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Abstract

Objective: To identify potential diagnostic and prognostic biomarkers for clini-

cal management and clinical trials in amyotrophic lateral sclerosis. Methods:

We analysed proteomics data of ALS patient-induced pluripotent stem cell-

derived motor neurons available through the AnswerALS consortium. After

stratifying patients using clinical ALSFRS-R and ALS-CBS scales, we identified

differentially expressed proteins indicative of ALS disease severity and progres-

sion rate as candidate ALS-related and prognostic biomarkers. Pathway analysis

for identified proteins was performed using STITCH. Protein sets were corre-

lated with the effects of drugs using the Connectivity Map tool to identify com-

pounds likely to affect similar pathways. RNAi screening was performed in a

Drosophila TDP-43 ALS model to validate pathological relevance. A statistical

classification machine learning model was constructed using ridge regression

that uses proteomics data to differentiate ALS patients from controls. Results:

We identified 76, 21, 71 and 1 candidate ALS-related biomarkers and 22, 41, 27

and 64 candidate prognostic biomarkers from patients stratified by ALSFRS-R

baseline, ALSFRS-R progression slope, ALS-CBS baseline and ALS-CBS progres-

sion slope, respectively. Nineteen proteins enhanced or suppressed pathogenic

eye phenotypes in the ALS fly model. Nutraceuticals, dopamine pathway modu-

lators, statins, anti-inflammatories and antimicrobials were predicted starting

points for drug repurposing using the connectivity map tool. Ten diagnostic

biomarker proteins were predicted by machine learning to identify ALS patients

with high accuracy and sensitivity. Interpretation: This study showcases the

powerful approach of iPSC-motor neuron proteomics combined with machine

learning and biological confirmation in the prediction of novel mechanisms

and diagnostic and predictive biomarkers in ALS.

Introduction

Amyotrophic lateral sclerosis (ALS) is the most common

adult-onset motor neuron disease, with an estimated

prevalence of 4.42 per 100,000 population and an

incidence of 1.59 per 100,000 person-years.1 It is charac-

terized by progressive deterioration of motor neurons in

the brain and spinal cord and is invariably fatal.

Heterogenous in clinical presentation and disease mecha-

nisms, there is much variability in the site of onset, upper
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or lower motor neuron involvement and progression

rate.2 About three in four patients first report limb-onset

weakness, and one in four report bulbar-onset difficulties

of swallowing and/or speaking. Progressive weakness and

difficulties with speech, swallowing and breathing are fol-

lowed by respiratory failure and death, usually in 2 to

5 years, although some forms exhibit protracted survival.

Whilst ALS is primarily driven by the degeneration of

motor neurons, cognitive and behavioural changes corre-

sponding to frontotemporal dysfunction occur in up to

40% of cases.3

There is also vast genetic heterogeneity. 10% of ALS

patients have a clear familial inheritance pattern which

may be associated with a pathogenic gene, the most com-

mon being intronic hexanuclotide expansions in C9orf72

and missense mutations in SOD1, TARDBP and FUS.4

Many pathogenic ALS genes are associated with protein

quality control, RNA metabolism, or cytoskeletal disrup-

tions in the motor axon.4 Many other genes confer sus-

ceptibility and not necessarily causation, such as ATXN2,

where mid-range CAG expansions increase the risk of

developing ALS.5 In about 90% of patients, ALS is spo-

radic with no known inheritance pattern. A range of dis-

ease mechanisms have also been reported, including

protein aggregation, ER stress, disruption of protein

degradation, abnormal DNA and RNA processing, mito-

chondrial dysfunction,6 issues with oxidative homeostasis7

and inflammation.8 These mechanisms may be cell-

autonomous and non-cell-autonomous since the defective

genes which cause ALS are expressed in different cell

types including motor neurons, microglial, astrocytes and

oligodendrocytes.

The broad clinical and biological heterogeneity in ALS

has implications on patient risk assessment, selection for

clinical trials, and timing of therapeutic interventions, all

of which challenge therapeutic development.9 Since ALS

patients differ in age, clinical features and genetic

makeup, personalized medicine approaches will likely be

needed in the future to develop effective treatments

across the spectrum of ALS, which is already occurring

in the area of gene therapies for familial ALS. The only

two medications currently approved by the FDA for

ALS, riluzole,10 an antagonist of glutamate transmission,

and edaravone,11–13 a superoxide scavenger, only mod-

estly prolong survival or slow disease progression.

Biomarkers are also needed for the diagnosis and stratifi-

cation of patients for prognostication, enrolment in clini-

cal trials, and to establish drug-responsive biomarkers or

diagnostics.9

In this study, we investigated proteomic changes in

induced pluripotent stem cells (iPSC)-derived motor neu-

rons from ALS patients at the extremes of clinical pheno-

types to uncover mechanistic pathways associated with

the motor and cognitive/behavioural phenotypes. Two

classes of potential biomarkers, namely ALS-related and

prognostic biomarkers, and new therapeutic approaches

were identified using statistical and machine learning

approaches and a RNAi screen of candidates in Droso-

phila confirmed the biological importance of putative

causal and susceptibility genes.

Materials and Methods

Answer ALS data portal

Clinical and proteomics data from induced pluripotent

stem cells (iPSCs) and motor neurons for this study was

obtained from the Answer ALS Data Portal, available at

answerals.org. iPSC generation for AnswerALS is handled

by the Cedars-Sinai biomanufacturing centre and details

on processing for each cell line can be retrieved via their

web portal (https://www.cedars-sinai.edu/research/areas/

biomanufacturing/ipsc.html). The specific protocol is

Summary for Social Media if Published

1. If you and/or a co-author has a Twitter handle that you

would like to be tagged, please enter it here: @Crys-

talYeoMDPhD

2. What is the current knowledge on the topic? (one to two

sentences): ALS progression is highly heterogenous, posing

challenges for diagnosis, monitoring, clinical trial design

and therapeutic interventions.

3. What question did this study address? (one to two sen-

tences): This study looked at proteomic changes between

patient iPSC-derived motor neurons from fast and slow,

early and late ALS patients and normal controls combined

with machine learning and biological confirmation.

4. What does this study add to our knowledge? (one to two

sentences): This study identified proteins and pathways

which could be potential ALS-related and prognostic

biomarkers for ALS, confirmed suppressor and enhancer

genes in a fly model of the disease, and suggested possible

repurposed drugs.

5. How might this potentially impact the practice of neu-

rology? (one to two sentences): ALS-related and prognostic

biomarkers could be used by clinicians in managing patient

care and when selecting patients for treatment or clinical

trial enrolment. Selected causal genes and repurposed drugs

could be targeted as therapeutic avenues.
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outlined in Baxi et al.14 Proteomics data was acquired

using the SWATH method. We extracted the quantifica-

tions and used Limma15 (version 3.50.0; Bioconductor16

version 3.14, R17 version 4.1.1) to build a model of differ-

ential protein expression on log2-normalized protein

abundance for different patient and control groups. The

AnswerALS database also provides whole-exome sequenc-

ing data for all patient and control samples discussed in

this study.

Categorization as fast or slow ALS
progressors and milder or severe ALS
phenotypes

We stratified patients according to their ALSFRS-R18 and

CBS19 scale baseline values and progression slopes. Weak-

ness and loss of function are measured by the ALSFRS-R,

which comprises 12 items to assess daily functioning

mediated by the cervical, trunk, lumbosacral and respira-

tory muscles, with a scale ranging from 0 to 4 for each

item, giving a total score of between 0 and 48, with 48

being normal.18 Scores of less than 30 are considered as

having moderate to severe impact. ALS CBS cognitive

score measures cognitive change.19 It ranges between 0

and 20, with scores ≤10 classified as possible Frontal

Temporal Lobal Dementia (FTLD), cognitive type, and

scores 11–16 classified as cognitively impaired. Baseline

values are evaluations obtained at first diagnosis whilst

slope is calculated from the observed change in scale val-

ues at subsequent visits. Negative slopes are associated

with the worsening condition and steeper slopes indicate

faster progression. ALSFRS-R baseline values were split at

30, with patients >30 regarded as high (milder clinical

phenotype) and ≤30 as low (severe clinical phenotype).

CBS baseline values were split at 15 with patients >15
regarded as high and values ≤15 as low. ALSFRS-R slopes

were classified as fast progression (<�1.5/month) and

slow progression (>�0.5/month) with values in between

classed as intermediate. CBS slopes were equally stratified

as fast progression (<�0.5/month), slow progression

(>0.5/month) and intermediate progression for the

remainder. ALSFRS-R progression slopes in particular

have been shown to be predictive of survival in ALS.20

Cut-offs for these classifications were chosen to identify

the extremes of phenotype and are not necessarily associ-

ated with specific clinical criteria. Our aim is to identify

genes determinative of particular progressions and hence

we compare these extremes and exclude intermediate pro-

gression slopes. This approach of contrasting favourable

and unfavourable phenotypes has previously been applied

to the study of cancer genomics.21 As we do not use the

cutoffs of early- and late-stage disease to directly look for

biomarkers, these cutoffs are chosen somewhat arbitrarily

to yield larger group sizes for the late-stage patients, thus

enhancing statistical confidence for the findings. We then

particularly identify features that share a contrast with the

healthy control group from both early- and late-stage

cases. Patients for whom either baseline or slope values

were unavailable were excluded from the analysis. Demo-

graphics data for all classes were calculated and are given

in Tables 1 and 2.

Identification of diagnostic and prognostic
biomarker proteins

In order to identify both ALS-related and prognostic

biomarkers we calculated the differential protein concen-

tration between all groups and extracted significant con-

trasts that showed at least >2-fold concentration change

and a p-value of <0.05 using Limma15 on log2-

normalized protein expression values obtained for differ-

entiated motor neurons available within the AnswerALS

public dataset. Each set of proteins matching the specific

criteria outlined above is shown in Table S2. To identify

only high-confidence candidates, we looked at the inter-

sections of these gene sets for both ALS-related and

prognostic proteins which are depicted in the Venn dia-

grams of Figs. 1, 2. Candidate proteins for ALS-related

biomarkers were extracted by contrasting high and low

classes for baseline values, or fast and slow progressors

for slopes, against controls and taking the intersection of

these gene sets (Figs. 1, 2, upper central element in the

Venn diagram). Prognostic biomarker candidates were

identified as proteins that differ between high and low

baseline or fast and slow progression, but are in com-

mon with either group’s contrast to control (Figs. 1, 2,

lower lateral elements in the Venn diagram). Heatmaps

for identified ALS-related or prognostic candidate pro-

teins are presented in Figs. 1, 2 and a table of each set

of genes is presented in the Table S2. Heatmaps depict

per-protein normalized values and changes in expression

are shown as standard deviations from the mean of all

samples for a specific protein. Analysis was performed

using Python version 3.9.7, using the pandas22 (version

1.3.5), scipy23 (version 1.7.1) libraries and visualization

were performed using matplotlib24 (version 3.4.2). In

order to understand the role these proteins play in the

organism, we performed a STITCH25,26 analysis which

identifies interaction networks between proteins and pro-

vides associated gene ontology terms from a variety of

gene ontology databases. We opted to allow STITCH to

expand the network with up to 5 linked proteins not

present in the query set. The resulting networks are pre-

sented alongside the expression data in Figs. 1, 2. Gene

ontology terms associated with the various protein sets

are presented in ST1.
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Statistical machine learning model to
determine ALS status from protein
expression

Based on the identified protein candidates we pooled all

possible ALS-related and prognostic proteins respectively

and created a statistical model to infer ALS status from

proteomics data. As our data set is confined to a limited

set of patients and controls, we used a Ridge classifier27

model with internal cross-validation as implemented in

scikit-learn28 (1.0). After splitting the data into a 75%

training and 25% test set, we were able to fit a statistical

model on raw expression data that was able to identify

ALS with perfect accuracy on the training set and 97%

precision and 78% sensitivity on the unseen test set

(Table 4A). We assessed precision (positive predictive

Table 1. Clinical features of early versus late disease and fast versus slow progressors based on ALSFRS-R.

Clinical features of early versus late disease using ALSFRS-R baselines

ALSFRSR-baseline <30 (late) ALSFRS-R baseline > or =30 (early)

Clinical features Mean

Standard

deviation Number Mean

Standard

deviation Number p value

Age at symptom onset 50.74 11.99 N = 38 55.82 11.06 N = 101 0.0206

Age at death 59.71 9.17 N = 17 63.11 8.31 N = 46 0.287

Sex (% Female) 34.21 N = 38 44.23 N = 104 0.854

Bulbar onset (%) 26.32 N = 38 27.88 N = 104 0.0478a

Axial onset (%) 0 N = 38 9.62 N = 104 0.25

Limb onset (%) 68.42 N = 38 77.88 N = 104 1.40 E-39a

ALSFRS-R Baseline 20.45 5.72 N = 38 37.17 4.29 N = 104 2.98 E-10a

ALSFRS-R Latest 16.57 7.7 N = 37 28.79 9.85 N = 104 0.0165a

ALSFRS-R Progression Slope �0.34 0.39 N = 23 �0.68 0.64 N = 74 0.631

CBS Baseline 15.53 3.98 N = 34 15.84 2.81 N = 88 0.202

CBS Latest 15.09 4.79 N = 35 16 3.05 N = 97 0.763

CBS Progression Slope 0.04 0.3 N = 11 0.01 0.32 N = 45 0.413

C9orf72 gene hexanucleotide repeat count 4 2.12 N = 4 117.93 266.27 N = 30 0.784

ATXN2 gene trinucleotide repeat count 22.25 0.43 N = 4 22.63 2.69 N = 30 0.287

Clinical features of fast versus slow progressors using ALSFRS-R

ALSFRS-R progression > �0.5/month (Slow) ALSFRS-R progression < �1.5/month (fast)

Clinical features Mean

Standard

deviation Number Mean

Standard

deviation Number p value

Age at symptom onset 52.4 12.0 N = 55 59.4 6.5 N = 8 0.12

Age at death 58.8 10.1 N = 6 62.4 6.2 N = 9 0.44

Sex (% Female) 40.0 N = 55 33.3 N = 9 0.71

Bulbar onset (%) 10.9 N = 55 33.3 N = 9 0.07

Axial onset (%) 0.0 N = 55 33.3 N = 9 0.00a

Limb onset (%) 92.7 N = 55 77.8 N = 9 0.16

ALSFRS-R Baseline 33.2 9.1 N = 54 36.7 3.1 N = 9 0.27

ALSFRS-R Latest 29.8 10.0 N = 55 16.6 6.0 N = 9 0.00a

ALSFRS-R Progression Slope �0.2 0.2 N = 55 �2.0 0.4 N = 9 0.00a

CBS Baseline 16.4 2.2 N = 47 14.3 3.9 N = 6 0.06

CBS Latest 16.8 2.6 N = 51 14.1 4.6 N = 7 0.03a

CBS Progression Slope 0.1 0.2 N = 33 �0.2 0.2 N = 3 0.02a

C9orf72 gene hexanucleotide repeat countb 88.6 257.0 N = 11 378.7 437.1 N = 3 0.20

ATXN2 gene trinucleotide repeat countc 22.2 0.4 N = 11 22.0 0.0 N = 3 0.46

Abbreviations: ALSFRS-R, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; ALS CBS, Amyotrophic Lateral Sclerosis Cognitive Beha-

vioural Screen; C9orf72, chromosome 9 open reading frame 72; ATXN2, ataxin 2.
aRepresents significant values.
bAbnormal hexanucleotide repeat counts are >30.
cAbnormal trinucleotide repeat counts associated with ALS are between 29 and 33.
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value), recall (sensitivity), f1 score (the harmonic mean of

precision and recall) and accuracy (the mean of f1 scores)

for our model. We proceeded to sort the classifier coeffi-

cients by the magnitude and identify the top 10 most

contributing proteins to the model. The absolute values

of these coefficients account for approximately 70% of

the total model. We then proceeded to restrict our model

to the 10 identified genes which resulted in a precision of

97% and a sensitivity of 52% on the training set and a

precision of 89% and sensitivity of 62% on the unseen

test set (Table 4B).

Drosophila genetics, RNAi screen and
phenotypic analysis

To validate protein candidates, we used a transgenic fly

model of ALS based on the expression of human

TDP-43M337V.29 We first recombined this line with the

Table 2. Clinical features of early versus late disease and fast versus slow progressors based on ALS-CBS.

Clinical features of early versus late disease using ALS CBS baselines

ALS CBS baseline < 15 (Late) ALS CBS baseline > or = 15 (Early)

Clinical features Mean

Standard

deviation Number Mean

Standard

deviation Number p value

Age at symptom onset 59.42 9.63 N = 33 53.51 �11.25 N = 88 0.851

Age at death 65.17 �6.96 N = 18 61.95 8.62 N = 38 0.18

Sex (% Female) 47.06 N = 34 43.96 N = 91 0.759

Bulbar onset (%) 32.35 N = 34 26.37 N = 91 0.512

Axial onset (%) 5.88 N = 34 7.69 N = 91 0.73

Limb onset (%) 61.76 N = 34 79.12 N = 91 0.0483

ALSFRS-R Baseline 31.41 8.02 N = 34 33.16 8.04 N = 88 0.288

ALSFRS-R Latest 23.15 11.13 N = 34 27.12 9.63 N = 89 0.0544

ALSFRS-R Progression Slope �0.79 0.7 N = 21 �0.5 0.55 N = 61 0.059

CBS Baseline 11.68 2.69 N = 34 17.32 1.51 N = 91 1.11 E-28a

CBS Latest 12.06 4.21 N = 34 17.24 1.97 N = 91 8.90 E-16a

CBS Progression Slope 0.09 0.38 N = 13 �0.01 0.29 N = 41 0.31

C9orf72 gene hexanucleotide repeat count 239.57 370.21 N = 7 74.29 217.32 N = 21 0.179

ATXN2 gene trinucleotide repeat count 22.29 0.45 N = 7 22.81 �3.19 N = 21 0.68

Clinical features of fast versus slow progressors using ALS CBS

ALS CBS progression > 0.5 (slow) ALS CBS progression < �0.5 (fast)

Clinical features Mean

Standard

deviation Number Mean

Standard

deviation Number p value

Age at symptom onset 53.33 13.07 N = 3 58 7 N = 2 0.74

Age at death 66 8 N = 2 63.5 3.5 N = 2 0.80

Sex (% Female) 100 N = 3 50 N = 2 0.27

Bulbar onset (%) 33.33 N = 3 100 N = 2 0.22

Axial onset (%) 0 N = 3 0 N = 2 NA

Limb onset (%) 66.67 N = 3 0 N = 2 0.22

ALSFRS-R Baseline 30.67 1.89 N = 3 36 1 N = 2 0.07

ALSFRS-R Latest 20.33 7.72 N = 3 18 10 N = 2 0.84

ALSFRS-R Progression Slope �0.89 0.57 N = 3 �1.8 0.63 N = 2 0.29

CBS Baseline 11 2.16 N = 3 16.5 2.5 N = 2 0.14

CBS Latest 18 1.41 N = 3 9.5 0.5 N = 2 0.01a

CBS Progression Slope 0.7 0.13 N = 3 �1.02 0.48 N = 2 0.02a

C9orf72 gene hexanucleotide repeat countb nil nil N = 0 321 321 N = 1 N.A.

ATXN2 gene trinucleotide repeat countc nil nil N = 0 22 22 N = 1 N.A.

Abbreviations: ALSFRS-R, amyotrophic lateral sclerosis functional rating scale-revised; ALS CBS, amyotrophic lateral sclerosis cognitive behavioural

screen; C9orf72, chromosome 9 open reading frame 72; ATXN2, ataxin 2.
aRepresents significant values.
bAbnormal hexanucleotide repeat counts are >30.
cAbnormal trinucleotide repeat counts associated with ALS are between 29–33.
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Figure 1. Protein contrasts for ALS-

related and prognostic biomarkers

based on ALSFRS-R. We identified

proteins that show significantly dif-

ferent abundance (>2-fold change,

p ≤ 0.05) in three classes, namely

high initial score or shallow progres-

sion slope versus control, low initial

score or steep progression slope ver-

sus control and high initial score or

shallow slope versus low initial score

or steep slope respectively. We then

designated candidate ALS-related

biomarkers as proteins that are

shared between the contrasts with

the control group (upper central sec-

tion of the Venn diagrams), whilst

we required candidate prognostic

biomarkers to present in the out-

come contrast and at least one con-

trast versus control (left and right

and central intersections in the Venn

diagrams) STITCH analysis with up to

5 additional included genes are

shown for ALS-related and prognos-

tic biomarkers whilst heatmaps

depict normalized expression levels.

(A) Classification by ALSFRS-R base-

line score. (B) Classification by

ALSFRS-R progression slope.

ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 155

R. G. Huber et al. ALS pathways from patient iPSC-derived motor neurons



GMR-Gal4 driver in the second chromosome to target

expression to photoreceptor neurons in the fly eye. Then,

we crossed the resulting recombinant stock with the

innocuous Luciferase RNAi control line (BDSC# 35788)

along with RNAi transgenes against the fly homologues of

candidate genes (Table S3). All RNAi stocks used were

obtained from the Bloomington Drosophila Stock Center

in Indiana or the Vienna Drosophila Resource Center.

Crosses were performed at 27°C and subsequent proge-

nies were collected 24 h after eclosion and frozen over-

night at �80°C. Eye images were acquired as Z-stacks

with the Leica Z16 APO zoom system and single in-focus

images were generated with the Montage Multifocus

module of the Leica Application Software. Those genes

that improved the eye phenotype upon knock-down were

scored as suppressors and those that aggravated it were

deemed enhancers. Eye phenotypes were quantified using

a flynotyper score for suppressors and a severity score for

enhancers as previously outlined.29,30

Identification of possible disease-modifying
therapies

We imported the identified gene sets corresponding to

our protein sets into the connectivity map tool

(CMAP)31–33 provided by the Broad Institute. The con-

nectivity map uses gene expression signatures to connect

gene expression patterns to the effects of drugs on these

genes. For a set of query genes, a ranking of drugs and

pathways is returned that measures the goodness of fit

between the known effects of the drugs and the genes in

the query based on a percentile ranking within a large set

of queries. A detailed explanation of how this score is cal-

culated is given in Subramanian et al.34 This ranking

allows us to pinpoint candidate drugs that affect proteins

and pathways highlighted in our differential expression

analysis. We then extracted the top 20 compounds for

each of our gene sets that showed the highest inverse cor-

relation with the differential gene expression pattern, of

which selected compounds in prominent drug categories

are presented in Table 3.

Results

Clinical features of milder versus severe
phenotypes and fast versus slow
progressors

433 iPSC-derived motor neurons were available within

the AnswerALS cohort, comprising 366 ALS patients and

67 healthy controls. Out of these, 149 patient samples

and 29 healthy controls were associated with proteomics

data in December 2021 and hence were included in this

study. Out of 149 patients, 38 had ALSFRSR <30, 101

had ALSFRSR ≥30 and 7 patients had no ALSFRSR avail-

able; 55 had ALSFRS progression >�0.5/month, 8 had

ALSFRSR progression <�1.5/month, 35 had intermediate

slopes between these values and 50 patients had undefined

slopes; 33 had ALS CBS baseline <15, 88 had ALS CBS

baseline ≥15 and 24 had undefined ALS CBS baselines; 3

had ALS CBS Progression >0.5, 2 had ALS CBS progres-

sion <�0.5, 52 had intermediate slopes between these val-

ues, and 92 had undefined slopes. Demographics were

well-matched when comparing the extremes of the motor

and cognitive phenotypes (Tables 1, 2). No significant dif-

ference was noted in age of death, sex and number of

pathogenic nucleotide repeat in the C9orf72 and ATXN2

genes (Tables 1, 2) with the only significant difference

being the age of onset.

Identification of potential ALS-related and
prognostic biomarkers from proteomics
analysis of motor neurons differentiated
from patient-derived iPSC

Contrasting patients based on ALSFRS-R18 baseline scores

higher or lower than 30 and each of these groups with

the healthy controls yields a total of 186 significantly

altered proteins for ALSFRS-R baseline score ≥30 versus

control, 153 proteins for ALSFRS-R baseline score < 30

versus control and 62 proteins for contrasting high versus

low baseline ALSFRS-R (Fig. 1A). The intersection

between high and low baseline score versus control

Figure 2. Protein contrasts for ALS-related and prognostic biomarkers based on ALS-CBS. We identified proteins that show significantly different

abundance (>2-fold change, p ≤ 0.05) in three classes, namely high initial score or shallow progression slope versus control, low initial score or

steep progression slope versus control and high initial score or shallow slope versus low initial score or steep slope respectively. We then desig-

nated candidate ALS-related biomarkers as proteins that are shared between the contrasts with the control group (upper central section of the

Venn diagrams), whilst we required candidate prognostic biomarkers to present in the outcome contrast and at least one contrast versus control

(left and right and central intersections in the Venn diagrams) STITCH analysis with up to 5 additional included genes are shown for ALS-related

and prognostic biomarkers whilst heatmaps depict normalized expression levels. (A) Classification by ALS-CBS baseline score. (B) Classification by

ALS-CBS progression slope. Only a single protein, ENO3, is classified as an ALS-related candidate and the heatmap and STITCH analysis are omit-

ted for this category.

156 ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

ALS pathways from patient iPSC-derived motor neurons R. G. Huber et al.



ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 157

R. G. Huber et al. ALS pathways from patient iPSC-derived motor neurons



comprises of 76 proteins that are candidate ALS-related

biomarkers as these are significantly different proteins

between patients and healthy controls regardless of clini-

cal severity of the disease. The intersection of high versus

low with either high or low versus control yields 22 pro-

teins as candidates for prognostic biomarkers as these are

proteins that significantly differ between the milder or

severe clinical phenotypes (Fig. 1A).

Classification by ALSFRS-R progression slope of either

>�0.5 for slow progressors or <�1.5 for fast progressors

and the corresponding contrasts in proteins yields 180

proteins for slow progression versus control, 87 proteins

for fast progression versus control and 84 proteins for the

contrast of fast versus slow progression. There are 21 can-

didate ALS-related biomarker proteins in the intersection

of the slow versus control and fast versus control groups

and 41 candidate prognostic biomarker proteins from

either the intersection of fast versus slow with fast versus

control or slow versus control (Fig. 1B).

Classification by ALS-CBS baseline score of either ≥15
(high), or <15 (low) yields a total of 150 proteins for high

baseline versus control, 174 for low baseline versus con-

trol and 63 proteins for high baseline versus low baseline.

A total of 71 candidate ALS-related biomarker proteins

overlap between the high versus control and low versus

control groups. A total of 27 prognostic biomarker candi-

dates are identified from high versus low intersecting

either with high versus control or low versus control

(Fig. 2A).

Classification of patients by ALS-CBS19 progression

slope using >0.5 for slow progression and <�0.5 for fast

progression results in 78 proteins that are significantly

altered in slow progression versus control, 66 altered pro-

teins in fast progressors versus control and 75 proteins that

are different between fast progressors versus slow progres-

sors. Only a single protein, ENO3, is shared between the

fast progression versus control and slow progression versus

control groups and hence was not included in further gene

set-based analysis. A total of 64 proteins are shared by the

fast progression versus slow progression contrast and

either fast versus control or slow versus control contrasts

and hence constitute the candidate prognostic biomarker

set based on the ALS-CBS slope (Fig. 2B).

Figures 1 and 2 include a STITCH25,26 maps of associ-

ated gene networks for the respective candidate biomark-

ers and Table S1 shows gene ontology terms resulting

from these networks for each prognostic or ALS-related

set, respectively.

Table 3. Candidate repurposed drugs.

Classes Compounds Norm_CS Pattern

Nutraceuticals Curcumin �2.0061 ALS CBS baseline prognostic

Yohimbine �1.9514 ALSFRS-R progression ALS-related

Ginkgolide-b �1.7385 ALSFRS-R progression prognostic

Forskolin �1.7441 ALSFRS-R baseline ALS-related

Ipriflavone �1.6879 ALSFRS-R baseline ALS-related

Ginsenoside �1.6878 ALSFRS-R progression prognostic

Luteolin �1.6402 ALSFRS-R baseline ALS-related

Statins Simvastatin �2.0035 ALS CBS baseline prognostic

Atorvastatin �1.7351 ALSFRS-R progression prognostic

Dopamine pathway modulators Fenoldopam �2.1363 ALSFRS-R progression ALS-related

Raclopride �2.028 ALS CBS baseline prognostic

Clozapine �1.9439 ALSFRS-R progression ALS-related

Dopamine �1.6483 ALSFRS-R baseline ALS-related

Anti-inflammatories Mesalazine �2.047 ALS CBS baseline prognostic

Balsalazide �1.9469 ALSFRS-R progression ALS-related

Sulfafurazole �1.8996 ALSFRS-R progression ALS-related

Cinalukast �1.7893 ALSFRS-R progression prognostic

Indobufen �1.7429 ALSFRS-R progression prognostic

Etodolac �1.7245 ALSFRS-R baseline ALS-related

Sulfasalazine �1.6673 ALSFRS-R baseline ALS-related

Econazole �1.7727 ALS CBS progression prognostic

Primaquine �1.7497 ALS CBS progression prognostic

Terbinafine �1.6951 ALS CBS progression prognostic

Clindamycin �1.6537 ALS CBS baseline ALS-related

Tobramycin �1.646 ALSFRS-R baseline ALS-related

Thiazolidinedione Ciglitazone �1.6988 ALSFRS-R progression prognostic

Sodium channel blocker (FDA-approved ALS drug) Riluzole �1.38, 0.18 Mean score across all patterns, standard deviation

Antioxidant (FDA-approved ALS drug) Edaravone �1.27, 0.20 Mean score across all patterns, standard deviation
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In vivo identification of genes with
therapeutic potential

To define the disease-modifying potential of selected

proteomics hits, we capitalized on a well-established

Drosophila model of ALS that expresses human mutant

TDP-43M337V.29 Expression of the TDP-43M337V transgene

in photoreceptor neurons of the fly eye triggers posterior

depigmentation and disorganization of the ommatidial

lattice when compared to flies expressing an innocuous

Luciferase transgene (Fig. 3A, compare panels at the top

left and right corners). This easy-to-score phenotype is

highly consistent and thus provides a reliable platform to

test fly homologues of human genes for their ability to

modify TDP-43M337V toxicity upon RNAi silencing. From

the top 157 candidates, we screened 57 genes which had

Drosophila homologues and available RNAi lines for test-

ing. Amongst these, we found 13 suppressors and 6

enhancers of TDP-43M337V toxicity. Since suppressor

genes improve the eye phenotype when knocked down,

they may act as causative genes or risk factors, whilst

enhancers of the phenotype may play protective or com-

pensatory roles. Fig. 3A shows all 13 suppressors. These

include fly homologues for MED23, a conserved subunit

of the Mediator complex that regulates transcription of

RNA pol II-dependent genes; ARIDB1, a component of

the SWI/SNF chromatin complex involved in cell-cycle

activation; PEX19, a factor that facilitates the import of

peroxisomal membrane proteins; POLR2K, participates in

mRNA synthesis; THOC1, is a member of the TREX

mRNA export machinery; PNKP, an enzyme involved in

DNA repair; CTH, an enzyme that converts cystathionine

into cysteine in the trans-sulfonation pathway; CRYL1

which mediates D-glucuronate degradation, a step related

to the alternative glucose metabolic pathway; STUB1 a

ubiquitin ligase which modulates the activity of several

chaperones; QSOX2 a member of the sulfhydryl oxidase/

quiescin-6 family which participates in disulfide bond for-

mation of secreted proteins; KIF11, a motor protein

involved in spindle dynamics during mitosis; NMNAT1,

which plays a key role in the biosynthesis of nicotinamide

adenine dinucleotide (NAD), and lastly, NDC1, a

Figure 3. Identification of genetic suppressors and enhancers of human TDP-43 M337V toxicity in the Drosophila eye. Co-expression of human

TDP-43M337V with the innocuous Luciferase (Luc) RNAi transgene in the eye leads to disorganization of the external surface and posterior depig-

mentation (top left corner) compared to control flies expressing the Luc RNAi transgene alone (top right corner). This phenotype was suppressed

(A) or enhanced (B) when RNAi constructs against the indicated genes were included. Note that the enhancers do not perturb the morphology of

the eye when knocked down in the absence of TDP-43M337V, confirming their specific interactions. Names of the fly genes are shown at the bot-

tom of each panel and the corresponding human homologs are indicated at the top. Expression of transgenes was induced with the eye-specific

GMR-Gal4 driver at 27°C. Eye phenotypes of suppressors and enhancers were quantified using the flynotyper and severity scores, respectively,

and histograms were prepared using Graphpad Prism (n ≥ 5).
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transmembrane nucleoporin that participates in the for-

mation of the nuclear pore complex.

The enhancers also correspond to genes from diverse

ontology groups (Fig. 3B). Amongst these, we found

homologues for WAPL, a conserved cohesion release fac-

tor that regulates sister chromatid cohesion in mitosis;

UBR5, an E3 ubiquitin-protein ligase involved in protein

degradation; CWC15, a protein involved in pre-mRNA

splicing and a component of the spliceosome; ZFPL1, a

factor involved in ER to Golgi transport and essential for

cis-Golgi integrity; TUBB2A, encodes the beta-tubulin

subunit of the microtubules; and RNGTT, an enzyme

involved in mRNA capping. Importantly, none of the

enhancer RNA lines disrupts the morphology of the eye

when expressed in the absence of mutant TDP-43, con-

firming their specific interactions (Fig. 3B, top row).

Identification of compounds with
therapeutic potential

We identified compounds that showed anti-correlated

perturbation patterns using the CMAP tool, which forms

a starting point for drug repurposing efforts. Anti-ALS

candidate drugs which could be considered for drug

repurposing are presented in Table 3. Amongst our top

candidates are nutraceuticals such as ginsenoside, ginkgo-

lide B, curcumin, luteolin, forskolin and ipriflavone, sta-

tins including atorvastatin and simvastatin, drugs which

modulate dopamine receptors and pathways including

dopamine, clozapine, fenoldopam, and raclopride, the thi-

azolidinedione ciglitazone, and anti-inflammatories and

antimicrobials including mesalazine, sulfasalazine, indobu-

fen, etodolac, cinalukast, vancomycin, econazole, sulfisox-

azole, terbinafine and tobramycin. Currently, FDA-

approved ALS drugs, edaravone and riluzole, ranked

within the top 13% of the 59,820 compounds tested. We

want to empathize that none of the identified candidate

drugs has been proven to be an effective treatment for

ALS at this stage and we strongly advise to not consume

the named compounds for this purpose. Further studies

using iPSC-based assays are necessary to determine

whether the thus identified candidate drugs are effective

in patients, followed by an adequately powered and

designed placebo-controlled clinical trial.

Potential Biomarkers from machine learning
classification model

We used the identified ALS-related biomarker proteins as

a basis to create a classifier that differentiates between

ALS and non-ALS patients. The results of our classifier

models are shown in Table 4. Using a ridge regression

classifier, we were able to create a model that is able to fit

the training set perfectly. We selected a ridge classifier as

this type of classifier is more resistant to overfitting in the

context of a limited number of samples and a high

amount of features. On the unseen test set, it has preci-

sion of 97% for confirmation of ALS status and identifies

patients with a recall of 78%. The high precision indicates

some degree of usefulness of this model to provide a

biomarker-based confirmation of ALS status to what is

generally a clinical diagnosis. The recall of 78% indicates

that only 4 out of 5 patients are picked up by this model

and we were unable to enhance performance, as our fit

with the training set reaches 100% and hence no further

optimization takes place. We are confident that the inclu-

sion of additional patients or control samples would

improve classifier performance, but not fundamentally

alter the involved proteins. Moreover, we created a mini-

mal classifier based on just the top 10 most influential

proteins (Table 4) in the first ALS-related classifier. The

coefficients indicate that RCHY1, a RING finger and zinc

finger domain containing ubiquitin ligase (log2FC

�19.200, p 0.0188), HECTD1, an ubiquitin ligase (log2FC

�17.412, p 0.0201), RRP15, a ribosomal RNA processing

homolog (log2FC �14.430, p 0.0085), GAK, a cyclin G

associated kinase (log2FC �20.775, p 0.0037), PHYHIP, a

Table 4. Machine learning classifier for ALS-related genes.

(A) All ALS-related genes

Training set Precision Recall F1 score N

Control 1.00 1.00 1.00 24

ALS 1.00 1.00 1.00 109

Accuracy 1.00

Test set Precision Recall F1 score N

Control 0.31 0.80 0.44 5

ALS 0.97 0.78 0.86 40

Accuracy 0.78

(B) TOP 10 highest coefficient ALS-related genes

RCHY1, HECTD1, RRP15, GAK, PHYHIP, IWS1, MT1F, SLC9A7,

NUP153, TOR1A

Training set Precision Recall F1 score N

Control 0.30 0.92 0.45 24

ALS 0.97 0.52 0.68 109

Accuracy 0.59

Test set Precision Recall F1 score N

Control 0.12 0.40 0.18 5

ALS 0.89 0.62 0.74 40

Accuracy 0.60
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phytanoyl-CoA 2-Hydroxylase interacting protein (log2FC

�21.979, p 0.0168), IWS1, a SUPT6H interacting protein

(log2FC �8.057, p 0.0230), MT1F, a Metallothionein

(log2FC �18.960, p 0.0096), SLC9A7, a solute carrier

family 9 protein (log2FC �22.068, p 0.0050), NUP153, a

nucleoporin (log2FC �16.684, p 0.0355) and TOR1A, a

torsin family 1 protein (log2FC �2.7245, p 0.0195) are

most effective at differentiating between ALS patients and

healthy individuals. Negative signs for log2FC indicate

lower expression levels in ALS patients compared to

healthy individuals. This second model showed still con-

siderable discriminatory ability, although with a slight

degradation in performance on the unseen test set in

terms of precision which drops to 89%, and a reduced

recall rate of 62%. Such a restricted model might lend

itself to more economical test panels than the model

based on 100 proteins.

Discussion

The integration of clinical data with computational biol-

ogy, machine learning and in vivo approaches to address

the heterogeneity of ALS disease mechanisms and pro-

gression is a strength of our study. Based on the premise

that dysfunction of molecular pathways in motor neurons

leads to neurodegeneration and each patient’s unique

clinical presentation, we integrated the clinical history of

each patient with the proteomics signature of their iPSC-

derived motor neurons. We chose to focus on proteomics

data as it is the most direct measurement of cellular con-

ditions. Modelling ALS using iPSCs provides an opportu-

nity to examine molecular changes at the earliest stages of

neurodegeneration, unconfounded by changes associated

with terminal degeneration, representing early/prodromal

therapeutic windows where drugs may be most effective.

We recognize that such iPSC-derived cells are unable to

replicate all features of ALS-affected human tissues, e.g.

the inability to capture the effects of non-cell-

autonomous toxicity, but also provide certain advantages

as they would be generally representative of an earlier

stage of the disease. This is desirable, as late-stage

degraded cells are no longer amenable to treatment.

Another confounding factor is the exposure of patients to

different treatment regimens. Unfortunately, details of

prescribed medication and the duration of such treatment

are unavailable for our patient samples. However, analysis

of iPSC-derived motor neurons should minimize such

effects with the exception of persistent epigenetic changes

induced through the use of medication.

We contrasted proteomic signatures at the extremes of

clinical phenotypes to look for shared pathological path-

ways or those which differentiate the extremes. These may

represent possible ALS-related and prognostic biomarkers

respectively, and potential therapeutic targets. Many

promising preclinical and early phase ALS clinical trials

were unable to be replicated in larger phase 3 confirma-

tory trials, and biological heterogeneity of ALS has been

cited as a contributory factor.9 We included both

C9orf72-positive and cases with undetermined C9orf72

status as the number of such cases in our data set is small

(only 7/149 cases have confirmed C9orf72 high repeat

counts with a further 10 cases self-reporting C9orf72 pos-

itive) and does not easily allow us to distinguish the

effects of C9orf72 from effects observed in spontaneous

ALS. Moreover, the data set does not contain asymp-

tomatic C9orf72 carriers in the control group. Unmet

medical need to develop biomarkers which could reduce

clinical heterogeneity and improve clinical trial design

exists. No biomarkers that accurately serve in an ALS-

related or prognostic capacity in ALS are available.9 ALS-

related biomarkers may select for cases which are “true”

ALS, which addresses the median diagnostic delay in ALS

of about 1 year, which affects the initiation of treatment

and care planning. Prognostic biomarkers could select

patients with a specific disease stage and/or rate of pro-

gression, which could aid phenotypic stratification for

clinical trial enrolment and enrich clinical trials with

patients more likely to show clinical effects within a lim-

ited time period, thereby reducing costs of conducting

clinical trials. As a case in point, initial phase 3 clinical

trial results for edaravone failed to show treatment bene-

fits,12 possibly due to clinical heterogeneity in the

ALSFRS-R slopes obscuring treatment effect,13 but a sub-

sequent clinical trial which enrolled a particular subset of

patients in early disease and ALSFRS-R decline of �1 to

�4 over 12 weeks showed a significant 33% reduction in

the rate of disease progression with edaravone treat-

ment,11 which eventually led to FDA-approval. Our study

has predicted biomarkers which could be further tested in

more easily accessed saliva, tears, cerebrospinal fluid or

serum samples from ALS patients. GO Biological path-

ways of identified proteins were enriched in RNA meta-

bolism, DNA damage repair, and cell cycle mechanisms,

which are known pathogenic mechanisms in ALS,35–37

and therefore validate our approach (Tables S1, S2).

RNA-binding proteins such as TDP-43 and FUS are

known to be involved in ALS pathogenesis.33 Using the

Drosophila eye expressing human TDP-43M337 as a dis-

covery platform,29 we identified 19 hits out of 57 candi-

dates from our proteomics analysis. Two hits were

recently identified in an independent genome-wide screen

in TDP-43-expressing flies and correspond to fly homo-

logues of ARIDB1 and WAPL,38 confirming their speci-

ficity. MED23 is relevant because subunits of the

Mediator complex suppressed TDP-43 toxicity in another

screen39 and interact with WAPL,40 suggesting its
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importance in disease pathogenesis. TUBB2A transcripts

were dysregulated in the axonal compartment of TDP-43-

depleted motor neurons.41 The identification of modifiers

involved in RNA synthesis and processing (POLR2K and

CWC15), RNA export (THOC1) and nuclear pore com-

plex formation (NDC1) implicates these biological path-

ways. Results from the fly do not necessarily translate to

human cells but are useful starting points for hypothesis

generation.

Not all human genes have fly homologues and available

RNAi lines for testing, hence it is important to combine

insights from patient iPSC and fly models. Of the pro-

teins screened in the fly model, TOR1A was the only pro-

tein screened amongst the top 10 diagnostic biomarkers

predicted by machine learning and had no effect on the

fly eye phenotype, which suggests that the TOR1A signa-

ture is downstream of the causative protein. Overlaps in

neurodegenerative pathways mediated by novel biomark-

ers identified by machine learning and Drosophila screen

deserve further study. Protein ubiquitination is promising

as it is mediated by UBR5 and STUB1 (Drosophila

screen) and RCHY1 and HECTD1 (Machine learning pre-

dictions). UBR5 is protective in Huntington’s disease42

and STUB1 mutations have been linked to ataxia and

cognitive decline.43 RCHY1 and HECTD1 have not yet

been associated with neurodegeneration. Concurring with

the Drosophila screen, machine learning predictions sug-

gest that RNA processing (RRP15) and nuclear pore com-

plex (NUP153) are important biological pathways for

further study.

Genes which, when silenced, rescue the ALS phenotype,

may be promising therapeutic targets. Advances in gene

silencing and editing technologies can permit personalized

therapeutic programs involving selective knockdown of

these proteins. Improved methods of delivering gene-

modifying therapy to the central nervous system in

another prototypical motor neuron disease, Spinal Mus-

cular Atrophy (SMA),44 support the viability of such

strategies for ALS.

Anti-ALS candidate drugs which we identified included

nutraceuticals, statins, drugs which modulate dopamine

pathways, anti-inflammatories and antimicrobials. We

again want to empathize that none of the identified can-

didate drugs has been proven to be an effective treatment

for ALS at this stage. Ginseng alleviates neurological

symptoms in the SOD1 mouse model of ALS.45 A possi-

ble role for platelet-activating factor receptor (PAFR)

specific inhibitors has been postulated based on overex-

pression of PAFR in the spinal cords of SOD1 mice,46

and ginkgo is a powerful PAFR inhibitor. Curcumin

might have a beneficial effect on neurodegenerative dis-

eases through anti-inflammatory and antioxidant proper-

ties.47 Ropinirole, a dopamine agonist, was recently

identified as a candidate therapeutic agent for ALS using

iPSC-based drug discovery,48 which supports the consid-

eration of drugs which modulate the dopamine pathway.

Given that inflammation has been identified in ALS

pathogenesis,8 anti-inflammatories and anti-microbials

may be attractive anti-ALS candidates. In this class, cele-

coxib, a Cox2 inhibitor and ceftriazone, an antibiotic, had

previously been tested in ALS clinical trials but did not

show clinical efficacy,49,50 perhaps due to clinical and bio-

logical heterogeneity of ALS patients. However, it is also

possible, that the drugs thus identified are ineffective for

ALS and the similarity in affected pathways is purely

coincidental. Further studies should determine whether

candidate drugs are effective in ALS patients using iPSC-

based assays, followed by a placebo-controlled clinical

trial.

Potential limitations of our study arise from the available

data included in this study, which is primarily based on

iPSC-derived differentiated motor neurons that have been

derived with a single protocol. These cells are patient-

derived, but are not direct patient samples and, hence, we

cannot rule out that the preparation protocol introduces

biases reflected in the data presented here. Unfortunately,

omics data for the primary patient samples is currently not

available. Patient ages in the ALSFRS-R baseline group dif-

fer significantly in age between early- and late-stage patients

with late-stage patients on average about 5 years younger,

which may result in confounding effects with the observed

levels of neurodegeneration. Additionally, the limited num-

ber of C9orf72 samples and the lack of asymptomatic

C9orf72 carriers in the controls, alongside similar limita-

tions concerning ATXN2 carriers, constrain our ability to

differentiate these genetic sub-populations from the

remainder of the patient samples. Our set of 10 proteins

identified as an ALS-related using machine learning meth-

ods have been determined purely through statistical criteria

and have not been confirmed to play a role in ALS patho-

genesis through biological studies. Lastly, the TDP-43 Dro-

sophila model employed here may not accurately reflect the

progression of ALS and FTD in humans, and hence our

results related to genes having disease-altering effects in

TDP-43-expressing flies may not be directly transferrable

to humans. A follow-up study will be needed to define the

specific role of the candidate proteins in motor neurons of

the TDP-43 fly model to identify targets with higher trans-

lational potential.

Conclusion

Our study integrates clinical data with computational

biology, machine learning and in vivo approaches to

address the heterogeneity of ALS disease mechanisms.

Overall, these results illustrate the power of coupling
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proteomics and bioinformatics platforms with in vivo val-

idation in flexible model organisms. Since ALS clinical

presentation is highly heterogeneous, single drugs are

unlikely to be effective across all cases. Therefore, preci-

sion medicine approaches will be critical to identify treat-

ment responders.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Figure S1. Comparison with human tissue studies. Venn

diagrams showing the overlap of proteins identified in

this study with previous studies by Laferri�ere et al.,51 Iri-

doy et al.,52 Gozal et al.,53 Umoh et al.54 and Pun et al.,55

in human tissues. Our study uses iPSC-derived motor

neuron data provided by the AnswerALS consortium. We

compare our findings with previous literature studying

proteomics in human tissues and find a degree of overlap,

particularly with the study of Umoh et al. In general, the

overlap between different human tissue proteomics stud-

ies is limited as evidenced by the comparison of various

human tissue studies.

Figure S2. Comparison between previous human tissue

studies. Overlap of proteins identified in previous studies

of ALS and FTLD literature. We find limited overlap

between proteins in proteomics studies by Laferri�ere

et al.,51 Iridoy et al.,52 Gozal et al.,53 Umoh et al.54 and

Pun et al.55

Table S1. GO of heatmaps. The top five gene ontology

terms resulting from STITCH analysis are shown for GO

biological processes.

Table S2. Protein lists from heatmaps. Protein lists, log2-

fold change and p-values from Limma for all contrasts.

Individual lists correspond to the three groups in the

Venn diagrams of Figure 1.

Table S3. RNAi screening results in flies expressing

mutant TDP-43M337V. Columns indicate the names of

the human and fly homologues, the catalogue number

of each stock used and the corresponding score in the

validation.
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