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Abstract: Orchidaceae is the 3rd largest family of angiosperms, an evolved young branch of
monocotyledons. This family contains a number of economically-important horticulture and
flowering plants. However, the limited availability of genomic information largely hindered the
study of molecular evolution and phylogeny of Orchidaceae. In this study, we determined the
evolutionary characteristics of whole chloroplast (cp) genomes and the phylogenetic relationships of
the family Orchidaceae. We firstly characterized the cp genomes of four orchid species: Cremastra
appendiculata, Calanthe davidii, Epipactis mairei, and Platanthera japonica. The size of the chloroplast
genome ranged from 153,629 bp (C. davidi) to 160,427 bp (E. mairei). The gene order, GC content,
and gene compositions are similar to those of other previously-reported angiosperms. We identified
that the genes of ndhC, ndhI, and ndhK were lost in C. appendiculata, in that the ndh I gene was lost
in P. japonica and E. mairei. In addition, the four types of repeats (forward, palindromic, reverse,
and complement repeats) were examined in orchid species. E. mairei had the highest number of
repeats (81), while C. davidii had the lowest number (57). The total number of Simple Sequence Repeats
is at least 50 in C. davidii, and, at most, 78 in P. japonica. Interestingly, we identified 16 genes with
positive selection sites (the psbH, petD, petL, rpl22, rpl32, rpoC1, rpoC2, rps12, rps15, rps16, accD, ccsA,
rbcL, ycf1, ycf2, and ycf4 genes), which might play an important role in the orchid species’ adaptation
to diverse environments. Additionally, 11 mutational hotspot regions were determined, including
five non-coding regions (ndhB intron, ccsA-ndhD, rpl33-rps18, ndhE-ndhG, and ndhF-rpl32) and six
coding regions (rps16, ndhC, rpl32, ndhI, ndhK, and ndhF). The phylogenetic analysis based on whole
cp genomes showed that C. appendiculata was closely related to C. striata var. vreelandii, while C. davidii
and C. triplicate formed a small monophyletic evolutionary clade with a high bootstrap support.
In addition, five subfamilies of Orchidaceae, Apostasioideae, Cypripedioideae, Epidendroideae,
Orchidoideae, and Vanilloideae, formed a nested evolutionary relationship in the phylogenetic tree.
These results provide important insights into the adaptive evolution and phylogeny of Orchidaceae.

Keywords: adaptive variation; chloroplast genome; molecular evolution; Orchidaceae;
phylogenetic relationship

1. Introduction

Orchidaceae is the biggest family of monocotyledons and the third largest angiosperm family,
containing about five recognized subfamilies (Apostasioideae, Cypripedioideae, Epidendroideae,
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Orchidoideae, and Vanilloideae) [1], with over 700 genera and 25,000 species [2–4]. The orchid species
are generally distributed in tropical and subtropical regions in the world, while a few species are
found in temperate zones. Many orchid species have important ornamental and flowering values,
e.g., their flowers are characterized by labella and a column, and they are attractive to humans [5,6].
In recent years, due to the overexploitation and habitat destruction of orchid species, many wild
population resources have become rare and endangered [7]. Presently, some scholars have mainly
concentrated on the study of Orchidaceae for their morphology and medicinal value, and research on
genomes has been relatively scarce [8,9]. Some studies showed that the two subfamilies, Apostasioideae
and Cypripedioideae, were clustered into the two respective genetic clades based partial on chloroplast
DNA regions and nuclear markers [4,10]. However, the major phylogenetic relationships among the
five orchid subfamilies remain unresolved [11].

In recent years, the fast progress of next-generation sequencing technology has provided a good
opportunity for the study of genomic evolution and interspecific relationships of organisms based on
large-scale genomic dataset resources, such as complete plastid sequences [12,13]. The chloroplast
(cp) is made up of multifunctional organelles, playing a critical role in photosynthesis and carbon
fixation [5,14–16]. The majority of the cp genomes of angiosperms are circular DNA molecules, ranging
from 120 to 160 kb in length, with highly-conserved compositions, in terms of gene content and gene
order [17–20]. Generally, the typical cp genome is composed of a large single copy (LSC) region and
a small single copy (SSC) region, which are separated by two copies of inverted repeats (IRa/b) [21–23].
Due to its maternal inheritance and conserved structure characteristics [24–27], the cp genomes
can provide abundant genetic information for studying species divergence and the interspecific
relationships of plants [28–31]. For example, based on complete cp genomes, some studies suggested
that Dactylorhiza viridis diverged earlier than Dactylorhiza incarnate [12]; Lepanthes is was distinct from
Pleurothallis and Salpistele [13]. In addition, some researchs based on one nuclear region (ITS-1) and five
chloroplast DNA fragment variations revealed that Bolusiella talbotii and the congeneric B. iridifolia were
clustered into an earlier diverged lineage [10]. However, up to now, the phylogenetic relationships of
some major taxons (e.g., Cremastra and Epipactis) in the Orchidaceae family remain unclear.

In this study, the complete cp genomes of four orchid species (Cremastra appendiculata, Calanthe
davidii, Epipactis mairei, and Platanthera japonica) were first assembled and annotated. Following this,
we analyzed the differences in genome size, content, and structure, and the inverted repeats (IR)
contraction and expansion, identifying the sequence divergence, along with variant hotspot regions
and adaptive evolution through combination with other available orchid cp genomes. In addition,
we also constructed the evolutionary relationships of the Orchidaceae family, based on the large
number of cp genome datasets.

2. Results

2.1. The Chloroplast Genome Structures

In this study, the cp genomes of four species displayed a typical quadripartite structure and
similar lengths, containing a pair of inverted repeats IR regions (IRa and IRb), one large single-copy
(LSC) region, and one small single-copy (SSC) region (Figure 1, Table 2). The cp genome size ranged
from 153,629 bp in C. davidii to 160,427 bp in E. mairei, with P. japonica at 154,995 bp and C. appendiculata
at 155,320 bp. The length of LSC ranged from 85,979 bp (P. japonica) to 88,328 bp (E. mairei), while the
SSC length and IR length ranged from 13,664 bp (P. japonica) to 18,513 bp (E. mairei), and from 25,956 bp
(C. davidii) to 27,676 bp (P. japonica). In the four species, the GC contents of the LSC and SSC regions
(about 34% and 40%) were lower than those of the IR regions (about 43%) (Table 1). There were
37 tRNA genes and eight rRNA genes that were identified in each orchid cp genome, but there were
some differences in terms of protein-coding genes. In C. davidii, we annotated 86 protein-coding genes.
There were no ndhC, ndhI, and ndhK genes in C. appendiculata. In P. japonica and E. mairei, the ndhI gene
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was lost (Tables 1 and 2). Fourteen out of the seventeen genes contained a single intron, while three
(clpP, ycf3, and rps12) had two introns (Table 2).
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Table 1. Comparison of chloroplast genome features in four orchid species.

Species Cremastra appendiculata Calanthe davidii Epipactis mairei Platanthera japonica

Accession number MG925366 MG925365 MG925367 MG925368
Genome size (bp) 155,320 153,629 160,427 154,995
LSC length (bp) 87,098 86,045 88,328 85,979
SSC length (bp) 15,478 15,672 18,513 13,664
IR length (bp) 26,372 25,956 26,790 27,676
Coding (bp) 100,018 104,531 113,915 107,028

Non-coding (bp) 55,302 49,098 46,512 47,967
Number of genes 130 (0) 132 (19) 131 (19) 128 (17)

Number of protein-coding genes 83 (7) 86 (7) 85 (7) 85 (7)
Number of tRNA genes 38 (8) 38 (8) 38 (8) 38 (8)
Number of rRNA genes 8 (4) 8 (4) 8 (4) 8 (4)

GC content (%) 37.2 36.9 37.2 37
GC content in LSC (%) 34.5 34.5 34.9 34.2
GC content in SSC (%) 30.4 30.2 31.0 29
GC content in IR (%) 43.5 43.1 43.1 43.2

Mapped read number 551,680 324,741 230,968 322,259
Chloroplast coverage 544.9 217.4 216 313.6

The numbers in parenthesis indicate the genes duplicated in the IR regions.
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Table 2. List of genes present in four orchid chloroplast genomes.

Category of Genes Group of Gene Name of Gene Name of Gene Name of Gene Name of Gene Name of Gene

Self-replication

Ribosomal RNA genes rrn16 (×2) rrn2 (×2) rrn4.5 (×2) rrn5 (×2)

Transfer RNA genes

trnA-UGC *,(×2) trnC-GCA trnD-GUC trnE-UUC trnF-GAA
trnfM-CAU trnG-GCC * trnG-UCC trnH-GUG (×2) trnI-CAU (×2)

trnI-GAU *,(×2) trnK-UUU * trnL-CAA (×2) trnL-UAA * trnL-UAG
trnM-CAU trnN-GUU (×2) trnP-UGG trnQ-UUG trnR-ACG (×2)

trnR-UCU trnS-GCU trnS-GGA trnS-UGA trnT-GGU
trnT-UGU trnV-GAC (×2) trnV-UAC (×2) trnW-CCA trnY-GUA

Small subunit of ribosome
rps2 rps3 rps4 rps7 (×2) rps8

rps11 rps12 **,(×2) rps14 rps15 rps16 *
rps18 rps19 (×2)

Large subunit of ribosome rpl2 *,(×2) rpl14 rpl16 * rpl20 rpl22
rpl23 (×2) rpl32 rpl33 rpl36

DNA-dependent RNA polymerase rpoA rpoB rpoC1 * rpoC2

Translational initiation factor infA

Genes for photosynthesis

Subunits of NADH-dehydrogenase
ndhA * ndhB *,(×2) ndhC a ndhD ndhE
ndhF ndhG ndhH ndhI a,c,d ndhJ

ndhK a

Subunits of photosystem I psaA psaB psaC psaI psaJ
ycf3 ** ycf4

Subunits of photosystem II
psbA psbB psbC psbD psbE
psbF psbH psbI psbJ psbK
psbL psbM psbN psbT psZ

Subunits of cytochrome b/f complex petA petB* petD * petG petL
petN

Subunits of ATP synthase atp A atp B atp E atp F * atp H
atpI

Subunits of rubisco rbcL

Other genes

Maturase matK

Protease clpP **

Envelope membrane protein cemA

Subunit of acetyl-CoA carboxylase accD

C-type cytochrome synthesis gene ccsA

Genes of unknown function Conserved open reading frames ycf1 ycf2 (×2)

a gene is no in Cremastra appendiculata; c gene is not in Epipactis mairei; d gene is not in Platanthera japonica; * Gene contains one intron; ** gene contains two introns; (×2) indicates that the
number of the repeat unit is 2.
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2.2. Repeat Structure and Simple Sequence Repeats

Repeats in cp genomes were analyzed using REPuter (Figure 2a and Table S2). E. mairei had the
greatest number, including 46 forward, 31 palindromic, three reverse repeats, and 1 complement repeat.
This was followed by C. appendiculata with 43 forward, 33 palindromic, and 2 reverse repeats. P. japonica
had 42, 21, 1, and 1 forward, palindromic, reverse, and complement repeats. C. davidii had the least
number, with only 30 forward and 27 palindromic repeats. The comparison analyses revealed that
most of the repeats were 30–90 bp, and that the longest repeats, with a length of 309 bp, were detected
in the E. mairei cp genome (Figure 2b). Most of the repeats were distributed in non-coding regions.
There were 9% repeats in coding sequence and intergenic spacer parts (CDS-IGS) in E. mairei, but none
in C. appendiculata (Figure 2c). The highest number of tandem repeats was 53 in E. mairei, and the lowest
was 29 in C. davidii (Table S3). The total number of SSRs was 51 in C. appendiculata, 50 in C. davidii, 58
in E. mairei, and 78 in P. japonica (Table S4). Only one six compound, SSR, was found in C. appendiculata
(Figure 3a). A large proportion of SSRs were found in the LSC region, and we did not identify C/G
mononucleotide repeats, while the majority of the dinucleotide repeat sequences were comprised of
AT/TA repeats (Figure 3b).
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Figure 3. The distribution maps of simple sequence repeats (SSR) in C. appendiculata, C. davidii, E. mairei,
and P. japonica chloroplast genomes. (a) Classification of SSRs in four orchid species. IGS, intergenic
spacer; CDS, coding sequence, CDS-IGS, part in CDS and part in IGS. (b) Classification of SSRs by
repeat type. mono-, mononucleotides; di-, dinucleotides; tri-, trinucleotides; tetra-, tetranucleotides;
penta-, pentanucleotides; and hexa-, hexanucleotides.

2.3. IR Contraction and Expansion

We examined the differences between inverted repeat and single-copy (IR/SC) boundary regions
among 20 orchid genera, which were classified into several different types (Figure 4). First, the rps19
gene crossed the large single-copy and inverted repeat b (LSC/IRb) regions within the two parts for
eighteen Orchidaceae genera. In C. crispate and C. appendiculata, the rps19 gene existed only in the IRb
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region. Second, in 12 genera, the ndhF gene and the ycf1 pseudogene overlapped in the IRb/SSC region.
In C. appendiculata and Dendrobium strongylanthum, the ndhF gene was complete in the SSC region,
8–35 bp away from the IRb region. In C. crispate, E. pusilla, and Phalaenopsis equestris, the rpl32 gene was
in the SSC region instead of the ndhF gene, 280–464 bp away from the IRb region. For the 17 genera
mentioned above, the ycf1 gene crossed the SSC/IRa region. In C. edavidii and Bletilla ochracea, the ndhF
gene crossed the IRb/SSC region, and the ycf1 gene was complete in the SSC region, 101 and 4 bp
away from the IRa region. The trnH-GUG genes were all located in the LSC region, which was 231 to
1390 bp away from the LSC/IRa boundary. Most specifically, in Vanilla planifolia, the ccsA gene crossed
the IRb/SSC region, as we did not find the ndhF and ycf1 genes where they should be. The SSC/IRa
borders were located between the rpl32 and ycf1 genes. Thirdly, all 20 genera had the same IRa/LSC
borders: the rps19 gene in the IRa region and the psbA gene in the LSC region.
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2.4. Sequence Divergence and Mutational Hotspot

The whole chloroplast genome sequences of C. appendiculata, C. davidii, E. mairei, and P. japonica
were compared to 16 other species, using mVISTA [32] (Figures 5 and 6, and Table S5). The comparison
analyses showed a high sequence similarity across the cp genomes, with a sequence identity of 82.0%.
Interestingly, the proportions of variability in the non-coding regions (introns and intergenic spacers)
ranged from 6.77% to 100% with a mean value of 45.97%, i.e., values that are twice as high as in the
coding regions (where the range was from 5.80% to 61.76% with a mean value of 24.68%). Five regions
within the non-coding regions (ndhB intron, ccsA-ndhD, rpl33-rps18, ndhE-ndhG, and ndhF-rpl32) and
six regions within the coding parts (rps16, ndhC, rpl32, ndhI, ndhK, and ndhF) showed greater levels of
variations (percentage of variability >80% and 50%, respectively). In particular, the ndhB intron and
ccsA-ndhD showed a variable percentage of 100%.

In addition, we performed a MAUVE [33] alignment of the 20 orchid chloroplast genomes.
The C. appendiculata genome is shown at the top as the reference genome (Figure 7). These species
maintained a consistent sequence order in most of the genes. However, in B. ochracea and C. faberi,
the psbM gene was in front of the petN, while the others were upside-down. Bletilla and Cymbidium
actually had the nearest relationship.
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2.5. Gene Selective Analysis

We compared the rate of nonsynonymous (dN) and synonymous (dS) substitutions for 68 common
protein-coding genes between C. appendiculata, C. davidii, E. mairei, and P. japonica with 16 other
Orchidaceae species (Table S6). Sixteen genes with positive selection sites were identified (Table S7).
These genes included one subunit of the photosystem II gene (psbH), two genes for cytochrome b/f
complex subunit proteins (petD and petL), two genes for ribosome large subunit proteins (rpl22 and
rpl32), two DNA-dependent RNA polymerase genes (rpoC1 and rpoC2), three genes for ribosome small
subunit proteins (rps12, rps15, and rps16), and accD, ccsA, rbcL, ycf1, ycf2, and ycf4 genes. Interestingly,
the ycf1 gene possesses 13 and 15 positive selective sites, followed by accD (8, 10), rbcL (4, 7), ycf2 (2, 3),
rpoC1 (2, 4), rpoC2 (1, 2), rpl22 (1, 2), rps16 (1, 2), rpl32 (1, 1), rps12 (1, 1), ccsA (0, 2), petD (0, 1), petL (0, 1),
psbH (0, 1), and ycf4 (0, 1). What is more, the likelihood ratio tests (LRTs) of variables under different
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models were compared in the site-specific models, M0 vs. M3, M1 vs. M2 and M7 vs. M8, in order to
support the sites under positive selection (p < 0.01) (Table S7).

2.6. Phylogenetic Relationship

In this study, the maximum likelihood (ML) analysis suggested that C. appendiculata and the
congeneric C. davidii clustered into the Epidendroideae subfamily clade with high bootstrap support,
and that E. mairei and P. japonica clustered into Orchidoideae subfamily (Figure 8). Interestingly,
five subfamilies of Orchidaceae, Apostasioideae, Cypripedioideae, Epidendroideae, Orchidoideae,
and Vanilloideae have a nested evolutionary relationship in the ML tree. Meanwhile, C. appendiculata
was closely-related to C. striata var. vreelandii, C. davidii, and C. triplicate, which formed a small
evolutionary clade with a high bootstrap. P. japonica and Habenaria pantlingiana had a relatively-closer
affinity in the Orchidoideae subfamily.
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3. Discussion

3.1. Sequence Variation

In this study, we first determined the whole chloroplast genomes of four orchid species.
The cp genome size of C. davidii was shorter than that of others, which might be the result of the
expansion and contraction of the border positions between the IR and SC regions [21–23]. In addition,
the GC contents of the LSC and SSC regions in all the orchid species were much lower than those of the
IR regions, which possibly resulted from four rRNA genes (rrn16, rrn23, rrn4.5, and rrn5) sequences in
the IR regions. In addition, we identified some obvious differences in the protein-coding genes for the
orchid chloroplast genomes, despite that the cp genomes of land plants are generally considered to
be highly conserved [34]. Interestingly, there were no ndhC, ndhI, and ndhK genes in C. appendiculata.
In P. japonica and E. mairei, the ndhI gene was lost. Previous studies also found that some orchid species
had lost the ndh gene, which encodes the subunits of the nicotinamide-adenine dinucleotid (NADH)
dehydrogenase-like complex proteins [35–37]. The loss of this gene might have hindered cyclic electron
flow around photosystem I and affected the plant photosynthesizing [35–38]. In addition, some studies
suggested that the different Orchidaceae species harbored a variable loss or retention of ndh genes [35].
For example, Cymbidium has the ndhE, ndhJ, and ndhC genes [39], and Oncidium has the ndhB gene [40].
Nevertheless, the mechanisms that underlie the variable loss or retention of ndh genes in orchids
remain unclear [11,41].

In addition, we identified 233 SSRs in four orchid species (C. appendiculata, C. davidii, E. mairei,
and P. japonica); 77.68% of SSRs were distributed in the IGS and intron regions. Generally, microsatellites
consist of 1–6 nucleotide repeat units, which are widely distributed across the entire genome and
have a great influence on genome recombination and rearrangement [42,43]. The large amount of
SSRs also have been identified in Forsythia suspense [44], Dendrobium nobile, Dendrobium officinale,
and so on [45]. The majority of these SSRs consisted of mono- and di-nucleotide repeats. Tri-, tetra-,
and penta-nucleotide repeat sequences were detected at a much lower frequency in these orchid
species and in other organisms [46,47].

Meanwhile, our analyses revealed that the mutational hotspots among orchid genera were highly
variable. A diversity of IR contraction and expansion, along with the high level of mutational hotspots,
revealed that Orchidaceae had experienced a complex evolution process. Interestingly, in the orchid
species, the two IR regions were less divergent than the LSC and SSC regions. Five regions within
the non-coding regions (ndhB intron, ccsA-ndhD, rpl33-rps18, ndhE-ndhG, and ndhF-rpl32) and six
regions within the coding regions (rps16, ndhC, rpl32, ndhI, ndhK, and ndhF) showed greater levels
of variations (percentage of variability >80% and 50%, respectively). These regions can be used as
potential DNA barcodes for the further study of phylogenetic relationships, species identification,
and population genetics.

3.2. Adaptive Evolution

We used the site-specific model (seqtype = 1, model = 0, NSsites = 0, 1, 2, 3, 7, 8), one of the codon
substitution models, to estimate the selection pressure [48]. Sixteen genes with positive selection sites
were identified in these orchid species. These genes included one subunit of the photosystem II gene
(psbH), two genes for cytochrome b/f complex subunit proteins (petD and petL), two genes for ribosome
large subunit proteins (rpl22 and rpl32), two DNA-dependent RNA polymerase genes (rpoC1 and
rpoC2), three genes for ribosome small subunit proteins (rps12, rps15, and rps16), and accD, ccsA, rbcL,
ycf1, ycf2, and ycf4 genes. We found that the genes with positive selection sites can be divided into four
categories: Subunits of photosystem (psbH and ycf4), subunits of cytochrome (petD, petL, and ccsA),
subunits of ribosome (rpl22, rpl32, rps12, rps15, and rps16) and others (rpoC1, rpoC2, accD, rbcL, ycf1,
and ycf2). The plastid accD gene, which encodes the β-carboxyl transferase subunit of acetyl-CoA
carboxylase, is an essential and required component for plant leaf development [49–53]. In this study,
10 positively-selected sites were identified in accD genes for orchid species, suggesting that the accD
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gene played a possible pivotal role in the adaptive evolution of orchids. What is more, the ycf1 gene
is also essential for almost all plant lineages [5,54], except for Gramineae, which lost the ycf1 gene
in its cp genomes [55]. Additionally, ycf1 is one of the largest cp genes, encoding a component of
the chloroplast’s inner envelope membrane protein translocon [56]. This gene, which is also highly
variable in terms of phylogenetic information at the level of species, has also been shown to be subject
to positive selection with 15 sites, as has also been identified in many plant lineages [57–59]. In addition,
we found that the rbcL gene possessed seven sites under positive selection in orchid species. Generally,
rbcL is the gene for the Rubisco large subunit protein, and as the result of enzymatic activity of
Rubisco, which is an important component as a modulator of photosynthetic electron transport [60,61].
Current research has revealed that positive selection of the rbcL gene in land plants may be a common
phenomenon [62]. Additionally, the rbcL gene is also widely used in the phylogenetic analysis of land
plants [63]. In conclusion, these results showed that multiple factors, several of them interconnected
(positive selection, heterogeneity environments), have possibly contributed to orchid diversification
and adaptation. For example, some positively-selected sites that were identified (e.g., rbcL, ycf1,
and accD) were associated in a significant manner with environment adaptation, including factors such
as temperature, light, humidity, and atmosphere [49]. Additionally, epiphytism in orchid species is
a key innovation which should help generate and maintain high levels of plant diversity. On the other
hand, the tropical distributions of orchid species might have increased the rates of speciation relative
to those outside of the tropics as a result of more stable climates (e.g., the lack of glaciation and suitable
temperatures), the greater habitat area, and together, this possibly provided a greater opportunity for
the co-evolution of plants and their mutualists, and for greater adaptation [49,58,59].

3.3. Phylogenetic Relationship

In this study, the maximum likelihood (ML) tree obtained high bootstrap support values,
which had 33 nodes with 100% bootstrap support, with 36 of the 46 nodes having values ≥95%.
The phylogenetic analyses based on complete cp genomes, suggested that five subfamilies of
Orchidaceae (Apostasioideae, Cypripedioideae, Epidendroideae, Orchidoideae, and Vanilloideae)
have a nested evolutionary relationship (Figure 8). Apostasioideae is the earliest diverging
subfamily of orchids. Some recent molecular studies have shown that the five subfamilies
had formed their respective five monophylies [11,41,49]. The generic relationships of the
five subfamilies found in our analyses are basically congruent with those of recent studies.
However, our finding that Orchidoideae is a nested subfamily is different from the studies of
Kim et al. [41] and Givnish et al. [49]. They reconstructed ML trees using the concatenated
coding sequences of plastid genes, resulting in large amounts of missing data for these orchid
taxa. In this study, we sampled these newly orchid species (C. longifolia, L. fugongensis,
E. mairei, and E. veratrifolia) to construct a more widespread Orchidaceae phylogenetic tree,
through which we obtained the different species relationships. However, some molecular
phylogenetic studies, to date, have failed to identify the placement of Cypripedioideae and
Vanilloideae [8,25,64,65]. Recently, Givnish et al. [49] and Niu et al. [11] reconstructed ML trees
from 39 and 53 orchids species, respectively, using the sequence variations in 75 genes and 67 genes
from the plastid genomes. Their results showed that five orchid subfamilies clustered into the five
monophyletic clades: Epidendroideae–Orchidoideae–Cypripedioideae–Vanilloideae–Apostasioideae.
However, the current study found that C. appendiculata and the congeneric C. davidii clustered into
the Epidendroideae subfamily clade, and that E. mairei and P. japonica clustered into the Orchidoideae
subfamily. These results were largely consistent with traditional morphological evidence [66–68].
However, the inconsistent phylogenetic relationships for the five subfamilies may be due to the
differences in the collected samples used in different studies [11,49,64,65], which need to be further
explored by sampling a much higher number of orchid species.
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4. Materials and Methods

4.1. Plant Material, DNA Extraction, Library Construction, and Sequencing

Fresh leaf tissues were collected from Cremastra appendiculata, Calanthe davidii, Epipactis mairei,
and Platanthera japonica in the Qinling Mountains, Shaanxi Province, China. The leaves were cleaned
and preserved in a −80 ◦C refrigerator at Northwest University. The voucher specimens of the four
species materials were deposited into the Northwest University Herbarium (NUH). The total genomic
DNA was isolated using the modified Cetyltrimethyl Ammonium Bromide (CTAB) method [69],
which added the EDTA buffer (Amresco, Washington, DC, USA) (1.0 mol/L Tris-HCl (Amresco,
Washington, DC, USA) (pH 8.0), 0.5 mol/L EDTA-Na2 (Amresco, Washington, DC, USA), 5.0 mol/L
NaCl) solution before isolating the high-quality DNA with the CTAB solution (1.0 mol/L Tris-HCl
(pH 8.0), 0.5 mol/L EDTA-Na2, 2% CTAB). Following this, we constructed a pair-end (PE) library
with 350 bp insert size fragments using TruSeq DNA sample preparation kits (Sangon, Shanghai,
China). Subsequently, we sequenced at least 4.5 GB of clean data for each orchid species. The detailed
next-generation sequencing was conducted on the Illumina Hiseq 2500 platform by Sangon Biotech
(Shanghai, China).

4.2. Chloroplast Genome Assembly and Annotation

First, we used the software, NGSQCToolkit v2.3.3 [70], to trim the low-quality reads.
After removing the low-quality sequences, the clean reads were assembled using MIRA v4.0.2 [70]
and MITObim v1.8 [71] with the cp genome of a closely-related species, Dendrobium nobile
(KX377961), as reference. The programs, DOGMA (http://dogma.ccbb.utexas.edu/) [72] and Geneious
v8.0.2 [73] were used to annotate the chloroplast genome. Finally, we obtained four high-quality,
complete chloroplast genome sequences. The Circle maps of the four species were drawn using
OGDRAW v1.1 [74].

4.3. Repeat Sequence Analyses

The REPuter program (Available online: https://bibiserv.cebitec.uni-bielefeld.de/reputer/
manual.html) was used to identify repeats, including forward, reverse, palindrome, and complement
sequences. The maximum computed repeats and the minimal repeat size were limited to 50 and
30, respectively, with a Hamming distance equal to 3 [75]. The tandem repeats finder welcome
page (http://tandem.bu.edu/trf/trf.html) was used to identify tandem repeats sequences [76].
The alignment parameters match, mismatch, and indels, were 2, 7, and 7, respectively. The minimum
alignment score to report repeat, maximum period size and maximum TR array Size (bp, millions)
are limited to 80, 500, and 2, respectively. A Perl script MISA (MIcroSAtellite identification tool,
http://pgrc.ipk-gatersleben.de/misa/) was used to search for simple sequence repeat (SSR or
microsatellite) loci in the chloroplast genomes [77]. Tandem repeats of 1–6 nucleotides were viewed as
microsatellites. The minimum number of repeats were set to 10, 5, 4, 3, 3, and 3, for mono-, di-, tri-,
tetra-, penta-, and hexanucleotides, respectively.

4.4. Genome Structure and Mutational Hotspot

In order to compare the genome structures and divergence hotspots in a broad manner, we used
16 cp genomes (available in Genbank https://www.ncbi.nlm.nih.gov/) representing each orchid genus,
and added the four newly-sequenced ones (Table 3). The boundaries between the IR and SC regions
of C. appendiculata, C. davidii, E. mairei, and P. japonica and other 16 sequences were compared and
analyzed. Meanwhile, the whole-genome alignment of the chloroplast genomes of the 20 species
were performed and plotted using the mVISTA program [32]. Following this, we selected the regions
within non-coding and coding regions that had a greater level of variation (percentage of variability
>80% and 50%, respectively) as mutational hotspots. The formula was as follows: percentage of

http://dogma.ccbb.utexas.edu/
https://bibiserv.cebitec.uni-bielefeld.de/reputer/manual.html
https://bibiserv.cebitec.uni-bielefeld.de/reputer/manual.html
http://tandem.bu.edu/trf/trf.html
http://pgrc.ipk-gatersleben.de/misa/
https://www.ncbi.nlm.nih.gov/


Int. J. Mol. Sci. 2018, 19, 716 15 of 20

variable = (number of nucleotide substitutions + the number of indels)/(the length of aligned sites−the
length of indels + the number of indels) × 100%.

Table 3. List of taxa sampled in the study and species accessions numbers (GenBank).

Subfamily Species Accession Number

Orchidaceae subfamily. Epidendroideae

Cattleya crispata KP168671
Cremastra appendiculata MG925366

Masdevallia coccinea KP205432
Erycina pusilla JF746994

Phalaenopsis equestris JF719062
Bletilla ochracea KT695602

Cymbidium faberi KR919606
Calanthe davidii MG925365

Dendrobium strongylanthum KR673323
Elleanthus sodiroi KR260986

Sobralia callosa KM032623

Orchidaceae subfamily. Orchidoideae

Epipactis mairei MG925367
Cephalanthera longifolia KU551263

Listera fugongensis KU551270
Platanthera japonica MG925368

Habenaria pantlingiana KJ524104
Goodyera velutina KT886432

Anoectochilus emeiensis LC057212
Ludisia discolor KU578274

Orchidaceae subfamily. Vanilloideae Vanilla planifolia KJ566306

4.5. Gene Selective Pressure Analysis

The codon substitution models in the Codeml program, PAML3.15 [46] were used for calculating
the non-synonymous (dN) and synonymous (dS) substitution rates, along with their ratios (ω = dN/dS).
We analyzed all CDS gene regions, except ndh, due to there being too many losses there. These unique
CDS gene sequences were separately extracted and aligned using Geneious v8.0.2 [73]. A maximum
likelihood phylogenetic tree was built based on the complete cp genomes of the 20 species using
RAxML [78]. We used the site-specific model (seqtype = 1, model = 0, NSsites = 0, 1, 2, 3, 7, 8)
to estimate the selection pressure [79]. This model allowed the ω ratio to vary among sites, with a fixed
ω ratio in all the branches. Comparing the site-specific model, M1 (nearly neutral) vs. M2 (positive
selection), M7 (β) vs. M8 (β and ω) and M0 (one-ratio) vs. M3 (discrete) were calculated in order to
detect positive selection [79].

4.6. Phylogenetic Analysis

In order to deeply detect the evolutionary relationship of the Orchidaceae family, 50 available
complete chloroplast genomes were downloaded from the NCBI Organelle Genome Resources database
(Table S1). In addition, Artemisia argyi and Megadenia pygmaea were used as outgroups. In total,
54 nucleotide sequences of complete chloroplast genomes were aligned using MAFFT [73]; the detailed
parameters were as follows: 200 PAM/K = 2 and 1.53 gap open penalty [73]. The choice of the best
nucleotide sequence substitution model (GTRGAMMA model) was determined using the Modeltest
v3.7 [80]. We constructed a maximum likelihood phylogenetic tree based on these complete plastomes
using MAGA7 [34] with 1000 bootstrap replicates under the GTRGAMMA model [80].

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/3/716/s1.
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