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ABSTRACT

This paper presents a web service named MAGIIC-
PRO, which aims to discover functional signatures
of a query protein by sequential pattern mining.
Automatic discovery of patterns from unaligned
biological sequences is an important problem in
molecular biology. MAGIIC-PRO is different from
several previously established methods performing
similar tasks in two major ways. The first remark-
able feature of MAGIIC-PRO is its efficiency in
delivering long patterns. With incorporating a new
type of gap constraints and some of the state-of-the
art data mining techniques, MAGIIC-PRO usually
identifies satisfied patterns within an acceptable
response time. The efficiency of MAGIIC-PRO
enables the users to quickly discover functional
signatures of which the residues are not from only
one region of the protein sequences or are only
conserved in few members of a protein family.
The second remarkable feature of MAGIIC-PRO is
its effort in refining the mining results. Considering
large flexible gaps improves the completeness of
the derived functional signatures. The users can be
directly guided to the patterns with as many blocks
as that are conserved simultaneously. In this paper,
we show by experiments that MAGIIC-PRO is
efficient and effective in identifying ligand-binding
sites and hot regions in protein–protein interactions
directly from sequences. The web service is avail-
able at http://biominer.bime.ntu.edu.tw/magiicpro
and a mirror site at http://biominer.cse.yzu.edu.tw/
magiicpro.

INTRODUCTION

As more and more protein sequences become available
with their structures undetermined, recognizing functional
signatures directly from sequences is particularly desirable
in functional proteomics (1�3). Automatic discovery of
patterns in unaligned biological sequences is an important
problem in molecular biology (4�8). For a good review on
the mining algorithms, the readers can refer to Refs
(9�11). When compared with the approaches based on
multiple sequence alignment in identifying functional
regions, pattern mining algorithms have the advantage
of automatically determining the subset of sequences
involved in the final mining results (12). The derived
patterns are useful in many research issues in
Bioinformatics, including automatic functional annota-
tion of sequences, database search of homologues,
detection of functional sites and prediction of hot regions
in protein–protein interactions (2,13�15).
Pattern mining algorithms can be categorized by the

description models they employ. Frequently used models
include regular expressions, profiles and hidden Markov
models (HMMs) (10). This paper focuses on discovery of
patterns expressed in regular expression and considers
only exact components in a pattern. An exact component
permits only one specific amino acid in one position, such
as the capital letters in the pattern N-R-x(5,19)-Y-x-G-
x(3)-D. In this example, ‘x’ stands for a wildcard that
matches any amino acid. Both ‘x’ and ‘x(3)’ are called
rigid gaps, a gap of fixed length, which are composed of
one and three wildcards, respectively. On the other hand,
x(5,19) is a flexible gap, a gap of flexible length, which
admits at least five successive wildcards and at most 19
successive wildcards in between the exact components ‘R’
and ‘Y’. A flexible gap handles the don’t-care regions
where large insertions and deletions might happen during
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evolution, while a rigid gap deals with the conservative
substitutions allowed in biological sequences.
When only exact elements are considered in mining

process, the derived patterns are usually very sparse, in
which the pattern elements are interleaved with a large
amount of gaps. Patterns of this type are hard to detect
but are greatly appreciated because they concisely high-
light the important residues associated with protein
functional sites. In proteins, the conserved residues usually
appear as clusters (it is called a block in this paper),
and multiple clusters together constitute an important
substructure. The conserved regions that strongly corre-
late with each other and conserved simultaneously are
usually interleaved with large irregular gaps (15,16).
In other words, the residues associated with a functional
motif are not necessarily found in one region of the
sequence (2,15�19). This complicates the mining process
and often confuses the approaches based on multiple
sequence alignment.
Regular expression is considered as a deterministic

model contrary to the probabilistic models such as profiles
and HMM (10). A deterministic pattern can be matched
or not matched by a sequence. In the mining process,
a pattern will be reported as long as it matches more than
a user-specified percentage of the input sequence set. This
is the so-called minimum support constraint (20)).
A pattern is said to be diagnostic for a family if it matches
all the known sequences in the family, and no other
known sequence (9). However, a diagnostic pattern does
not always correspond to a functional signature. By
setting the minimum support constraint as a lower value,
MAGIIC-PRO can discover patterns that really present as
functional signatures but are only conserved in a subset of
input sequences. Such patterns are more informative and
useful in predicting ligand binding or protein interaction.
Discovering sparse and flexible patterns which are

conserved in only a subset of input sequences is a time-
consuming task due to the large search space of solutions.
So many related studies employ other constraints in
addition to the minimum support constraint to expedite
the mining process. Mining algorithms that consider only
short conserved words (4,5,17,18) or rigid gaps (6�8,12),
such as web service Teiresias (12), are efficient and
effective in identifying short motifs. On the other hand,
the Pratt (21) algorithm introduced the concept of gap
flexibility to enlarge the search space. However, allowing
large flexible gaps might derive patterns with the conser-
ved residues scattered. Furthermore, it has been shown by
experiments in our recent work that considering large
flexibilities causes the failure of Pratt to deliver satisfied
results within an acceptable time (16). Different from the
previous works, our approach considers two types of gaps
to improve the mining efficiency, where the gaps within
a conserved region are called an intra-block gap and the
gaps in between two adjacent conserved regions are called
inter-block gaps (16). Using two types of gap constraints
for different purposes improves the efficiency of mining
process while keeping high accuracy of mining results. The
server MAGIIC-PRO further employs rigid intra-block
gaps instead of the flexible ones proposed in (16) since
it has been observed in protein sequences that insertions

and deletions are seldom present in highly conserved
regions (2,12). Our experimental results also reveal that
considering only rigid gaps within a block is useful in
eliminating noisy patterns.

MAGIIC-PRO provides many useful tools for examin-
ing and visualizing the derived patterns, which will be
described in detail later. After that, we will show by
experiments that MAGIIC-PRO is efficient and effective
in identifying functional sites and predicting hot regions
in protein–protein interactions.

METHOD

The web service MAGIIC-PRO is in particular designed
for mining protein sequences, where the kernel algorithm
executing sequential pattern mining is based on our
previously developed algorithm MAGIIC (16) incorpo-
rated with several state of the art data mining techniques.
MAGIIC-PRO first quickly identifies rigid gapped blocks
by bounded-prefix growth technique of MAGIIC. After
that, the candidate blocks are concatenated into patterns
with large irregular gaps by exploiting the antimonotone
characteristic of this problem (19,20). Finally, a newly
proposed bounded-gap closure checking scheme devel-
oped based on (22) is executed to eliminate patterns that
can be covered by other super patterns with the same
occurrences.

After the mining process terminates, MAGIIC-PRO
generates a pattern snapshot that shows all the derived
patterns in alignment with the query protein. The residues
present in different patterns are combined together to
create a conservation plot, where the conservation level
of each residue is determined by the percentage of total
number of supporting proteins merged from different
patterns. The conservation plot provides a whole picture
about the conserved residues of a query protein.

Input

We assume that every user of MAGIIC-PRO has a
protein sequence of interest at hand. MAGIIC-PRO takes
a protein sequence as input, and helps the users to prepare
the training data for pattern mining. The task of collecting
relative sequences of the query protein can be achieved by
using Swiss-Prot annotations or executing the PSI-BLAST
program. Once the query protein and the training data
have been determined, the mining process is executed
using the parameters described in the following
subsection.

Parameters

The most important parameter of MAGIIC-PRO is
the minimum support constraint. A pattern will be
reported as long as it matches at least a certain number
of sequences. The support constraint is critical to the
mining results, but it might not be possible to know in
advance by what percentage level a satisfied pattern can
be discovered. Since lower values bring more patterns,
the users are suggested to start with a large support
constraint, e.g. 90%, and MAGIIC-PRO will decrease
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it gradually until a desired number of patterns have been
found.

In addition to the minimum support constraint,
MAGIIC-PRO has some other parameters for advanced
users. Before going into the details, we first give a formal
definition of a pattern block. Assume that a pattern is
consisted of pattern elements as a sequence, and each
successive pair of elements is either interleaved with a gap
or not. In this work, small and rigid gaps are considered as
intra-block gaps, while large and flexible gaps are treated
as inter-block gaps. This thus defines the boundaries of the
blocks. The notation x(a,b), a< b, is used for a flexible
gap with minimum length of a and maximum length of b,
and x(a) stands for a rigid gap with a fixed length of a.
The wildcard x(a) is omitted if a=0, and is written as x
if a=1, i.e. x=x(1). The first group of the advanced
parameters specifies the gap constraints.

(i) The maximum length of an intra-block gap (default
value=3);

(ii) The maximum relative flexibility of an inter-block
gap with respect to the length of the inter-block gap
present in the query protein (default value=30%);

The second group of the advanced parameters specifies the
size or length constraints.

(i) The minimum number of elements in a block
(default value=3);

(ii) The minimum number of blocks in a pattern
(default value=2);

We argue that a pattern should have at least two
blocks to be meaningful, because an important region is

seldom to be conserved singly either from structural
or functional aspects. In this way, the users can be directly
guided to the important discoveries.

Output

After the mining process finishes, the users can first take
a look on the conservation plot and pattern snapshot.
As shown in the Figure 1a, the locations of the conserved
regions are summarized in the complete conservation
plot derived from all the patterns. It can be observed
in Figure 1a that there are nine conserved regions in the
query protein. In the same web page, the users are
provided with an interactive interface to collect patterns of
interest in a pattern snapshot. Different from the
conservation plot, a pattern snapshot in addition tells
which pattern blocks are simultaneously conserved during
evolution. The users are suggested to browse the lists of
the top 10 high-support and top 10 large-size patterns.
The size of a pattern is defined as the number of exact
components it contains. A pattern with a high support
usually highlight the most highly conserved residues that
are related to a functional region, while a longer pattern
with a lower support in general provides a complete
signature with respect to a functional site.
Here we use the same example from Figure 1a to

explain how the interactive snapshot can facilitate
examining the mining results. In Figure 1b, we first
examine the top 10 high-support patterns with 3 or more
blocks. Similar patterns can be considered as being
associated with the same functional site, but each of
them is distinct from the others because the sets of
supporting sequences are different. The top one pattern in

Figure 1. Examples of pattern snapshots and the conservation plot provided by MAGIIC-PRO. (a) The complete conservation plot derived from all
the patterns. (b) Top 10 high-support patterns with three or more blocks. (c) Top 10 large-size patterns with three or more blocks
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Figure 1b identifies the most three important regions
of this query protein, which are related to the binding sites
of the ligands FAD and NAP, denoted as the blocks 1, 2
and 3 in both Figures 1a and 2. Next, we can request
the top ten large-size patterns with three or more blocks.
It is observed in Figure 1c that blocks 4 and 5 are the
next most conserved blocks that are simultaneously
conserved with blocks 1, 2, and 3, and the further next
is the block 6. The top one large-size pattern in Figure 1c
is plotted with an available PDB structure in Figure 2,
showing that these six blocks together constitute
a complete signature regarding the binding sites of ligands
FAD and NAP.
To facilitate studying the patterns of interest, we

provide five useful links for each pattern. First the
webpage highlights the locations of the pattern in its

supporting sequences. Second, the derived pattern can
be plotted with a protein structure if there are PDB entries
available for any of the supporting sequences. Third,
the derived pattern can be fed to the ScanProsite web
service to check its selectivity, the ability to reject false
positive matches. Fourth, the users can perform a multiple
sequence alignment on the segments of supporting
sequences that are associated with the selected pattern.
This helps the user to construct a more generalized pattern
with amino acid substitutions considered. Fifth,
MAGIIC-PRO aligns each excluded sequence with the
segment of the query protein. This helps to tell why a
particular sequence does not match the pattern.

RESULTS AND DISCUSSIONS

In this section, we first demonstrate the efficiency of
MAGIIC-PRO in identifying long patterns based on the
13 datasets with different levels of similarities listed in
Table 1. With the default settings of the advanced
parameters, MAGIIC-PRO starts the search by setting
the minimum support constraint as 90%, and decreases
this constraint step by step until at least one pattern
have been found. At this stage, we observed that most of
the patterns with the maximum support are related to
a functional site of the query protein but do not serve
as a complete signature of a functional site. In order to
find patterns with more conserved blocks involved, we
continued decreasing the minimum support constraint and
stopped the process when the calculation time of a single
mining task is longer than 60 s. Table 1 reports the
minimum support where we stopped for each dataset, as
well as the searching time used in the latest search. Table 1
also shows the number of blocks generated in the first
stage of the mining process and the number of derived
patterns with at least two blocks. It is observed in Table 1
that a large amount of single blocks do not collaborate
with other blocks to form a longer pattern. The number
of patterns converges rapidly when the number of
blocks in a pattern increases. The patterns found in the

Table 1. Analysis of the efficiency of MAGIIC-PRO

Query Protein Size of
training
data

Setting of
minimum
support (%)

No. of
blocks derived
in the first stage

No. of the derived patterns with
different number of blocks

Time used
(in s)

2 3 4 5 6

O14965 (STK6_HUMAN) Serine/threonine-protein kinase 6 1910 60 23 4 – – – – 27
P51656 (DHB1_MOUSE) Estradiol 17-beta-dehydrogenase 1 494 20 211 462 34 – – – 9
P19120 (HSP7C_BOVIN) Heat shock cognate
71 kDa protein

473 90 115 3 – – – – 12

P00962 (SYQ_ECOLI) Glutaminyl-tRNA synthetase 346 70 75 12 4 – – – 4
P10933 (FENR1_PEA) Ferredoxin—NADP reductase 280 20 1490 1112 948 618 192 7 23
P08622 (DNAJ_ECOLI) Chaperone protein dnaJ 275 80 79 86 78 66 5 – 5
P25910 (BLAB_BACFR) Beta-lactamase type II precursor 267 5 2712 860 139 26 – – 24
P27142 (KAD_BACST) Adenylate kinase 243 80 146 178 33 – – – 2
P22887 (NDKC_DICDI) Nucleoside diphosphate kinase 233 70 78 187 169 37 – – 1
P09372 (GRPE_ECOLI) Protein grpE 195 30 479 1533 1836 599 23 – 9
P00730 (CBPA1_BOVIN) Carboxypeptidase A1 precursor 57 50 141 49 72 9 3 – 1
P08692 (ARSC1_ECOLI) Arsenate reductase 51 70 18 7 – – – – <1
P35568 (IRS1_HUMAN) Insulin receptor substrate 1 25 80 20 2 – – – – <1

The symbol hyphen stands for ‘no patterns found.’

Figure 2. A pattern plotted with an available structure of the
Oxidoreducatase FAD/NAD(P)-binding protein. Structures are shown
with the conserved pattern blocks plotted with sticks in different colors,
block ‘R-x-Y-S-x(2)-S’ highlighted in green, block ‘G-T-G-x-A-P’ in
yellow, block ‘G-x(3)-L-x(2)-G’ in pink, block ‘A-x-S-R’ in orange,
block ‘K-x-Y-x-Q’ in deep pink, and block ‘Y-x-C-G’ in purple, the
ligand FAD plotted with ball-and-stick representation in blue, and the
ligand NAP with ball-and-stick representation in brown. (PDB
Code:1QFY:A, query protein: P10933, FENR1_PEA).
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top 10 high-support and the top 10 large-size lists of
each dataset demonstrate the potential of MAGIIC-PRO
in identifying functional sites and hot regions in protein–
protein interactions. Owing to the limited space, we only
show one experimental result in the following paragraph,
while the others are provided on the web page of
MAGIIC-PRO.

Here we use the case of query protein P00730 to illustrate
that the long patterns found by MAGIIC-PRO are biolo-
gically meaningful. The pattern in Figure 3a constitutes the
pocket for INF (N-(Hydroxyaminocarbonyl) Phenylala-
nine) and the zinc ions. This pattern matches 42 sequences
in the training data. A longer pattern with a lower support
(28 sequences) is plotted in Figure 3b. It is of interest that
this pattern constitutes the substructure which presents
its importance from another protein (P04852) in the
complex with the LCI protein. This small example shows
the necessity of finding motifs with different conservation

levels that match different subsets of sequences in the
training data. On the other hand, the diagnostic patterns
provided in the PROSITE database simply capture the
signature regarding the zinc binding site.

Limitation ofMAGIIC-PRO

Since the minimum number of the elements in a block is
suggested to be set as 3, it might happen that some residue
or two of the residues are conserved but cannot be found
by MAGIIC-PRO in its primitive results. In this case, the
users are suggested to perform a multiple sequence align-
ment for an interested pattern on the matched segments
of supporting sequences through the link provided by
MAGIIC-PRO. By this way, the derived patterns can be
enhanced with multiple sequence alignment to have both
singly conserved residues and conservative substitutions
well considered.

CONCLUSION

Detecting functional signatures directly from primary
information is a challenging task. The mining process is
tedious especially when the users have no prior knowledge
about the query protein that can be used to judge how the
mining results are. MAGIIC-PRO quickly guides the
biologists directly to the most highly conserved regions,
and after that the users can extend the derived patterns by
using the advanced parameters to refine the mining results.
The derived patterns are useful in prediction of protein
functions and structures, protein–ligand interactions, and
protein-protein interactions.
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