examples.

We found that both CCA and SCA will produce
biased coefficient estimates unless certain conditions are
met. While discussion regarding potential bias of these
analyses has largely focused on traditional mechanism
taxonomy of MCAR, MAR, and MNAR, we found that
bias depends more on the precise model for missingness
rather than these broader classifications. Certain mecha-
nisms that are MAR or MNAR can lead to unbiased esti-
mates with CCA and SCA, while other MAR or MNAR
mechanisms can induce substantial bias. Complete-case
estimators are unbiased if the probability that all relevant
covariates are observed is (conditionally) independent of
the effect size estimate. Shifting-case estimators are unbi-
ased if, in addition to effect sizes being independent of
missingness, the covariates omitted from a model have
no relationship with the effect size (assuming the full
model involving β is of interest). When these conditions
are not met, the bias of coefficient estimates can be
substantial—as large as d = 0.4 to d = 0.8—depending
on the missingness mechanism (i.e., parameters in the
selection model), the missingness rate, and the relevance
of any omitted covariates.

Results for both CCA and SCA suggest that bias due
to missingness will tend to increase in magnitude as a
function of the total variation in the data. This means
that if studies have small sample sizes (i.e., vi are large)
or there is substantial residual between-effect heterogene-
ity τ2, the bias of a CCA or SCA will be greater. Because
meta-regression is used to explain between-effect varia-
tion τ2, models capable of explaining much of that varia-
tion will have lower bias in CCA and SCA estimates.
However, even very modest amounts of residual variation
can still result in substantial bias.

An important aspect of these findings is that bias will
depend on unknown parameters and unobserved data.
This means that it will be impossible to empirically verify
the magnitude or direction of the bias. Even the esti-
mated biases from the substance abuse data, which were
on the order of about d = ±0.1 may not be entirely accu-
rate, as so much of that data is missing. Further, it will
require strong assumptions regarding the missingness
mechanism to correct any bias. These assumptions may
be buttressed by theory about scientific reporting, data
collection, and data curation.

In addition, it is not immediately clear how com-
monly the conditions required for unbiased complete-
and shifting-case estimators arise. Recent empirical work
on examining missingness in meta-analytic datasets
found that effect sizes can be strongly correlated with
missingness, though this is not always the case.48
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Further, the issues of multicollinearity and confounding
in meta-regression, including those discussed by Lipsey,25

would suggest that omitting variables in an SCA are
likely to induce bias.

Based on these results, our primary recommendation
is that analysts attempt to understand the missingness
mechanisms and patterns in their data. This can leverage
knowledge about standard reporting and coding prac-
tices, as well as exploratory analyses.48 If there is very lit-
tle missingness, or if there is a good reason to assume
that missingness is uncorrelated with effect size esti-
mates, a CCA may be a reasonable option. However, we
would discourage analysts from continuing to use SCA
because it would seem unlikely that omitted variable
biases are zero in practice.

We would also suggest analysts investigate the feasi-
bility of alternative estimation methods. Ibrahim32

describes an EM algorithm for generalized linear models
with missing covariates, and Ibrahim, lipsitz, and Chen33

extend that algorithm when covariates are MNAR. In
addition, full-information maximum likelihood (FIML)
has long been used in linear models,14,49 and has shown
some promise for meta-regression involving continuous
covariates. Finally, multiple imputation has become
something of a standard approach for handling missing
data across a number of fields.13,30,45

However, employing any of these alternative strate-
gies is not necessarily straightforward for meta-analysts.
To our knowledge, the EM algorithm for missing
covariates has yet to be implemented in standard meta-
analytic software. Although FIML for meta-regression
model is available in SEM framework,50 the approach
has not been empirically validated under various condi-
tions. How best to specify quality imputation models for
MI analyses is something of an open question for meta-
regression, as is the potential inaccuracies incurred by
using poor imputation models. Research on and clear
implementation of these methods for meta-regression
model would seem to be of great use for meta-analysts.
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APPENDIX A: Approximate bias for log-linear
selection models

Proposition: Suppose p(Ti|Xi, vi) is the standard fixed- or
a random effect meta-regression model in Equation (2),
and suppose p Ri ��ℛjjTi,Xi,vi

� �¼Hj Ti,Xi,við Þ follows
the log-linear model in (12). Then:

E TijXi,vi,Ri �ℛj
� �

≈Xiβ

þHj Xiβ,Xi,við Þ τ2þ vi
� �Xmj

m¼0

ψmjf mj0 Xiβ,Xi,við Þ, ðA1Þ

where f mj0 Xiβ,Xi,við Þ¼ ∂
∂Ti

f mj Ti,Xi,við ÞjTi¼XT
i β
. Therefore,

the bias of the conditional expectation is given by:

δij ≈Hj Xiβ,Xi,við Þ τ2þ vi
� �Xmj

m¼0

ψmjf mj0 Xiβ,Xi,við Þ: ðA2Þ

Proof:
In this proof, we drop the subscript i for sake of sim-

plicity. Denote

Hj Xβ,X ,vð Þ�Hj X ,vð Þ¼ P R¼ ��ℛj jT,X ,v
� �		

T¼Xβ

Gj X ,vð Þ¼ 1�Hj X ,vð Þ
gj X ,vð Þ¼ P R�ℛj jX ,v

� �
:

Then an approximation for E T jX ,v,R�ℛj
� �

is as
follows:

omitting subscripts,Taylor series for exponents inP R�ℛjjT,X ,v
� �

atT¼Xβ

E TjX ,v,R�ℛj
� � ¼ Z T exp � T�Xβð Þ2

2 τ2þ vð Þ þ
X
i

ψ ijf ij T,X ,vð Þ
( )

gj X ,vð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π τ2þ vð Þp

1þ e

P
i

ψ ijf ij T,X ,vð Þ
 ! dT

¼
Z

T

gj X ,vð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π τ2þ vð Þp exp � T�Xβð Þ2

2 τ2þ vð Þ

8<:
þ
X
i

ψ ijf ij Xβ,X ,vð Þþ
X
i

ψ ijf ij0 Xβ,X ,vð Þ T�Xβð Þ

� log 1þ e

P
i

ψ ijf ij Xβ,X ,vð Þ
 !

�Gj X ,vð Þ
X
i

ψ ijf ij0 Xβ,X ,vð Þ
 !

T�Xβð ÞþO T2
� �9=;dT

≈
Z

T

gj X ,vð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π τ2þ vð Þp exp � 1

2 τ2þ vð Þ T2�2TXβ

(

� 2T τ2þ v
� �X

i

ψ ijf ij0 Xβ,X ,vð Þ

þ 2T τ2þ v
� �

Gj X ,vð Þ
X
i � D

ψ ijf ij0 Xβ,X ,vð Þ
 !

þ…
�)

dT

¼ XβþHj X ,vð Þ τ2þ v
� �X

i

ψ ijf ij0 Xβ,X ,vð Þ■
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Note that this uses a first order Taylor expansion of
the log-linear model at T = Xβ, and thus assumes the fmj

are differentiable. The approximation will be more accu-
rate if τ2 + vi are small. A more accurate approximation

is possible if the fmj are linear in Ti. In that case, only an
approximation of the denominator of the log-linear
model is required.
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